summaryrefslogtreecommitdiff
path: root/src/ipa/raspberrypi/controller/rpi/awb.h
blob: 2254c3ed2cc4704c8fb5b75f7d3ba05de31f3e68 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
/* SPDX-License-Identifier: BSD-2-Clause */
/*
 * Copyright (C) 2019, Raspberry Pi Ltd
 *
 * awb.h - AWB control algorithm
 */
#pragma once

#include <mutex>
#include <condition_variable>
#include <thread>

#include "../awb_algorithm.h"
#include "../pwl.h"
#include "../awb_status.h"

namespace RPiController {

/* Control algorithm to perform AWB calculations. */

struct AwbMode {
	int read(const libcamera::YamlObject &params);
	double ctLo; /* low CT value for search */
	double ctHi; /* high CT value for search */
};

struct AwbPrior {
	int read(const libcamera::YamlObject &params);
	double lux; /* lux level */
	Pwl prior; /* maps CT to prior log likelihood for this lux level */
};

struct AwbConfig {
	AwbConfig() : defaultMode(nullptr) {}
	int read(const libcamera::YamlObject &params);
	/* Only repeat the AWB calculation every "this many" frames */
	uint16_t framePeriod;
	/* number of initial frames for which speed taken as 1.0 (maximum) */
	uint16_t startupFrames;
	unsigned int convergenceFrames; /* approx number of frames to converge */
	double speed; /* IIR filter speed applied to algorithm results */
	bool fast; /* "fast" mode uses a 16x16 rather than 32x32 grid */
	Pwl ctR; /* function maps CT to r (= R/G) */
	Pwl ctB; /* function maps CT to b (= B/G) */
	Pwl ctRInverse; /* inverse of ctR */
	Pwl ctBInverse; /* inverse of ctB */
	/* table of illuminant priors at different lux levels */
	std::vector<AwbPrior> priors;
	/* AWB "modes" (determines the search range) */
	std::map<std::string, AwbMode> modes;
	AwbMode *defaultMode; /* mode used if no mode selected */
	/*
	 * minimum proportion of pixels counted within AWB region for it to be
	 * "useful"
	 */
	double minPixels;
	/* minimum G value of those pixels, to be regarded a "useful" */
	uint16_t minG;
	/*
	 * number of AWB regions that must be "useful" in order to do the AWB
	 * calculation
	 */
	uint32_t minRegions;
	/* clamp on colour error term (so as not to penalise non-grey excessively) */
	double deltaLimit;
	/* step size control in coarse search */
	double coarseStep;
	/* how far to wander off CT curve towards "more purple" */
	double transversePos;
	/* how far to wander off CT curve towards "more green" */
	double transverseNeg;
	/*
	 * red sensitivity ratio (set to canonical sensor's R/G divided by this
	 * sensor's R/G)
	 */
	double sensitivityR;
	/*
	 * blue sensitivity ratio (set to canonical sensor's B/G divided by this
	 * sensor's B/G)
	 */
	double sensitivityB;
	/* The whitepoint (which we normally "aim" for) can be moved. */
	double whitepointR;
	double whitepointB;
	bool bayes; /* use Bayesian algorithm */
};

class Awb : public AwbAlgorithm
{
public:
	Awb(Controller *controller = NULL);
	~Awb();
	char const *name() const override;
	void initialise() override;
	int read(const libcamera::YamlObject &params) override;
	unsigned int getConvergenceFrames() const override;
	void setMode(std::string const &name) override;
	void setManualGains(double manualR, double manualB) override;
	void enableAuto() override;
	void disableAuto() override;
	void switchMode(CameraMode const &cameraMode, Metadata *metadata) override;
	void prepare(Metadata *imageMetadata) override;
	void process(StatisticsPtr &stats, Metadata *imageMetadata) override;
	struct RGB {
		RGB(double r = 0, double g = 0, double b = 0)
			: R(r), G(g), B(b)
		{
		}
		double R, G, B;
		RGB &operator+=(RGB const &other)
		{
			R += other.R, G += other.G, B += other.B;
			return *this;
		}
	};

