summaryrefslogtreecommitdiff
path: root/src/py/examples/simple-capture.py
blob: 4b85408fac4a8474389333797e333c9b88e59847 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
#!/usr/bin/env python3

# SPDX-License-Identifier: BSD-3-Clause
# Copyright (C) 2022, Tomi Valkeinen <tomi.valkeinen@ideasonboard.com>

# A simple capture example showing:
# - How to setup the camera
# - Capture certain number of frames in a blocking manner
# - How to stop the camera
#
# This simple example is, in many ways, too simple. The purpose of the example
# is to introduce the concepts. A more realistic example is given in
# simple-continuous-capture.py.

import argparse
import libcamera as libcam
import selectors
import sys

# Number of frames to capture
TOTAL_FRAMES = 30


def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('-c', '--camera', type=str, default='1',
                        help='Camera index number (starting from 1) or part of the name')
    parser.add_argument('-f', '--format', type=str, help='Pixel format')
    parser.add_argument('-s', '--size', type=str, help='Size ("WxH")')
    args = parser.parse_args()

    cm = libcam.CameraManager.singleton()

    try:
        if args.camera.isnumeric():
            cam_idx = int(args.camera)
            cam = next((cam for i, cam in enumerate(cm.cameras) if i + 1 == cam_idx))
        else:
            cam = next((cam for cam in cm.cameras if args.camera in cam.id))
    except Exception:
        print(f'Failed to find camera "{args.camera}"')
        return -1

    # Acquire the camera for our use

    cam.acquire()

    # Configure the camera

    cam_config = cam.generate_configuration([libcam.StreamRole.Viewfinder])

    stream_config = cam_config.at(0)

    if args.format:
        fmt = libcam.PixelFormat(args.format)
        stream_config.pixel_format = fmt

    if args.size:
        w, h = [int(v) for v in args.size.split('x')]
        stream_config.size = libcam.Size(w, h)

    cam.configure(cam_config)

    print(f'Capturing {TOTAL_FRAMES} frames with {stream_config}')

    stream = stream_config.stream

    # Allocate the buffers for capture

    allocator = libcam.FrameBufferAllocator(cam)
    ret = allocator.allocate(stream)
    assert ret > 0

    num_bufs = len(allocator.buffers(stream))

    # Create the requests and assign a buffer for each request

    reqs = []
    for i in range(num_bufs):
        # Use the buffer index as the cookie
        req = cam.create_request(i)

        buffer = allocator.buffers(stream)[i]
        req.add_buffer(stream, buffer)

        reqs.append(req)

    # Start the camera

    cam.start()

    # frames_queued and frames_done track the number of frames queued and done

    frames_queued = 0
    frames_done = 0

    # Queue the requests to the camera

    for req in reqs:
        cam.queue_request(req)
        frames_queued += 1

    # The main loop. Wait for the queued Requests to complete, process them,
    # and re-queue them again.

    sel = selectors.DefaultSelector()
    sel.register(cm.event_fd, selectors.EVENT_READ)

    while frames_done < TOTAL_FRAMES:
        # cm.get_ready_requests() does not block, so we use a Selector to wait
        # for a camera event. Here we should almost always get a single
        # Request, but in some cases there could be multiple or none.

        events = sel.select()
        if not events:
            continue

        reqs = cm.get_ready_requests()

        for req in reqs:
            frames_done += 1

            buffers = req.buffers

            # A ready Request could contain multiple buffers if multiple streams
            # were being used. Here we know we only have a single stream,
            # and we use next(iter()) to get the first and only buffer.

            assert len(buffers) == 1

            stream, fb = next(iter(buffers.items()))

            # Here we could process the received buffer. In this example we only
            # print a few details below.

            meta = fb.metadata

            print("seq {:3}, bytes {}, frames queued/done {:3}/{:<3}"
                  .format(meta.sequence,
                          '/'.join([str(p.bytes_used) for p in meta.planes]),
                          frames_queued, frames_done))

            # If we want to capture more frames we need to queue more Requests.
            # We could create a totally new Request, but it is more efficient
            # to reuse the existing one that we just received.
            if frames_queued < TOTAL_FRAMES:
                req.reuse()
                cam.queue_request(req)
                frames_queued += 1

    # Stop the camera

    cam.stop()

