summaryrefslogtreecommitdiff
path: root/src/ipa/raspberrypi/controller/rpi/lux.cpp
blob: f77e9140ac10bc0e814ead72390da520a866cb15 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
/* SPDX-License-Identifier: BSD-2-Clause */
/*
 * Copyright (C) 2019, Raspberry Pi (Trading) Limited
 *
 * lux.cpp - Lux control algorithm
 */
#include <math.h>

#include <linux/bcm2835-isp.h>

#include <libcamera/base/log.h>

#include "../device_status.h"

#include "lux.hpp"

using namespace RPiController;
using namespace libcamera;
using namespace std::literals::chrono_literals;

LOG_DEFINE_CATEGORY(RPiLux)

#define NAME "rpi.lux"

Lux::Lux(Controller *controller)
	: Algorithm(controller)
{
	// Put in some defaults as there will be no meaningful values until
	// Process has run.
	status_.aperture = 1.0;
	status_.lux = 400;
}

char const *Lux::Name() const
{
	return NAME;
}

void Lux::Read(boost::property_tree::ptree const &params)
{
	reference_shutter_speed_ =
		params.get<double>("reference_shutter_speed") * 1.0us;
	reference_gain_ = params.get<double>("reference_gain");
	reference_aperture_ = params.get<double>("reference_aperture", 1.0);
	reference_Y_ = params.get<double>("reference_Y");
	reference_lux_ = params.get<double>("reference_lux");
	current_aperture_ = reference_aperture_;
}

void Lux::SetCurrentAperture(double aperture)
{
	current_aperture_ = aperture;
}

void Lux::Prepare(Metadata *image_metadata)
{
	std::unique_lock<std::mutex> lock(mutex_);
	image_metadata->Set("lux.status", status_);
}

void Lux::Process(StatisticsPtr &stats, Metadata *image_metadata)
{
	DeviceStatus device_status;
	if (image_metadata->Get("device.status", device_status) == 0) {
		double current_gain = device_status.analogue_gain;
		double current_aperture = device_status.aperture;
		if (current_aperture == 0)
			current_aperture = current_aperture_;
		uint64_t sum = 0;
		uint32_t num = 0;
		uint32_t *bin = stats->hist[0].g_hist;
		const int num_bins = sizeof(stats->hist[0].g_hist) /
				     sizeof(stats->hist[0].g_hist[0]);
		for (int i = 0; i < num_bins; i++)
			sum += bin[i] * (uint64_t)i, num += bin[i];
		// add .5 to reflect the mid-points of bins
		double current_Y = sum / (double)num + .5;
		double gain_ratio = reference_gain_ / current_gain;
		double shutter_speed_ratio =
			reference_shutter_speed_ / device_status.shutter_speed;
		double aperture_ratio = reference_aperture_ / current_aperture;
		double Y_ratio = current_Y * (65536 / num_bins) / reference_Y_;
		double estimated_lux = shutter_speed_ratio * gain_ratio *
				       aperture_ratio * aperture_ratio *
				       Y_ratio * reference_lux_;
		LuxStatus status;
		status.lux = estimated_lux;
		status.aperture = current_aperture;
		LOG(RPiLux, Debug) << ": estimated lux " << estimated_lux;
		{
			std::unique_lock<std::mutex> lock(mutex_);
			status_ = status;
		}
		// Overwrite the metadata here as well, so that downstream
		// algorithms get the latest value.
		image_metadata->Set("lux.status", status);
	} else
		LOG(RPiLux, Warning) << ": no device metadata";
}

// Register algorithm with the system.
static Algorithm *Create(Controller *controller)
{
	return (Algorithm *)new Lux(controller);
}
static RegisterAlgorithm reg(NAME, &Create);
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
/* SPDX-License-Identifier: BSD-2-Clause */
/*
 * Copyright (C) 2019, Raspberry Pi (Trading) Limited
 *
 * alsc.cpp - ALSC (auto lens shading correction) control algorithm
 */

#include <math.h>
#include <numeric>

#include <libcamera/base/log.h>
#include <libcamera/base/span.h>

#include "../awb_status.h"
#include "alsc.hpp"

// Raspberry Pi ALSC (Auto Lens Shading Correction) algorithm.

using namespace RPiController;
using namespace libcamera;

LOG_DEFINE_CATEGORY(RPiAlsc)

#define NAME "rpi.alsc"

static const int X = ALSC_CELLS_X;
static const int Y = ALSC_CELLS_Y;
static const int XY = X * Y;
static const double INSUFFICIENT_DATA = -1.0;