private:
	bool isAutoEnabled() const;
	/* configuration is read-only, and available to both threads */
	AwbConfig config_;
	std::thread asyncThread_;
	void asyncFunc(); /* asynchronous thread function */
	std::mutex mutex_;
	/* condvar for async thread to wait on */
	std::condition_variable asyncSignal_;
	/* condvar for synchronous thread to wait on */
	std::condition_variable syncSignal_;
	/* for sync thread to check  if async thread finished (requires mutex) */
	bool asyncFinished_;
	/* for async thread to check if it's been told to run (requires mutex) */
	bool asyncStart_;
	/* for async thread to check if it's been told to quit (requires mutex) */
	bool asyncAbort_;

	/*
	 * The following are only for the synchronous thread to use:
	 * for sync thread to note its has asked async thread to run
	 */
	bool asyncStarted_;
	/* counts up to framePeriod before restarting the async thread */
	int framePhase_;
	int frameCount_; /* counts up to startup_frames */
	AwbStatus syncResults_;
	AwbStatus prevSyncResults_;
	std::string modeName_;
	/*
	 * The following are for the asynchronous thread to use, though the main
	 * thread can set/reset them if the async thread is known to be idle:
	 */
	void restartAsync(StatisticsPtr &stats, double lux);
	/* copy out the results from the async thread so that it can be restarted */
	void fetchAsyncResults();
	StatisticsPtr statistics_;
	AwbMode *mode_;
	double lux_;
	AwbStatus asyncResults_;
	void doAwb();
	void awbBayes();
	void awbGrey();
	void prepareStats();
	double computeDelta2Sum(double gainR, double gainB);
	Pwl interpolatePrior();
	double coarseSearch(Pwl const &prior);
	void fineSearch(double &t, double &r, double &b, Pwl const &prior);
	std::vector<RGB> zones_;
	std::vector<Pwl::Point> points_;
	/* manual r setting */
	double manualR_;
	/* manual b setting */
	double manualB_;
};

static inline Awb::RGB operator+(Awb::RGB const &a, Awb::RGB const &b)
{
	return Awb::RGB(a.R + b.R, a.G + b.G, a.B + b.B);
}
static inline Awb::RGB operator-(Awb::RGB const &a, Awb::RGB const &b)
{
	return Awb::RGB(a.R - b.R, a.G - b.G, a.B - b.B);
}
static inline Awb::RGB operator*(double d, Awb::RGB const &rgb)
{
	return Awb::RGB(d * rgb.R, d * rgb.G, d * rgb.B);
}
static inline Awb::RGB operator*(Awb::RGB const &rgb, double d)
{
	return d * rgb;
}

} /* namespace RPiController */
' href='#n839'>839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
/* SPDX-License-Identifier: BSD-2-Clause */
/*
 * Copyright (C) 2019-2020, Raspberry Pi (Trading) Ltd.
 *
 * rpi.cpp - Raspberry Pi Image Processing Algorithms
 */

#include <algorithm>
#include <fcntl.h>
#include <math.h>
#include <stdint.h>
#include <string.h>
#include <sys/mman.h>

#include <libcamera/buffer.h>
#include <libcamera/control_ids.h>
#include <libcamera/controls.h>
#include <libcamera/file_descriptor.h>
#include <libcamera/ipa/ipa_interface.h>
#include <libcamera/ipa/ipa_module_info.h>
#include <libcamera/ipa/raspberrypi.h>
#include <libcamera/request.h>
#include <libcamera/span.h>

#include <libipa/ipa_interface_wrapper.h>

#include "libcamera/internal/camera_sensor.h"
#include "libcamera/internal/log.h"
#include "libcamera/internal/utils.h"

