1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
|
/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
* Copyright (C) 2022, Tomi Valkeinen <tomi.valkeinen@ideasonboard.com>
*
* Python bindings
*/
#include "py_main.h"
#include <memory>
#include <stdexcept>
#include <string>
#include <vector>
#include <libcamera/base/log.h>
#include <libcamera/libcamera.h>
#include <pybind11/functional.h>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <pybind11/stl_bind.h>
#include "py_camera_manager.h"
#include "py_helpers.h"
namespace py = pybind11;
using namespace libcamera;
namespace libcamera {
LOG_DEFINE_CATEGORY(Python)
}
/*
* This is a holder class used only for the Camera class, for the sole purpose
* of avoiding the compilation issue with Camera's private destructor.
*
* pybind11 requires a public destructor for classes held with shared_ptrs, even
* in cases where the public destructor is not strictly needed. The current
* understanding is that there are the following options to solve the problem:
*
* - Use pybind11 'smart_holder' branch. The downside is that 'smart_holder'
* is not the mainline branch, and not available in distributions.
* - https://github.com/pybind/pybind11/pull/2067
* - Make the Camera destructor public
* - Something like the PyCameraSmartPtr here, which adds a layer, hiding the
* issue.
*/
template<typename T>
class PyCameraSmartPtr
{
public:
using element_type = T;
PyCameraSmartPtr()
{
}
explicit PyCameraSmartPtr(T *)
{
throw std::runtime_error("invalid SmartPtr constructor call");
}
explicit PyCameraSmartPtr(std::shared_ptr<T> p)
: ptr_(p)
{
}
T *get() const { return ptr_.get(); }
operator std::shared_ptr<T>() const { return ptr_; }
private:
std::shared_ptr<T> ptr_;
};
PYBIND11_DECLARE_HOLDER_TYPE(T, PyCameraSmartPtr<T>)
/*
* Note: global C++ destructors can be ran on this before the py module is
* destructed.
*/
static std::weak_ptr<PyCameraManager> gCameraManager;
void init_py_color_space(py::module &m);
void init_py_controls_generated(py::module &m);
void init_py_enums(py::module &m);
void init_py_formats_generated(py::module &m);
void init_py_geometry(py::module &m);
void init_py_properties_generated(py::module &m);
void init_py_transform(py::module &m);
PYBIND11_MODULE(_libcamera, m)
{
init_py_enums(m);
init_py_controls_generated(m);
init_py_geometry(m);
init_py_properties_generated(m);
init_py_color_space(m);
init_py_transform(m);
/* Forward declarations */
/*
* We need to declare all the classes here so that Python docstrings
* can be generated correctly.
* https://pybind11.readthedocs.io/en/latest/advanced/misc.html#avoiding-c-types-in-docstrings
*/
auto pyCameraManager = py::class_<PyCameraManager, std::shared_ptr<PyCameraManager>>(m, "CameraManager");
auto pyCamera = py::class_<Camera, PyCameraSmartPtr<Camera>>(m, "Camera");
auto pySensorConfiguration = py::class_<SensorConfiguration>(m, "SensorConfiguration");
auto pyCameraConfiguration = py::class_<CameraConfiguration>(m, "CameraConfiguration");
auto pyCameraConfigurationStatus = py::enum_<CameraConfiguration::Status>(pyCameraConfiguration, "Status");
auto pyStreamConfiguration = py::class_<StreamConfiguration>(m, "StreamConfiguration");
auto pyStreamFormats = py::class_<StreamFormats>(m, "StreamFormats");
auto pyFrameBufferAllocator = py::class_<FrameBufferAllocator>(m, "FrameBufferAllocator");
auto pyFrameBuffer = py::class_<FrameBuffer>(m, "FrameBuffer");
auto pyFrameBufferPlane = py::class_<FrameBuffer::Plane>(pyFrameBuffer, "Plane");