Alsc::Alsc(Controller *controller)
	: Algorithm(controller)
{
	async_abort_ = async_start_ = async_started_ = async_finished_ = false;
	async_thread_ = std::thread(std::bind(&Alsc::asyncFunc, this));
}

Alsc::~Alsc()
{
	{
		std::lock_guard<std::mutex> lock(mutex_);
		async_abort_ = true;
	}
	async_signal_.notify_one();
	async_thread_.join();
}

char const *Alsc::Name() const
{
	return NAME;
}

static void generate_lut(double *lut, boost::property_tree::ptree const &params)
{
	double cstrength = params.get<double>("corner_strength", 2.0);
	if (cstrength <= 1.0)
		throw std::runtime_error("Alsc: corner_strength must be > 1.0");
	double asymmetry = params.get<double>("asymmetry", 1.0);
	if (asymmetry < 0)
		throw std::runtime_error("Alsc: asymmetry must be >= 0");
	double f1 = cstrength - 1, f2 = 1 + sqrt(cstrength);
	double R2 = X * Y / 4 * (1 + asymmetry * asymmetry);
	int num = 0;
	for (int y = 0; y < Y; y++) {
		for (int x = 0; x < X; x++) {
			double dy = y - Y / 2 + 0.5,
			       dx = (x - X / 2 + 0.5) * asymmetry;
			double r2 = (dx * dx + dy * dy) / R2;
			lut[num++] =
				(f1 * r2 + f2) * (f1 * r2 + f2) /
				(f2 * f2); // this reproduces the cos^4 rule
		}
	}
}

static void read_lut(double *lut, boost::property_tree::ptree const &params)
{
	int num = 0;
	const int max_num = XY;
	for (auto &p : params) {
		if (num == max_num)
			throw std::runtime_error(
				"Alsc: too many entries in LSC table");
		lut[num++] = p.second.get_value<double>();
	}
	if (num < max_num)
		throw std::runtime_error("Alsc: too few entries in LSC table");
}

static void read_calibrations(std::vector<AlscCalibration> &calibrations,
			      boost::property_tree::ptree const &params,
			      std::string const &name)
{
	if (params.get_child_optional(name)) {
		double last_ct = 0;
		for (auto &p : params.get_child(name)) {
			double ct = p.second.get<double>("ct");
			if (ct <= last_ct)
				throw std::runtime_error(
					"Alsc: entries in " + name +
					" must be in increasing ct order");
			AlscCalibration calibration;
			calibration.ct = last_ct = ct;
			boost::property_tree::ptree const &table =
				p.second.get_child("table");
			int num = 0;
			for (auto it = table.begin(); it != table.end(); it++) {
				if (num == XY)
					throw std::runtime_error(
						"Alsc: too many values for ct " +
						std::to_string(ct) + " in " +
						name);
				calibration.table[num++] =
					it->second.get_value<double>();
			}
			if (num != XY)
				throw std::runtime_error(
					"Alsc: too few values for ct " +
					std::to_string(ct) + " in " + name);
			calibrations.push_back(calibration);
			LOG(RPiAlsc, Debug)
				<< "Read " << name << " calibration for ct " << ct;
		}
	}
}

void Alsc::Read(boost::property_tree::ptree const &params)
{
	config_.frame_period = params.get<uint16_t>("frame_period", 12);
	config_.startup_frames = params.get<uint16_t>("startup_frames", 10);
	config_.speed = params.get<double>("speed", 0.05);
	double sigma = params.get<double>("sigma", 0.01);
	config_.sigma_Cr = params.get<double>("sigma_Cr", sigma);
	config_.sigma_Cb = params.get<double>("sigma_Cb", sigma);
	config_.min_count = params.get<double>("min_count", 10.0);
	config_.min_G = params.get<uint16_t>("min_G", 50);
	config_.omega = params.get<double>("omega", 1.3);
	config_.n_iter = params.get<uint32_t>("n_iter", X + Y);
	config_.luminance_strength =
		params.get<double>("luminance_strength", 1.0);
	for (int i = 0; i < XY; i++)
		config_.luminance_lut[i] = 1.0;
	if (params.get_child_optional("corner_strength"))
		generate_lut(config_.luminance_lut, params);
	else if (params.get_child_optional("luminance_lut"))
		read_lut(config_.luminance_lut,
			 params.get_child("luminance_lut"));
	else
		LOG(RPiAlsc, Warning)
			<< "no luminance table - assume unity everywhere";
	read_calibrations(config_.calibrations_Cr, params, "calibrations_Cr");
	read_calibrations(config_.calibrations_Cb, params, "calibrations_Cb");
	config_.default_ct = params.get<double>("default_ct", 4500.0);
	config_.threshold = params.get<double>("threshold", 1e-3);
	config_.lambda_bound = params.get<double>("lambda_bound", 0.05);
}

