summaryrefslogtreecommitdiff
path: root/src/ipa/rkisp1/algorithms/dpf.cpp
blob: 079cc2c385026fe9883134aab6eff96181018c6d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
 * Copyright (C) 2021-2022, Ideas On Board
 *
 * RkISP1 Denoise Pre-Filter control
 */

#include "dpf.h"

#include <cmath>

#include <libcamera/base/log.h>

#include <libcamera/control_ids.h>

#include "linux/rkisp1-config.h"

/**
 * \file dpf.h
 */

namespace libcamera {

namespace ipa::rkisp1::algorithms {

/**
 * \class Dpf
 * \brief RkISP1 Denoise Pre-Filter control
 *
 * The denoise pre-filter algorithm is a bilateral filter which combines a
 * range filter and a domain filter. The denoise pre-filter is applied before
 * demosaicing.
 */

LOG_DEFINE_CATEGORY(RkISP1Dpf)

Dpf::Dpf()
	: config_({}), strengthConfig_({})
{
}

/**
 * \copydoc libcamera::ipa::Algorithm::init
 */
int Dpf::init([[maybe_unused]] IPAContext &context,
	      const YamlObject &tuningData)
{
	std::vector<uint8_t> values;

	/*
	 * The domain kernel is configured with a 9x9 kernel for the green
	 * pixels, and a 13x9 or 9x9 kernel for red and blue pixels.
	 */
	const YamlObject &dFObject = tuningData["DomainFilter"];

	/*
	 * For the green component, we have the 9x9 kernel specified
	 * as 6 coefficients:
	 *    Y
	 *    ^
	 *  4 | 6   5   4   5   6
	 *  3 |   5   3   3   5
	 *  2 | 5   3   2   3   5
	 *  1 |   3   1   1   3
	 *  0 - 4   2   0   2   4
	 * -1 |   3   1   1   3
	 * -2 | 5   3   2   3   5
	 * -3 |   5   3   3   5
	 * -4 | 6   5   4   5   6
	 *    +---------|--------> X
	 *     -4....-1 0 1 2 3 4
	 */
	values = dFObject["g"].getList<uint8_t>().value_or(std::vector<uint8_t>{});
	if (values.size() != RKISP1_CIF_ISP_DPF_MAX_SPATIAL_COEFFS) {
		LOG(RkISP1Dpf, Error)
			<< "Invalid 'DomainFilter:g': expected "
			<< RKISP1_CIF_ISP_DPF_MAX_SPATIAL_COEFFS
			<< " elements, got " << values.size();
		return -EINVAL;
	}

	std::copy_n(values.begin(), values.size(),
		    std::begin(config_.g_flt.spatial_coeff));

	config_.g_flt.gr_enable = true;
	config_.g_flt.gb_enable = true;

	/*
	 * For the red and blue components, we have the 13x9 kernel specified
	 * as 6 coefficients:
	 *
	 *    Y
	 *    ^
	 *  4 | 6   5   4   3   4   5   6
	 *    |
	 *  2 | 5   4   2   1   2   4   5
	 *    |
	 *  0 - 5   3   1   0   1   3   5
	 *    |
	 * -2 | 5   4   2   1   2   4   5
	 *    |
	 * -4 | 6   5   4   3   4   5   6
	 *    +-------------|------------> X
	 *     -6  -4  -2   0   2   4   6
	 *
	 * For a 9x9 kernel, columns -6 and 6 are dropped, so coefficient
	 * number 6 is not used.
	 */
	values = dFObject["rb"].getList<uint8_t>().value_or(std::vector<uint8_t>{});
	if (values.size() != RKISP1_CIF_ISP_DPF_MAX_SPATIAL_COEFFS &&
	    values.size() != RKISP1_CIF_ISP_DPF_MAX_SPATIAL_COEFFS - 1) {
		LOG(RkISP1Dpf, Error)
			<< "Invalid 'DomainFilter:rb': expected "
			<< RKISP1_CIF_ISP_DPF_MAX_SPATIAL_COEFFS - 1
			<< " or " << RKISP1_CIF_ISP_DPF_MAX_SPATIAL_COEFFS
			<< " elements, got " << values.size();
		return -EINVAL;
	}

	config_.rb_flt.fltsize = values.size() == RKISP1_CIF_ISP_DPF_MAX_SPATIAL_COEFFS
			       ? RKISP1_CIF_ISP_DPF_RB_FILTERSIZE_13x9
			       : RKISP1_CIF_ISP_DPF_RB_FILTERSIZE_9x9;

	std::copy_n(values.begin(), values.size(),
		    std::begin(config_.rb_flt.spatial_coeff));

	config_.rb_flt.r_enable = true;
	config_.rb_flt.b_enable = true;