auto pyStream = py::class_<Stream>(m, "Stream");
auto pyControlId = py::class_<ControlId>(m, "ControlId");
auto pyControlInfo = py::class_<ControlInfo>(m, "ControlInfo");
auto pyRequest = py::class_<Request>(m, "Request");
auto pyRequestStatus = py::enum_<Request::Status>(pyRequest, "Status");
auto pyRequestReuse = py::enum_<Request::ReuseFlag>(pyRequest, "Reuse");
auto pyFrameMetadata = py::class_<FrameMetadata>(m, "FrameMetadata");
auto pyFrameMetadataStatus = py::enum_<FrameMetadata::Status>(pyFrameMetadata, "Status");
auto pyFrameMetadataPlane = py::class_<FrameMetadata::Plane>(pyFrameMetadata, "Plane");
auto pyPixelFormat = py::class_<PixelFormat>(m, "PixelFormat");
init_py_formats_generated(m);
/* Global functions */
m.def("log_set_level", &logSetLevel);
/* Classes */
pyCameraManager
.def_static("singleton", []() {
std::shared_ptr<PyCameraManager> cm = gCameraManager.lock();
if (!cm) {
cm = std::make_shared<PyCameraManager>();
gCameraManager = cm;
}
return cm;
})
.def_property_readonly_static("version", [](py::object /* self */) { return PyCameraManager::version(); })
.def("get", &PyCameraManager::get, py::keep_alive<0, 1>())
.def_property_readonly("cameras", &PyCameraManager::cameras)
.def_property_readonly("event_fd", &PyCameraManager::eventFd)
.def("get_ready_requests", &PyCameraManager::getReadyRequests);
pyCamera
.def_property_readonly("id", &Camera::id)
.def("acquire", [](Camera &self) {
int ret = self.acquire();
if (ret)
throw std::system_error(-ret, std::generic_category(),
"Failed to acquire camera");
})
.def("release", [](Camera &self) {
int ret = self.release();
if (ret)
throw std::system_error(-ret, std::generic_category(),
"Failed to release camera");
})
.def("start", [](Camera &self,
const std::unordered_map<const ControlId *, py::object> &controls) {
/* \todo What happens if someone calls start() multiple times? */
auto cm = gCameraManager.lock();
ASSERT(cm);
self.requestCompleted.connect(cm.get(), &PyCameraManager::handleRequestCompleted);
ControlList controlList(self.controls());
for (const auto &[id, obj] : controls) {
auto val = pyToControlValue(obj, id->type());
controlList.set(id->id(), val);
}
int ret = self.start(&controlList);
if (ret) {
self.requestCompleted.disconnect();
throw std::system_error(-ret, std::generic_category(),
"Failed to start camera");
}
}, py::arg("controls") = std::unordered_map<const ControlId *, py::object>())
.def("stop", [](Camera &self) {
int ret = self.stop();
self.requestCompleted.disconnect();
if (ret)
throw std::system_error(-ret, std::generic_category(),
"Failed to stop camera");
})
.def("__str__", [](Camera &self) {
return "<libcamera.Camera '" + self.id() + "'>";
})
/* Keep the camera alive, as StreamConfiguration contains a Stream* */
.def("generate_configuration", [](Camera &self, const std::vector<StreamRole> &roles) {
return self.generateConfiguration(roles);
}, py::keep_alive<0, 1>())
.def("configure", [](Camera &self, CameraConfiguration *config) {
int ret = self.configure(config);
if (ret)
throw std::system_error(-ret, std::generic_category(),
"Failed to configure camera");
})
.def("create_request", [](Camera &self, uint64_t cookie) {
std::unique_ptr<Request> req = self.createRequest(cookie);
if (!req)
throw std::system_error(ENOMEM, std::generic_category(),
"Failed to create request");
return req;
}, py::arg("cookie") = 0)
.def("queue_request", [](Camera &self, Request *req) {
py::object py_req = py::cast(req);
/*
* Increase the reference count, will be dropped in
* CameraManager.get_ready_requests().
