summaryrefslogtreecommitdiff
path: root/src/py/cam/helpers.py
blob: 6b32a1346654e108bc9425e9ebb68c3b62168d6e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# SPDX-License-Identifier: GPL-2.0-or-later
# Copyright (C) 2022, Tomi Valkeinen <tomi.valkeinen@ideasonboard.com>
#
# Debayering code from PiCamera documentation

from numpy.lib.stride_tricks import as_strided
import libcamera as libcam
import libcamera.utils
import numpy as np


def demosaic(data, r0, g0, g1, b0):
    # Separate the components from the Bayer data to RGB planes

    rgb = np.zeros(data.shape + (3,), dtype=data.dtype)
    rgb[r0[1]::2, r0[0]::2, 0] = data[r0[1]::2, r0[0]::2]  # Red
    rgb[g0[1]::2, g0[0]::2, 1] = data[g0[1]::2, g0[0]::2]  # Green
    rgb[g1[1]::2, g1[0]::2, 1] = data[g1[1]::2, g1[0]::2]  # Green
    rgb[b0[1]::2, b0[0]::2, 2] = data[b0[1]::2, b0[0]::2]  # Blue

    # Below we present a fairly naive de-mosaic method that simply
    # calculates the weighted average of a pixel based on the pixels
    # surrounding it. The weighting is provided by a byte representation of
    # the Bayer filter which we construct first:

    bayer = np.zeros(rgb.shape, dtype=np.uint8)
    bayer[r0[1]::2, r0[0]::2, 0] = 1  # Red
    bayer[g0[1]::2, g0[0]::2, 1] = 1  # Green
    bayer[g1[1]::2, g1[0]::2, 1] = 1  # Green
    bayer[b0[1]::2, b0[0]::2, 2] = 1  # Blue

    # Allocate an array to hold our output with the same shape as the input
    # data. After this we define the size of window that will be used to
    # calculate each weighted average (3x3). Then we pad out the rgb and
    # bayer arrays, adding blank pixels at their edges to compensate for the
    # size of the window when calculating averages for edge pixels.

    output = np.empty(rgb.shape, dtype=rgb.dtype)
    window = (3, 3)
    borders = (window[0] - 1, window[1] - 1)
    border = (borders[0] // 2, borders[1] // 2)

    rgb = np.pad(rgb, [
        (border[0], border[0]),
        (border[1], border[1]),
        (0, 0),
    ], 'constant')
    bayer = np.pad(bayer, [
        (border[0], border[0]),
        (border[1], border[1]),
        (0, 0),
    ], 'constant')

    # For each plane in the RGB data, we use a nifty numpy trick
    # (as_strided) to construct a view over the plane of 3x3 matrices. We do
    # the same for the bayer array, then use Einstein summation on each
    # (np.sum is simpler, but copies the data so it's slower), and divide
    # the results to get our weighted average:

    for plane in range(3):
        p = rgb[..., plane]
        b = bayer[..., plane]
        pview = as_strided(p, shape=(
            p.shape[0] - borders[0],
            p.shape[1] - borders[1]) + window, strides=p.strides * 2)
        bview = as_strided(b, shape=(
            b.shape[0] - borders[0],
            b.shape[1] - borders[1]) + window, strides=b.strides * 2)
        psum = np.einsum('ijkl->ij', pview)
        bsum = np.einsum('ijkl->ij', bview)
        output[..., plane] = psum // bsum

    return output


def to_rgb(fmt, size, data):
    w = size.width
    h = size.height

    if fmt == libcam.formats.YUYV:
        # YUV422
        yuyv = data.reshape((h, w // 2 * 4))

        # YUV444
        yuv = np.empty((h, w, 3), dtype=np.uint8)
        yuv[:, :, 0] = yuyv[:, 0::2]                    # Y
        yuv[:, :, 1] = yuyv[:, 1::4].repeat(2, axis=1)  # U
        yuv[:, :, 2] = yuyv[:, 3::4].repeat(2, axis=1)  # V

        m = np.array([
            [1.0, 1.0, 1.0],
            [-0.000007154783816076815, -0.3441331386566162, 1.7720025777816772],
            [1.4019975662231445, -0.7141380310058594, 0.00001542569043522235]
        ])

        rgb = np.dot(yuv, m)
        rgb[:, :, 0] -= 179.45477266423404
        rgb[:, :, 1] += 135.45870971679688
        rgb[:, :, 2] -= 226.8183044444304
        rgb = rgb.astype(np.uint8)