	/*
	 * The range kernel is configured with a noise level lookup table (NLL)
	 * which stores a piecewise linear function that characterizes the
	 * sensor noise profile as a noise level function curve (NLF).
	 */
	const YamlObject &rFObject = tuningData["NoiseLevelFunction"];

	std::vector<uint16_t> nllValues;
	nllValues = rFObject["coeff"].getList<uint16_t>().value_or(std::vector<uint16_t>{});
	if (nllValues.size() != RKISP1_CIF_ISP_DPF_MAX_NLF_COEFFS) {
		LOG(RkISP1Dpf, Error)
			<< "Invalid 'RangeFilter:coeff': expected "
			<< RKISP1_CIF_ISP_DPF_MAX_NLF_COEFFS
			<< " elements, got " << nllValues.size();
		return -EINVAL;
	}

	std::copy_n(nllValues.begin(), nllValues.size(),
		    std::begin(config_.nll.coeff));

	std::string scaleMode = rFObject["scale-mode"].get<std::string>("");
	if (scaleMode == "linear") {
		config_.nll.scale_mode = RKISP1_CIF_ISP_NLL_SCALE_LINEAR;
	} else if (scaleMode == "logarithmic") {
		config_.nll.scale_mode = RKISP1_CIF_ISP_NLL_SCALE_LOGARITHMIC;
	} else {
		LOG(RkISP1Dpf, Error)
			<< "Invalid 'RangeFilter:scale-mode': expected "
			<< "'linear' or 'logarithmic' value, got "
			<< scaleMode;
		return -EINVAL;
	}

	const YamlObject &fSObject = tuningData["FilterStrength"];

	strengthConfig_.r = fSObject["r"].get<uint16_t>(64);
	strengthConfig_.g = fSObject["g"].get<uint16_t>(64);
	strengthConfig_.b = fSObject["b"].get<uint16_t>(64);

	return 0;
}

/**
 * \copydoc libcamera::ipa::Algorithm::queueRequest
 */
void Dpf::queueRequest(IPAContext &context,
		       [[maybe_unused]] const uint32_t frame,
		       IPAFrameContext &frameContext,
		       const ControlList &controls)
{
	auto &dpf = context.activeState.dpf;
	bool update = false;

	const auto &denoise = controls.get(controls::draft::NoiseReductionMode);
	if (denoise) {
		LOG(RkISP1Dpf, Debug) << "Set denoise to " << *denoise;

		switch (*denoise) {
		case controls::draft::NoiseReductionModeOff:
			if (dpf.denoise) {
				dpf.denoise = false;
				update = true;
			}
			break;
		case controls::draft::NoiseReductionModeMinimal:
		case controls::draft::NoiseReductionModeHighQuality:
		case controls::draft::NoiseReductionModeFast:
			if (!dpf.denoise) {
				dpf.denoise = true;
				update = true;
			}
			break;
		default:
			LOG(RkISP1Dpf, Error)
				<< "Unsupported denoise value "
				<< *denoise;
			break;
		}
	}

	frameContext.dpf.denoise = dpf.denoise;
	frameContext.dpf.update = update;
}

/**
 * \copydoc libcamera::ipa::Algorithm::prepare
 */
void Dpf::prepare(IPAContext &context, const uint32_t frame,
		  IPAFrameContext &frameContext, RkISP1Params *params)
{
	if (!frameContext.dpf.update && frame > 0)
		return;

	auto config = params->block<BlockType::Dpf>();
	config.setEnabled(frameContext.dpf.denoise);

	if (frameContext.dpf.denoise) {
		*config = config_;

		const auto &awb = context.configuration.awb;
		const auto &lsc = context.configuration.lsc;

		auto &mode = config->gain.mode;

		/*
		 * The DPF needs to take into account the total amount of
		 * digital gain, which comes from the AWB and LSC modules. The
		 * DPF hardware can be programmed with a digital gain value
		 * manually, but can also use the gains supplied by the AWB and
		 * LSC modules automatically when they are enabled. Use that
		 * mode of operation as it simplifies control of the DPF.
		 */
		if (awb.enabled && lsc.enabled)
			mode = RKISP1_CIF_ISP_DPF_GAIN_USAGE_AWB_LSC_GAINS;
		else if (awb.enabled)
			mode = RKISP1_CIF_ISP_DPF_GAIN_USAGE_AWB_GAINS;
		else if (lsc.enabled)
			mode = RKISP1_CIF_ISP_DPF_GAIN_USAGE_LSC_GAINS;
		else
			mode = RKISP1_CIF_ISP_DPF_GAIN_USAGE_DISABLED;
	}

	if (frame == 0) {
		auto strengthConfig = params->block<BlockType::DpfStrength>();
		strengthConfig.setEnabled(true);
		*strengthConfig = strengthConfig_;
	}
}

REGISTER_IPA_ALGORITHM(Dpf, "Dpf")

} /* namespace ipa::rkisp1::algorithms */

} /* namespace libcamera */