static double get_ct(Metadata *metadata, double default_ct);
static void get_cal_table(double ct,
			  std::vector<AlscCalibration> const &calibrations,
			  double cal_table[XY]);
static void resample_cal_table(double const cal_table_in[XY],
			       CameraMode const &camera_mode,
			       double cal_table_out[XY]);
static void compensate_lambdas_for_cal(double const cal_table[XY],
				       double const old_lambdas[XY],
				       double new_lambdas[XY]);
static void add_luminance_to_tables(double results[3][Y][X],
				    double const lambda_r[XY], double lambda_g,
				    double const lambda_b[XY],
				    double const luminance_lut[XY],
				    double luminance_strength);

void Alsc::Initialise()
{
	frame_count2_ = frame_count_ = frame_phase_ = 0;
	first_time_ = true;
	ct_ = config_.default_ct;
	// The lambdas are initialised in the SwitchMode.
}

void Alsc::waitForAysncThread()
{
	if (async_started_) {
		async_started_ = false;
		std::unique_lock<std::mutex> lock(mutex_);
		sync_signal_.wait(lock, [&] {
			return async_finished_;
		});
		async_finished_ = false;
	}
}

static bool compare_modes(CameraMode const &cm0, CameraMode const &cm1)
{
	// Return true if the modes crop from the sensor significantly differently,
	// or if the user transform has changed.
	if (cm0.transform != cm1.transform)
		return true;
	int left_diff = abs(cm0.crop_x - cm1.crop_x);
	int top_diff = abs(cm0.crop_y - cm1.crop_y);
	int right_diff = fabs(cm0.crop_x + cm0.scale_x * cm0.width -
			      cm1.crop_x - cm1.scale_x * cm1.width);
	int bottom_diff = fabs(cm0.crop_y + cm0.scale_y * cm0.height -
			       cm1.crop_y - cm1.scale_y * cm1.height);
	// These thresholds are a rather arbitrary amount chosen to trigger
	// when carrying on with the previously calculated tables might be
	// worse than regenerating them (but without the adaptive algorithm).
	int threshold_x = cm0.sensor_width >> 4;
	int threshold_y = cm0.sensor_height >> 4;
	return left_diff > threshold_x || right_diff > threshold_x ||
	       top_diff > threshold_y || bottom_diff > threshold_y;
}

void Alsc::SwitchMode(CameraMode const &camera_mode,
		      [[maybe_unused]] Metadata *metadata)
{
	// We're going to start over with the tables if there's any "significant"
	// change.
	bool reset_tables = first_time_ || compare_modes(camera_mode_, camera_mode);

	// Believe the colour temperature from the AWB, if there is one.
	ct_ = get_ct(metadata, ct_);

	// Ensure the other thread isn't running while we do this.
	waitForAysncThread();

	camera_mode_ = camera_mode;

	// We must resample the luminance table like we do the others, but it's
	// fixed so we can simply do it up front here.
	resample_cal_table(config_.luminance_lut, camera_mode_, luminance_table_);

	if (reset_tables) {
		// Upon every "table reset", arrange for something sensible to be
		// generated. Construct the tables for the previous recorded colour
		// temperature. In order to start over from scratch we initialise
		// the lambdas, but the rest of this code then echoes the code in
		// doAlsc, without the adaptive algorithm.
		for (int i = 0; i < XY; i++)
			lambda_r_[i] = lambda_b_[i] = 1.0;
		double cal_table_r[XY], cal_table_b[XY], cal_table_tmp[XY];
		get_cal_table(ct_, config_.calibrations_Cr, cal_table_tmp);
		resample_cal_table(cal_table_tmp, camera_mode_, cal_table_r);
		get_cal_table(ct_, config_.calibrations_Cb, cal_table_tmp);
		resample_cal_table(cal_table_tmp, camera_mode_, cal_table_b);
		compensate_lambdas_for_cal(cal_table_r, lambda_r_,
					   async_lambda_r_);
		compensate_lambdas_for_cal(cal_table_b, lambda_b_,
					   async_lambda_b_);
		add_luminance_to_tables(sync_results_, async_lambda_r_, 1.0,
					async_lambda_b_, luminance_table_,
					config_.luminance_strength);
		memcpy(prev_sync_results_, sync_results_,
		       sizeof(prev_sync_results_));
		frame_phase_ = config_.frame_period; // run the algo again asap
		first_time_ = false;
	}
}