    elif fmt == libcam.formats.RGB888:
        rgb = data.reshape((h, w, 3))
        rgb[:, :, [0, 1, 2]] = rgb[:, :, [2, 1, 0]]

    elif fmt == libcam.formats.BGR888:
        rgb = data.reshape((h, w, 3))

    elif fmt in [libcam.formats.ARGB8888, libcam.formats.XRGB8888]:
        rgb = data.reshape((h, w, 4))
        rgb = np.flip(rgb, axis=2)
        # drop alpha component
        rgb = np.delete(rgb, np.s_[0::4], axis=2)

    elif str(fmt).startswith('S'):
        fmt = str(fmt)
        bayer_pattern = fmt[1:5]
        bitspp = int(fmt[5:])

        # \todo shifting leaves the lowest bits 0
        if bitspp == 8:
            data = data.reshape((h, w))
            data = data.astype(np.uint16) << 8
        elif bitspp in [10, 12]:
            data = data.view(np.uint16)
            data = data.reshape((h, w))
            data = data << (16 - bitspp)
        else:
            raise Exception('Bad bitspp:' + str(bitspp))

        idx = bayer_pattern.find('R')
        assert(idx != -1)
        r0 = (idx % 2, idx // 2)

        idx = bayer_pattern.find('G')
        assert(idx != -1)
        g0 = (idx % 2, idx // 2)

        idx = bayer_pattern.find('G', idx + 1)
        assert(idx != -1)
        g1 = (idx % 2, idx // 2)

        idx = bayer_pattern.find('B')
        assert(idx != -1)
        b0 = (idx % 2, idx // 2)

        rgb = demosaic(data, r0, g0, g1, b0)
        rgb = (rgb >> 8).astype(np.uint8)