#include <linux/bcm2835-isp.h>

#include "agc_algorithm.hpp"
#include "agc_status.h"
#include "alsc_status.h"
#include "awb_algorithm.hpp"
#include "awb_status.h"
#include "black_level_status.h"
#include "cam_helper.hpp"
#include "ccm_algorithm.hpp"
#include "ccm_status.h"
#include "contrast_algorithm.hpp"
#include "contrast_status.h"
#include "controller.hpp"
#include "dpc_status.h"
#include "focus_status.h"
#include "geq_status.h"
#include "lux_status.h"
#include "metadata.hpp"
#include "noise_status.h"
#include "sdn_status.h"
#include "sharpen_algorithm.hpp"
#include "sharpen_status.h"

namespace libcamera {

/* Configure the sensor with these values initially. */
constexpr double DefaultAnalogueGain = 1.0;
constexpr unsigned int DefaultExposureTime = 20000;

LOG_DEFINE_CATEGORY(IPARPI)

class IPARPi : public IPAInterface
{
public:
	IPARPi()
		: lastMode_({}), controller_(), controllerInit_(false),
		  frameCount_(0), checkCount_(0), mistrustCount_(0),
		  lsTable_(nullptr)
	{
	}

	~IPARPi()
	{
		if (lsTable_)
			munmap(lsTable_, RPi::MaxLsGridSize);
	}

	int init(const IPASettings &settings) override;
	int start() override { return 0; }
	void stop() override {}

	void configure(const CameraSensorInfo &sensorInfo,
		       const std::map<unsigned int, IPAStream> &streamConfig,
		       const std::map<unsigned int, const ControlInfoMap &> &entityControls,
		       const IPAOperationData &data,
		       IPAOperationData *response) override;
	void mapBuffers(const std::vector<IPABuffer> &buffers) override;
	void unmapBuffers(const std::vector<unsigned int> &ids) override;
	void processEvent(const IPAOperationData &event) override;

private:
	void setMode(const CameraSensorInfo &sensorInfo);
	void queueRequest(const ControlList &controls);
	void returnEmbeddedBuffer(unsigned int bufferId);
	void prepareISP(unsigned int bufferId);
	void reportMetadata();
	bool parseEmbeddedData(unsigned int bufferId, struct DeviceStatus &deviceStatus);
	void processStats(unsigned int bufferId);
	void applyAGC(const struct AgcStatus *agcStatus, ControlList &ctrls);
	void applyAWB(const struct AwbStatus *awbStatus, ControlList &ctrls);
	void applyDG(const struct AgcStatus *dgStatus, ControlList &ctrls);
	void applyCCM(const struct CcmStatus *ccmStatus, ControlList &ctrls);
	void applyBlackLevel(const struct BlackLevelStatus *blackLevelStatus, ControlList &ctrls);
	void applyGamma(const struct ContrastStatus *contrastStatus, ControlList &ctrls);
	void applyGEQ(const struct GeqStatus *geqStatus, ControlList &ctrls);
	void applyDenoise(const struct SdnStatus *denoiseStatus, ControlList &ctrls);
	void applySharpen(const struct SharpenStatus *sharpenStatus, ControlList &ctrls);
	void applyDPC(const struct DpcStatus *dpcStatus, ControlList &ctrls);
	void applyLS(const struct AlscStatus *lsStatus, ControlList &ctrls);
	void resampleTable(uint16_t dest[], double const src[12][16], int destW, int destH);

	std::map<unsigned int, FrameBuffer> buffers_;
	std::map<unsigned int, void *> buffersMemory_;

	ControlInfoMap unicamCtrls_;
	ControlInfoMap ispCtrls_;
	ControlList libcameraMetadata_;

	/* IPA configuration. */
	std::string tuningFile_;

	/* Camera sensor params. */
	CameraMode mode_;
	CameraMode lastMode_;

	/* Raspberry Pi controller specific defines. */
	std::unique_ptr<RPiController::CamHelper> helper_;
	RPiController::Controller controller_;
	bool controllerInit_;
	RPiController::Metadata rpiMetadata_;