*/
py_req.inc_ref();
int ret = self.queueRequest(req);
if (ret) {
py_req.dec_ref();
throw std::system_error(-ret, std::generic_category(),
"Failed to queue request");
}
})
.def_property_readonly("streams", [](Camera &self) {
py::set set;
for (auto &s : self.streams()) {
py::object py_self = py::cast(self);
py::object py_s = py::cast(s);
py::detail::keep_alive_impl(py_s, py_self);
set.add(py_s);
}
return set;
})
.def_property_readonly("controls", [](Camera &self) {
/* Convert ControlInfoMap to std container */
std::unordered_map<const ControlId *, ControlInfo> ret;
for (const auto &[k, cv] : self.controls())
ret[k] = cv;
return ret;
})
.def_property_readonly("properties", [](Camera &self) {
/* Convert ControlList to std container */
std::unordered_map<const ControlId *, py::object> ret;
for (const auto &[k, cv] : self.properties()) {
const ControlId *id = properties::properties.at(k);
py::object ob = controlValueToPy(cv);
ret[id] = ob;
}
return ret;
});
pySensorConfiguration
.def(py::init<>())
.def_readwrite("bit_depth", &SensorConfiguration::bitDepth)
.def_readwrite("analog_crop", &SensorConfiguration::analogCrop)
.def_property(
"binning",
[](SensorConfiguration &self) {
return py::make_tuple(self.binning.binX, self.binning.binY);
},
[](SensorConfiguration &self, py::object value) {
auto vec = value.cast<std::vector<unsigned int>>();
if (vec.size() != 2)
throw std::runtime_error("binning requires iterable of 2 values");
self.binning.binX = vec[0];
self.binning.binY = vec[1];
})
.def_property(
"skipping",
[](SensorConfiguration &self) {
return py::make_tuple(self.skipping.xOddInc, self.skipping.xEvenInc,
self.skipping.yOddInc, self.skipping.yEvenInc);
},
[](SensorConfiguration &self, py::object value) {
auto vec = value.cast<std::vector<unsigned int>>();
if (vec.size() != 4)
throw std::runtime_error("skipping requires iterable of 4 values");
self.skipping.xOddInc = vec[0];
self.skipping.xEvenInc = vec[1];
self.skipping.yOddInc = vec[2];
self.skipping.yEvenInc = vec[3];
})
.def_readwrite("output_size", &SensorConfiguration::outputSize)
.def("is_valid", &SensorConfiguration::isValid);
pyCameraConfiguration
.def("__iter__", [](CameraConfiguration &self) {
return py::make_iterator<py::return_value_policy::reference_internal>(self);
}, py::keep_alive<0, 1>())
.def("__len__", [](CameraConfiguration &self) {
return self.size();
})
.def("validate", &CameraConfiguration::validate)
.def("at", py::overload_cast<unsigned int>(&CameraConfiguration::at),
py::return_value_policy::reference_internal)
.def_property_readonly("size", &CameraConfiguration::size)
.def_property_readonly("empty", &CameraConfiguration::empty)
.def_readwrite("sensor_config", &CameraConfiguration::sensorConfig)
.def_readwrite("orientation", &CameraConfiguration::orientation);
pyCameraConfigurationStatus
.value("Valid", CameraConfiguration::Valid)
.value("Adjusted", CameraConfiguration::Adjusted)
.value("Invalid", CameraConfiguration::Invalid);
pyStreamConfiguration
.def("__str__", &StreamConfiguration::toString)
.def_property_readonly("stream", &StreamConfiguration::stream,
py::return_value_policy::reference_internal)
.def_readwrite("size", &StreamConfiguration::size)
.def_readwrite("pixel_format", &StreamConfiguration::pixelFormat)
.def_readwrite("stride", &StreamConfiguration::stride)
.def_readwrite("frame_size", &StreamConfiguration::frameSize)
.def_readwrite("buffer_count", &StreamConfiguration::bufferCount)
.def_property_readonly("formats", &StreamConfiguration::formats,
py::return_value_policy::reference_internal)
.def_readwrite("color_space", &StreamConfiguration::colorSpace);
pyStreamFormats
.def_property_readonly("pixel_formats", &StreamFormats::pixelformats)
.def("sizes", &StreamFormats::sizes)
.def("range", &StreamFormats::range);
pyFrameBufferAllocator
.def(py::init<PyCameraSmartPtr<Camera>>(), py::keep_alive<1, 2>())
.def("allocate", [](FrameBufferAllocator &self, Stream *stream) {
int ret = self.allocate(stream);
if (ret < 0)
throw std::system_error(-ret, std::generic_category(),
"Failed to allocate buffers");
return ret;
})
.def_property_readonly("allocated", &FrameBufferAllocator::allocated)
/* Create a list of FrameBuffers, where each FrameBuffer has a keep-alive to FrameBufferAllocator */
.def("buffers", [](FrameBufferAllocator &self, Stream *stream) {
py::object py_self = py::cast(self);
py::list l;
for (auto &ub : self.buffers(stream)) {
py::object py_buf = py::cast(ub.get(), py::return_value_policy::reference_internal, py_self);
l.append(py_buf);
}
return l;
});
pyFrameBuffer
.def(py::init<std::vector<FrameBuffer::Plane>, unsigned int>(),