    else:
        rgb = None

    return rgb


# A naive format conversion to 24-bit RGB
def mfb_to_rgb(mfb: libcamera.utils.MappedFrameBuffer, cfg: libcam.StreamConfiguration):
    data = np.array(mfb.planes[0], dtype=np.uint8)
    rgb = to_rgb(cfg.pixel_format, cfg.size, data)
    return rgb
"hl opt">(property, DRM_MODE_PROP_BLOB)) type_ = TypeBlob; else if (drm_property_type_is(property, DRM_MODE_PROP_BITMASK)) type_ = TypeBitmask; else if (drm_property_type_is(property, DRM_MODE_PROP_OBJECT)) type_ = TypeObject; else if (drm_property_type_is(property, DRM_MODE_PROP_SIGNED_RANGE)) type_ = TypeSignedRange; else type_ = TypeUnknown; for (int i = 0; i < property->count_enums; ++i) enums_[property->enums[i].value] = property->enums[i].name; } Blob::Blob(Device *dev, const libcamera::Span<const uint8_t> &data) : Object(dev, 0, Object::TypeBlob) { drmModeCreatePropertyBlob(dev->fd(), data.data(), data.size(), &id_); } Blob::~Blob() { if (isValid()) drmModeDestroyPropertyBlob(device()->fd(), id()); } Mode::Mode(const drmModeModeInfo &mode) : drmModeModeInfo(mode) { } std::unique_ptr<Blob> Mode::toBlob(Device *dev) const { libcamera::Span<const uint8_t> data{ reinterpret_cast<const uint8_t *>(this), sizeof(*this) }; return std::make_unique<Blob>(dev, data); } Crtc::Crtc(Device *dev, const drmModeCrtc *crtc, unsigned int index) : Object(dev, crtc->crtc_id, Object::TypeCrtc), index_(index) { } Encoder::Encoder(Device *dev, const drmModeEncoder *encoder) : Object(dev, encoder->encoder_id, Object::TypeEncoder), type_(encoder->encoder_type) { const std::list<Crtc> &crtcs = dev->crtcs(); possibleCrtcs_.reserve(crtcs.size()); for (const Crtc &crtc : crtcs) { if (encoder->possible_crtcs & (1 << crtc.index())) possibleCrtcs_.push_back(&crtc); } possibleCrtcs_.shrink_to_fit(); } namespace { const std::map<uint32_t, const char *> connectorTypeNames{ { DRM_MODE_CONNECTOR_Unknown, "Unknown" }, { DRM_MODE_CONNECTOR_VGA, "VGA" }, { DRM_MODE_CONNECTOR_DVII, "DVI-I" }, { DRM_MODE_CONNECTOR_DVID, "DVI-D" }, { DRM_MODE_CONNECTOR_DVIA, "DVI-A" }, { DRM_MODE_CONNECTOR_Composite, "Composite" }, { DRM_MODE_CONNECTOR_SVIDEO, "S-Video" }, { DRM_MODE_CONNECTOR_LVDS, "LVDS" }, { DRM_MODE_CONNECTOR_Component, "Component" }, { DRM_MODE_CONNECTOR_9PinDIN, "9-Pin-DIN" }, { DRM_MODE_CONNECTOR_DisplayPort, "DP" }, { DRM_MODE_CONNECTOR_HDMIA, "HDMI-A" }, { DRM_MODE_CONNECTOR_HDMIB, "HDMI-B" }, { DRM_MODE_CONNECTOR_TV, "TV" }, { DRM_MODE_CONNECTOR_eDP, "eDP" }, { DRM_MODE_CONNECTOR_VIRTUAL, "Virtual" }, { DRM_MODE_CONNECTOR_DSI, "DSI" }, { DRM_MODE_CONNECTOR_DPI, "DPI" }, }; } /* namespace */ Connector::Connector(Device *dev, const drmModeConnector *connector) : Object(dev, connector->connector_id, Object::TypeConnector), type_(connector->connector_type) { auto typeName = connectorTypeNames.find(connector->connector_type); if (typeName == connectorTypeNames.end()) { std::cerr << "Invalid connector type " << connector->connector_type << std::endl; typeName = connectorTypeNames.find(DRM_MODE_CONNECTOR_Unknown); } name_ = std::string(typeName->second) + "-" + std::to_string(connector->connector_type_id); switch (connector->connection) { case DRM_MODE_CONNECTED: status_ = Status::Connected; break; case DRM_MODE_DISCONNECTED: status_ = Status::Disconnected; break; case DRM_MODE_UNKNOWNCONNECTION: default: status_ = Status::Unknown; break; } const std::list<Encoder> &encoders = dev->encoders(); encoders_.reserve(connector->count_encoders); for (int i = 0; i < connector->count_encoders; ++i) { uint32_t encoderId = connector->encoders[i]; auto encoder = std::find_if(encoders.begin(), encoders.end(), [=](const Encoder &e) { return e.id() == encoderId; }); if (encoder == encoders.end()) { std::cerr << "Encoder " << encoderId << " not found" << std::endl; continue; } encoders_.push_back(&*encoder); } encoders_.shrink_to_fit(); modes_ = { connector->modes, connector->modes + connector->count_modes }; } Plane::Plane(Device *dev, const drmModePlane *plane) : Object(dev, plane->plane_id, Object::TypePlane), possibleCrtcsMask_(plane->possible_crtcs) { formats_ = { plane->formats, plane->formats + plane->count_formats }; const std::list<Crtc> &crtcs = dev->crtcs(); possibleCrtcs_.reserve(crtcs.size()); for (const Crtc &crtc : crtcs) { if (plane->possible_crtcs & (1 << crtc.index())) possibleCrtcs_.push_back(&crtc); } possibleCrtcs_.shrink_to_fit(); } bool Plane::supportsFormat(const libcamera::PixelFormat &format) const { return std::find(formats_.begin(), formats_.end(), format.fourcc()) != formats_.end(); } int Plane::setup() { const PropertyValue *pv = propertyValue("type"); if (!pv) return -EINVAL; switch (pv->value()) { case DRM_PLANE_TYPE_OVERLAY: type_ = TypeOverlay; break; case DRM_PLANE_TYPE_PRIMARY: type_ = TypePrimary; break; case DRM_PLANE_TYPE_CURSOR: type_ = TypeCursor; break; default: return -EINVAL; } return 0; } FrameBuffer::FrameBuffer(Device *dev) : Object(dev, 0, Object::TypeFb) { } FrameBuffer::~FrameBuffer() { for (const auto &plane : planes_) { struct drm_gem_close gem_close = { .handle = plane.second.handle, .pad = 0, }; int ret; do { ret = ioctl(device()->fd(), DRM_IOCTL_GEM_CLOSE, &gem_close); } while (ret == -1 && (errno == EINTR || errno == EAGAIN)); if (ret == -1) { ret = -errno; std::cerr << "Failed to close GEM object: " << strerror(-ret) << std::endl; } } drmModeRmFB(device()->fd(), id()); } AtomicRequest::AtomicRequest(Device *dev) : dev_(dev), valid_(true) { request_ = drmModeAtomicAlloc(); if (!request_) valid_ = false; } AtomicRequest::~AtomicRequest() { if (request_) drmModeAtomicFree(request_); } int AtomicRequest::addProperty(const Object *object, const std::string &property, uint64_t value) { if (!valid_) return -EINVAL; const Property *prop = object->property(property); if (!prop) { valid_ = false; return -EINVAL; } return addProperty(object->id(), prop->id(), value); } int AtomicRequest::addProperty(const Object *object, const std::string &property, std::unique_ptr<Blob> blob) { if (!valid_) return -EINVAL; const Property *prop = object->property(property); if (!prop) { valid_ = false; return -EINVAL; } int ret = addProperty(object->id(), prop->id(), blob->id()); if (ret < 0) return ret; blobs_.emplace_back(std::move(blob)); return 0; } int AtomicRequest::addProperty(uint32_t object, uint32_t property, uint64_t value) { int ret = drmModeAtomicAddProperty(request_, object, property, value); if (ret < 0) { valid_ = false; return ret; } return 0; } int AtomicRequest::commit(unsigned int flags) { if (!valid_) return -EINVAL; uint32_t drmFlags = 0; if (flags & FlagAllowModeset) drmFlags |= DRM_MODE_ATOMIC_ALLOW_MODESET; if (flags & FlagAsync) drmFlags |= DRM_MODE_PAGE_FLIP_EVENT | DRM_MODE_ATOMIC_NONBLOCK; return drmModeAtomicCommit(dev_->fd(), request_, drmFlags, this); } Device::Device() : fd_(-1) { } Device::~Device() { if (fd_ != -1) drmClose(fd_); } int Device::init() { int ret = openCard(); if (ret < 0) { std::cerr << "Failed to open any DRM/KMS device: " << strerror(-ret) << std::endl; return ret; } /* * Enable the atomic APIs. This also automatically enables the * universal planes API. */ ret = drmSetClientCap(fd_, DRM_CLIENT_CAP_ATOMIC, 1); if (ret < 0) { ret = -errno; std::cerr << "Failed to enable atomic capability: " << strerror(-ret) << std::endl; return ret; } /* List all the resources. */ ret = getResources(); if (ret < 0) return ret; EventLoop::instance()->addFdEvent(fd_, EventLoop::Read, std::bind(&Device::drmEvent, this)); return 0; } int Device::openCard() { const std::string dirName = "/dev/dri/"; int ret = -ENOENT; /* * Open the first DRM/KMS device beginning with /dev/dri/card. The * libdrm drmOpen*() functions require either a module name or a bus ID, * which we don't have, so bypass them. The automatic module loading and * device node creation from drmOpen() is of no practical use as any * modern system will handle that through udev or an equivalent * component. */ DIR *folder = opendir(dirName.c_str()); if (!folder) { ret = -errno; std::cerr << "Failed to open " << dirName << " directory: " << strerror(-ret) << std::endl; return ret; } for (struct dirent *res; (res = readdir(folder));) { if (strncmp(res->d_name, "card", 4)) continue; const std::string devName = dirName + res->d_name; fd_ = open(devName.c_str(), O_RDWR | O_CLOEXEC); if (fd_ >= 0) { ret = 0; break; } ret = -errno; std::cerr << "Failed to open DRM/KMS device " << devName << ": " << strerror(-ret) << std::endl; } closedir(folder); return ret; } int Device::getResources() { int ret; std::unique_ptr<drmModeRes, decltype(&drmModeFreeResources)> resources{ drmModeGetResources(fd_), &drmModeFreeResources }; if (!resources) { ret = -errno; std::cerr << "Failed to get DRM/KMS resources: " << strerror(-ret) << std::endl; return ret; } for (int i = 0; i < resources->count_crtcs; ++i) { drmModeCrtc *crtc = drmModeGetCrtc(fd_, resources->crtcs[i]); if (!crtc) { ret = -errno; std::cerr << "Failed to get CRTC: " << strerror(-ret) << std::endl; return ret; } crtcs_.emplace_back(this, crtc, i); drmModeFreeCrtc(crtc); Crtc &obj = crtcs_.back(); objects_[obj.id()] = &obj; } for (int i = 0; i < resources->count_encoders; ++i) { drmModeEncoder *encoder = drmModeGetEncoder(fd_, resources->encoders[i]); if (!encoder) { ret = -errno; std::cerr << "Failed to get encoder: " << strerror(-ret) << std::endl; return ret; } encoders_.emplace_back(this, encoder); drmModeFreeEncoder(encoder); Encoder &obj = encoders_.back(); objects_[obj.id()] = &obj; } for (int i = 0; i < resources->count_connectors; ++i) { drmModeConnector *connector = drmModeGetConnector(fd_, resources->connectors[i]); if (!connector) { ret = -errno; std::cerr << "Failed to get connector: " << strerror(-ret) << std::endl; return ret; } connectors_.emplace_back(this, connector); drmModeFreeConnector(connector); Connector &obj = connectors_.back(); objects_[obj.id()] = &obj; } std::unique_ptr<drmModePlaneRes, decltype(&drmModeFreePlaneResources)> planes{ drmModeGetPlaneResources(fd_), &drmModeFreePlaneResources }; if (!planes) { ret = -errno; std::cerr << "Failed to get DRM/KMS planes: " << strerror(-ret) << std::endl; return ret; } for (uint32_t i = 0; i < planes->count_planes; ++i) { drmModePlane *plane = drmModeGetPlane(fd_, planes->planes[i]); if (!plane) { ret = -errno; std::cerr << "Failed to get plane: " << strerror(-ret) << std::endl; return ret; } planes_.emplace_back(this, plane); drmModeFreePlane(plane); Plane &obj = planes_.back(); objects_[obj.id()] = &obj; } /* Set the possible planes for each CRTC. */ for (Crtc &crtc : crtcs_) { for (const Plane &plane : planes_) { if (plane.possibleCrtcsMask_ & (1 << crtc.index())) crtc.planes_.push_back(&plane); } } /* Collect all property IDs and create Property instances. */ std::set<uint32_t> properties; for (const auto &object : objects_) { for (const PropertyValue &value : object.second->properties()) properties.insert(value.id()); } for (uint32_t id : properties) { drmModePropertyRes *property = drmModeGetProperty(fd_, id); if (!property) { ret = -errno; std::cerr << "Failed to get property: " << strerror(-ret) << std::endl; continue; } properties_.emplace_back(this, property); drmModeFreeProperty(property); Property &obj = properties_.back(); objects_[obj.id()] = &obj; } /* Finally, perform all delayed setup of mode objects. */ for (auto &object : objects_) { ret = object.second->setup(); if (ret < 0) { std::cerr << "Failed to setup object " << object.second->id() << ": " << strerror(-ret) << std::endl; return ret; } } return 0; } const Object *Device::object(uint32_t id) { const auto iter = objects_.find(id); if (iter == objects_.end()) return nullptr; return iter->second; } std::unique_ptr<FrameBuffer> Device::createFrameBuffer( const libcamera::FrameBuffer &buffer, const libcamera::PixelFormat &format, const libcamera::Size &size, const std::array<uint32_t, 4> &strides) { std::unique_ptr<FrameBuffer> fb{ new FrameBuffer(this) }; uint32_t handles[4] = {}; uint32_t offsets[4] = {}; int ret; const std::vector<libcamera::FrameBuffer::Plane> &planes = buffer.planes(); unsigned int i = 0; for (const libcamera::FrameBuffer::Plane &plane : planes) { int fd = plane.fd.get(); uint32_t handle; auto iter = fb->planes_.find(fd); if (iter == fb->planes_.end()) { ret = drmPrimeFDToHandle(fd_, plane.fd.get(), &handle); if (ret < 0) { ret = -errno; std::cerr << "Unable to import framebuffer dmabuf: " << strerror(-ret) << std::endl; return nullptr; } fb->planes_[fd] = { handle }; } else { handle = iter->second.handle; } handles[i] = handle; offsets[i] = plane.offset; ++i; } ret = drmModeAddFB2(fd_, size.width, size.height, format.fourcc(), handles, strides.data(), offsets, &fb->id_, 0); if (ret < 0) { ret = -errno; std::cerr << "Failed to add framebuffer: " << strerror(-ret) << std::endl; return nullptr; } return fb; } void Device::drmEvent() { drmEventContext ctx{}; ctx.version = DRM_EVENT_CONTEXT_VERSION; ctx.page_flip_handler = &Device::pageFlipComplete; drmHandleEvent(fd_, &ctx); } void Device::pageFlipComplete([[maybe_unused]] int fd, [[maybe_unused]] unsigned int sequence, [[maybe_unused]] unsigned int tv_sec, [[maybe_unused]] unsigned int tv_usec, void *user_data) { AtomicRequest *request = static_cast<AtomicRequest *>(user_data); request->device()->requestComplete.emit(request); } } /* namespace DRM */