1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
|
/* SPDX-License-Identifier: BSD-2-Clause */
/*
* Copyright (C) 2019, Raspberry Pi Ltd
*
* ccm.cpp - CCM (colour correction matrix) control algorithm
*/
#include <libcamera/base/log.h>
#include "../awb_status.h"
#include "../ccm_status.h"
#include "../lux_status.h"
#include "../metadata.h"
#include "ccm.h"
using namespace RPiController;
using namespace libcamera;
LOG_DEFINE_CATEGORY(RPiCcm)
/*
* This algorithm selects a CCM (Colour Correction Matrix) according to the
* colour temperature estimated by AWB (interpolating between known matricies as
* necessary). Additionally the amount of colour saturation can be controlled
* both according to the current estimated lux level and according to a
* saturation setting that is exposed to applications.
*/
#define NAME "rpi.ccm"
Matrix::Matrix()
{
memset(m, 0, sizeof(m));
}
Matrix::Matrix(double m0, double m1, double m2, double m3, double m4, double m5,
double m6, double m7, double m8)
{
m[0][0] = m0, m[0][1] = m1, m[0][2] = m2, m[1][0] = m3, m[1][1] = m4,
m[1][2] = m5, m[2][0] = m6, m[2][1] = m7, m[2][2] = m8;
}
void Matrix::read(boost::property_tree::ptree const ¶ms)
{
double *ptr = (double *)m;
int n = 0;
for (auto it = params.begin(); it != params.end(); it++) {
if (n++ == 9)
LOG(RPiCcm, Fatal) << "Ccm: too many values in CCM";
*ptr++ = it->second.get_value<double>();
}
if (n < 9)
LOG(RPiCcm, Fatal) << "Ccm: too few values in CCM";
}
Ccm::Ccm(Controller *controller)
: CcmAlgorithm(controller), saturation_(1.0) {}
char const *Ccm::name() const
{
return NAME;
}
void Ccm::read(boost::property_tree::ptree const ¶ms)
{
if (params.get_child_optional("saturation"))
config_.saturation.read(params.get_child("saturation"));
for (auto &p : params.get_child("ccms")) {
CtCcm ctCcm;
ctCcm.ct = p.second.get<double>("ct");
ctCcm.ccm.read(p.second.get_child("ccm"));
if (!config_.ccms.empty() &&
ctCcm.ct <= config_.ccms.back().ct)
LOG(RPiCcm, Fatal) << "Ccm: CCM not in increasing colour temperature order";
config_.ccms.push_back(std::move(ctCcm));
}
if (config_.ccms.empty())
LOG(RPiCcm, Fatal) << "Ccm: no CCMs specified";
}
void Ccm::setSaturation(double saturation)
{
saturation_ = saturation;
}
void Ccm::initialise()
{
}
template<typename T>
static bool getLocked(Metadata *metadata, std::string const &tag, T &value)
{
T *ptr = metadata->getLocked<T>(tag);
if (ptr == nullptr)
return false;
value = *ptr;
return true;
}
Matrix calculateCcm(std::vector<CtCcm> const &ccms, double ct)
{
if (ct <= ccms.front().ct)
return ccms.front().ccm;
else if (ct >= ccms.back().ct)
return ccms.back().ccm;
else {
int i = 0;
for (; ct > ccms[i].ct; i++)
;
double lambda =
(ct - ccms[i - 1].ct) / (ccms[i].ct - ccms[i - 1].ct);
return lambda * ccms[i].ccm + (1.0 - lambda) * ccms[i - 1].ccm;
}
}
Matrix applySaturation(Matrix const &ccm, double saturation)
{
Matrix RGB2Y(0.299, 0.587, 0.114, -0.169, -0.331, 0.500, 0.500, -0.419,
-0.081);
Matrix Y2RGB(1.000, 0.000, 1.402, 1.000, -0.345, -0.714, 1.000, 1.771,
0.000);
Matrix S(1, 0, 0, 0, saturation, 0, 0, 0, saturation);
return Y2RGB * S * RGB2Y * ccm;
}
void Ccm::prepare(Metadata *imageMetadata)
{
bool awbOk = false, luxOk = false;
struct AwbStatus awb = {};
awb.temperatureK = 4000; /* in case no metadata */
struct LuxStatus lux = {};
lux.lux = 400; /* in case no metadata */
{
/* grab mutex just once to get everything */
std::lock_guard<Metadata> lock(*imageMetadata);
awbOk = getLocked(imageMetadata, "awb.status", awb);
luxOk = getLocked(imageMetadata, "lux.status", lux);
}
if (!awbOk)
LOG(RPiCcm, Warning) << "no colour temperature found";
if (!luxOk)
LOG(RPiCcm, Warning) << "no lux value found";
Matrix ccm = calculateCcm(config_.ccms, awb.temperatureK);
double saturation = saturation_;
struct CcmStatus ccmStatus;
ccmStatus.saturation = saturation;
if (!config_.saturation.empty())
saturation *= config_.saturation.eval(
config_.saturation.domain().clip(lux.lux));
ccm = applySaturation(ccm, saturation);
for (int j = 0; j < 3; j++)
for (int i = 0; i < 3; i++)
ccmStatus.matrix[j * 3 + i] =
std::max(-8.0, std::min(7.9999, ccm.m[j][i]));
LOG(RPiCcm, Debug)
<< "colour temperature " << awb.temperatureK << "K";
LOG(RPiCcm, Debug)
<< "CCM: " << ccmStatus.matrix[0] << " " << ccmStatus.matrix[1]
<< " " << ccmStatus.matrix[2] << " "
<< ccmStatus.matrix[3] << " " << ccmStatus.matrix[4]
<< " " << ccmStatus.matrix[5] << " "
<< ccmStatus.matrix[6] << " " << ccmStatus.matrix[7]
<< " " << ccmStatus.matrix[8];
imageMetadata->set("ccm.status", ccmStatus);
}
/* Register algorithm with the system. */
static Algorithm *create(Controller *controller)
{
return (Algorithm *)new Ccm(controller);
;
}
static RegisterAlgorithm reg(NAME, &create);
|