    # Release the camera

    cam.release()

    return 0


if __name__ == '__main__':
    sys.exit(main())
opt">{ std::unordered_map<uint32_t, DelayedControls::ControlParams> delays = { { V4L2_CID_BRIGHTNESS, { 1, false } }, }; std::unique_ptr<DelayedControls> delayed = std::make_unique<DelayedControls>(dev_.get(), delays); ControlList ctrls; /* Reset control to value that will be first in test. */ int32_t expected = 4; ctrls.set(V4L2_CID_BRIGHTNESS, expected); dev_->setControls(&ctrls); delayed->reset(); /* Trigger the first frame start event */ delayed->applyControls(0); /* Test single control with delay. */ for (unsigned int i = 1; i < 100; i++) { int32_t value = 10 + i; ctrls.set(V4L2_CID_BRIGHTNESS, value); delayed->push(ctrls); delayed->applyControls(i); ControlList result = delayed->get(i); int32_t brightness = result.get(V4L2_CID_BRIGHTNESS).get<int32_t>(); if (brightness != expected) { cerr << "Failed single control with delay" << " frame " << i << " expected " << expected << " got " << brightness << endl; return TestFail; } expected = value; } return TestPass; } int dualControlsWithDelay(uint32_t startOffset) { static const unsigned int maxDelay = 2; std::unordered_map<uint32_t, DelayedControls::ControlParams> delays = { { V4L2_CID_BRIGHTNESS, { 1, false } }, { V4L2_CID_CONTRAST, { maxDelay, false } }, }; std::unique_ptr<DelayedControls> delayed = std::make_unique<DelayedControls>(dev_.get(), delays); ControlList ctrls; /* Reset control to value that will be first two frames in test. */ int32_t expected = 200; ctrls.set(V4L2_CID_BRIGHTNESS, expected); ctrls.set(V4L2_CID_CONTRAST, expected + 1); dev_->setControls(&ctrls); delayed->reset(); /* Trigger the first frame start event */ delayed->applyControls(startOffset); /* Test dual control with delay. */ for (unsigned int i = 1; i < 100; i++) { uint32_t frame = startOffset + i; int32_t value = 10 + i; ctrls.set(V4L2_CID_BRIGHTNESS, value); ctrls.set(V4L2_CID_CONTRAST, value + 1); delayed->push(ctrls); delayed->applyControls(frame); ControlList result = delayed->get(frame); int32_t brightness = result.get(V4L2_CID_BRIGHTNESS).get<int32_t>(); int32_t contrast = result.get(V4L2_CID_CONTRAST).get<int32_t>(); if (brightness != expected || contrast != expected + 1) { cerr << "Failed dual controls" << " frame " << frame << " brightness " << brightness << " contrast " << contrast << " expected " << expected << endl; return TestFail; } expected = i < maxDelay ? expected : value - 1; } return TestPass; } int dualControlsMultiQueue() { static const unsigned int maxDelay = 2; std::unordered_map<uint32_t, DelayedControls::ControlParams> delays = { { V4L2_CID_BRIGHTNESS, { 1, false } }, { V4L2_CID_CONTRAST, { maxDelay, false } } }; std::unique_ptr<DelayedControls> delayed = std::make_unique<DelayedControls>(dev_.get(), delays); ControlList ctrls; /* Reset control to value that will be first two frames in test. */ int32_t expected = 100; ctrls.set(V4L2_CID_BRIGHTNESS, expected); ctrls.set(V4L2_CID_CONTRAST, expected); dev_->setControls(&ctrls); delayed->reset(); /* Trigger the first frame start event */ delayed->applyControls(0); /* * Queue all controls before any fake frame start. Note we * can't queue up more then the delayed controls history size * which is 16. Where one spot is used by the reset control. */ for (unsigned int i = 0; i < 15; i++) { int32_t value = 10 + i; ctrls.set(V4L2_CID_BRIGHTNESS, value); ctrls.set(V4L2_CID_CONTRAST, value); delayed->push(ctrls); } /* Process all queued controls. */ for (unsigned int i = 1; i < 16; i++) { int32_t value = 10 + i - 1; delayed->applyControls(i); ControlList result = delayed->get(i); int32_t brightness = result.get(V4L2_CID_BRIGHTNESS).get<int32_t>(); int32_t contrast = result.get(V4L2_CID_CONTRAST).get<int32_t>(); if (brightness != expected || contrast != expected) { cerr << "Failed multi queue" << " frame " << i << " brightness " << brightness << " contrast " << contrast << " expected " << expected << endl; return TestFail; } expected = i < maxDelay ? expected : value - 1; } return TestPass; } int run() override { int ret; /* Test single control without delay. */ ret = singleControlNoDelay(); if (ret) return ret; /* Test single control with delay. */ ret = singleControlWithDelay(); if (ret) return ret; /* Test dual controls with different delays. */ ret = dualControlsWithDelay(0); if (ret) return ret; /* Test dual controls with non-zero sequence start. */ ret = dualControlsWithDelay(10000); if (ret) return ret; /* Test dual controls with sequence number wraparound. */ ret = dualControlsWithDelay(UINT32_MAX - 50); if (ret) return ret; /* Test control values produced faster than consumed. */ ret = dualControlsMultiQueue(); if (ret) return ret; return TestPass; } private: std::unique_ptr<DeviceEnumerator> enumerator_; std::shared_ptr<MediaDevice> media_; std::unique_ptr<V4L2VideoDevice> dev_; }; TEST_REGISTER(DelayedControlsTest)