py::arg("planes"), py::arg("cookie") = 0)
.def_property_readonly("metadata", &FrameBuffer::metadata, py::return_value_policy::reference_internal)
.def_property_readonly("planes", &FrameBuffer::planes)
.def_property("cookie", &FrameBuffer::cookie, &FrameBuffer::setCookie);
pyFrameBufferPlane
.def(py::init())
.def(py::init([](int fd, unsigned int offset, unsigned int length) {
auto p = FrameBuffer::Plane();
p.fd = SharedFD(fd);
p.offset = offset;
p.length = length;
return p;
}), py::arg("fd"), py::arg("offset"), py::arg("length"))
.def_property("fd",
[](const FrameBuffer::Plane &self) {
return self.fd.get();
},
[](FrameBuffer::Plane &self, int fd) {
self.fd = SharedFD(fd);
})
.def_readwrite("offset", &FrameBuffer::Plane::offset)
.def_readwrite("length", &FrameBuffer::Plane::length);
pyStream
.def_property_readonly("configuration", &Stream::configuration);
pyControlId
.def_property_readonly("id", &ControlId::id)
.def_property_readonly("name", &ControlId::name)
.def_property_readonly("type", &ControlId::type)
.def("__str__", [](const ControlId &self) { return self.name(); })
.def("__repr__", [](const ControlId &self) {
return py::str("libcamera.ControlId({}, {}, {})")
.format(self.id(), self.name(), self.type());
});
pyControlInfo
.def_property_readonly("min", [](const ControlInfo &self) {
return controlValueToPy(self.min());
})
.def_property_readonly("max", [](const ControlInfo &self) {
return controlValueToPy(self.max());
})
.def_property_readonly("default", [](const ControlInfo &self) {
return controlValueToPy(self.def());
})
.def_property_readonly("values", [](const ControlInfo &self) {
py::list l;
for (const auto &v : self.values())
l.append(controlValueToPy(v));
return l;
})
.def("__str__", &ControlInfo::toString)
.def("__repr__", [](const ControlInfo &self) {
return py::str("libcamera.ControlInfo({})")
.format(self.toString());
});
pyRequest
/* \todo Fence is not supported, so we cannot expose addBuffer() directly */
.def("add_buffer", [](Request &self, const Stream *stream, FrameBuffer *buffer) {
int ret = self.addBuffer(stream, buffer);
if (ret)
throw std::system_error(-ret, std::generic_category(),
"Failed to add buffer");
}, py::keep_alive<1, 3>()) /* Request keeps Framebuffer alive */
.def_property_readonly("status", &Request::status)
.def_property_readonly("buffers", &Request::buffers)
.def_property_readonly("cookie", &Request::cookie)
.def_property_readonly("sequence", &Request::sequence)
.def_property_readonly("has_pending_buffers", &Request::hasPendingBuffers)
.def("set_control", [](Request &self, const ControlId &id, py::object value) {
self.controls().set(id.id(), pyToControlValue(value, id.type()));
})
.def_property_readonly("metadata", [](Request &self) {
/* Convert ControlList to std container */
std::unordered_map<const ControlId *, py::object> ret;
for (const auto &[key, cv] : self.metadata()) {
const ControlId *id = controls::controls.at(key);
py::object ob = controlValueToPy(cv);
ret[id] = ob;
}
return ret;
})
/*
* \todo As we add a keep_alive to the fb in addBuffers(), we
* can only allow reuse with ReuseBuffers.
*/
.def("reuse", [](Request &self) { self.reuse(Request::ReuseFlag::ReuseBuffers); })
.def("__str__", &Request::toString);
pyRequestStatus
.value("Pending", Request::RequestPending)
.value("Complete", Request::RequestComplete)
.value("Cancelled", Request::RequestCancelled);
pyRequestReuse
.value("Default", Request::ReuseFlag::Default)
.value("ReuseBuffers", Request::ReuseFlag::ReuseBuffers);
pyFrameMetadata
.def_readonly("status", &FrameMetadata::status)
.def_readonly("sequence", &FrameMetadata::sequence)
.def_readonly("timestamp", &FrameMetadata::timestamp)
.def_property_readonly("planes", [](const FrameMetadata &self) {
/* Convert from Span<> to std::vector<> */
/* Note: this creates a copy */
std::vector<FrameMetadata::Plane> v(self.planes().begin(), self.planes().end());
return v;
});
pyFrameMetadataStatus
.value("Success", FrameMetadata::FrameSuccess)
.value("Error", FrameMetadata::FrameError)
.value("Cancelled", FrameMetadata::FrameCancelled);
pyFrameMetadataPlane
.def_readwrite("bytes_used", &FrameMetadata::Plane::bytesused);
pyPixelFormat
.def(py::init<>())
.def(py::init<uint32_t, uint64_t>())
.def(py::init<>([](const std::string &str) {
return PixelFormat::fromString(str);
}))
.def_property_readonly("fourcc", &PixelFormat::fourcc)
.def_property_readonly("modifier", &PixelFormat::modifier)
.def(py::self == py::self)
.def("__str__", &PixelFormat::toString)
.def("__repr__", [](const PixelFormat &self) {
return "libcamera.PixelFormat('" + self.toString() + "')";
});
}
|