void Alsc::fetchAsyncResults()
{
	LOG(RPiAlsc, Debug) << "Fetch ALSC results";
	async_finished_ = false;
	async_started_ = false;
	memcpy(sync_results_, async_results_, sizeof(sync_results_));
}

double get_ct(Metadata *metadata, double default_ct)
{
	AwbStatus awb_status;
	awb_status.temperature_K = default_ct; // in case nothing found
	if (metadata->Get("awb.status", awb_status) != 0)
		LOG(RPiAlsc, Debug) << "no AWB results found, using "
				    << awb_status.temperature_K;
	else
		LOG(RPiAlsc, Debug) << "AWB results found, using "
				    << awb_status.temperature_K;
	return awb_status.temperature_K;
}

static void copy_stats(bcm2835_isp_stats_region regions[XY], StatisticsPtr &stats,
		       AlscStatus const &status)
{
	bcm2835_isp_stats_region *input_regions = stats->awb_stats;
	double *r_table = (double *)status.r;
	double *g_table = (double *)status.g;
	double *b_table = (double *)status.b;
	for (int i = 0; i < XY; i++) {
		regions[i].r_sum = input_regions[i].r_sum / r_table[i];
		regions[i].g_sum = input_regions[i].g_sum / g_table[i];
		regions[i].b_sum = input_regions[i].b_sum / b_table[i];
		regions[i].counted = input_regions[i].counted;
		// (don't care about the uncounted value)
	}
}

void Alsc::restartAsync(StatisticsPtr &stats, Metadata *image_metadata)
{
	LOG(RPiAlsc, Debug) << "Starting ALSC calculation";
	// Get the current colour temperature. It's all we need from the
	// metadata. Default to the last CT value (which could be the default).
	ct_ = get_ct(image_metadata, ct_);
	// We have to copy the statistics here, dividing out our best guess of
	// the LSC table that the pipeline applied to them.
	AlscStatus alsc_status;
	if (image_metadata->Get("alsc.status", alsc_status) != 0) {
		LOG(RPiAlsc, Warning)
			<< "No ALSC status found for applied gains!";
		for (int y = 0; y < Y; y++)
			for (int x = 0; x < X; x++) {
				alsc_status.r[y][x] = 1.0;
				alsc_status.g[y][x] = 1.0;
				alsc_status.b[y][x] = 1.0;
			}
	}
	copy_stats(statistics_, stats, alsc_status);
	frame_phase_ = 0;
	async_started_ = true;
	{
		std::lock_guard<std::mutex> lock(mutex_);
		async_start_ = true;
	}
	async_signal_.notify_one();
}

void Alsc::Prepare(Metadata *image_metadata)
{
	// Count frames since we started, and since we last poked the async
	// thread.
	if (frame_count_ < (int)config_.startup_frames)
		frame_count_++;
	double speed = frame_count_ < (int)config_.startup_frames
			       ? 1.0
			       : config_.speed;
	LOG(RPiAlsc, Debug)
		<< "frame_count " << frame_count_ << " speed " << speed;
	{
		std::unique_lock<std::mutex> lock(mutex_);
		if (async_started_ && async_finished_)
			fetchAsyncResults();
	}
	// Apply IIR filter to results and program into the pipeline.
	double *ptr = (double *)sync_results_,
	       *pptr = (double *)prev_sync_results_;
	for (unsigned int i = 0;
	     i < sizeof(sync_results_) / sizeof(double); i++)
		pptr[i] = speed * ptr[i] + (1.0 - speed) * pptr[i];
	// Put output values into status metadata.
	AlscStatus status;
	memcpy(status.r, prev_sync_results_[0], sizeof(status.r));
	memcpy(status.g, prev_sync_results_[1], sizeof(status.g));
	memcpy(status.b, prev_sync_results_[2], sizeof(status.b));
	image_metadata->Set("alsc.status", status);
}

void Alsc::Process(StatisticsPtr &stats, Metadata *image_metadata)
{
	// Count frames since we started, and since we last poked the async