	/*
	 * We count frames to decide if the frame must be hidden (e.g. from
	 * display) or mistrusted (i.e. not given to the control algos).
	 */
	uint64_t frameCount_;

	/* For checking the sequencing of Prepare/Process calls. */
	uint64_t checkCount_;

	/* How many frames we should avoid running control algos on. */
	unsigned int mistrustCount_;

	/* LS table allocation passed in from the pipeline handler. */
	FileDescriptor lsTableHandle_;
	void *lsTable_;
};

int IPARPi::init(const IPASettings &settings)
{
	tuningFile_ = settings.configurationFile;
	return 0;
}

void IPARPi::setMode(const CameraSensorInfo &sensorInfo)
{
	mode_.bitdepth = sensorInfo.bitsPerPixel;
	mode_.width = sensorInfo.outputSize.width;
	mode_.height = sensorInfo.outputSize.height;
	mode_.sensor_width = sensorInfo.activeAreaSize.width;
	mode_.sensor_height = sensorInfo.activeAreaSize.height;
	mode_.crop_x = sensorInfo.analogCrop.x;
	mode_.crop_y = sensorInfo.analogCrop.y;

	/*
	 * Calculate scaling parameters. The scale_[xy] factors are determined
	 * by the ratio between the crop rectangle size and the output size.
	 */
	mode_.scale_x = sensorInfo.analogCrop.width / sensorInfo.outputSize.width;
	mode_.scale_y = sensorInfo.analogCrop.height / sensorInfo.outputSize.height;

	/*
	 * We're not told by the pipeline handler how scaling is split between
	 * binning and digital scaling. For now, as a heuristic, assume that
	 * downscaling up to 2 is achieved through binning, and that any
	 * additional scaling is achieved through digital scaling.
	 *
	 * \todo Get the pipeline handle to provide the full data
	 */
	mode_.bin_x = std::min(2, static_cast<int>(mode_.scale_x));
	mode_.bin_y = std::min(2, static_cast<int>(mode_.scale_y));

	/* The noise factor is the square root of the total binning factor. */
	mode_.noise_factor = sqrt(mode_.bin_x * mode_.bin_y);

	/*
	 * Calculate the line length in nanoseconds as the ratio between
	 * the line length in pixels and the pixel rate.
	 */
	mode_.line_length = 1e9 * sensorInfo.lineLength / sensorInfo.pixelRate;
}

void IPARPi::configure(const CameraSensorInfo &sensorInfo,
		       [[maybe_unused]] const std::map<unsigned int, IPAStream> &streamConfig,
		       const std::map<unsigned int, const ControlInfoMap &> &entityControls,
		       const IPAOperationData &ipaConfig,
		       IPAOperationData *result)
{
	if (entityControls.empty())
		return;

	result->operation = 0;

	unicamCtrls_ = entityControls.at(0);
	ispCtrls_ = entityControls.at(1);

	/* Setup a metadata ControlList to output metadata. */
	libcameraMetadata_ = ControlList(controls::controls);

	/*
	 * Load the "helper" for this sensor. This tells us all the device specific stuff
	 * that the kernel driver doesn't. We only do this the first time; we don't need
	 * to re-parse the metadata after a simple mode-switch for no reason.
	 */
	std::string cameraName(sensorInfo.model);
	if (!helper_) {
		helper_ = std::unique_ptr<RPiController::CamHelper>(RPiController::CamHelper::Create(cameraName));

		/*
		 * Pass out the sensor config to the pipeline handler in order
		 * to setup the staggered writer class.
		 */
		int gainDelay, exposureDelay, sensorMetadata;
		helper_->GetDelays(exposureDelay, gainDelay);
		sensorMetadata = helper_->SensorEmbeddedDataPresent();

		result->data.push_back(gainDelay);
		result->data.push_back(exposureDelay);
		result->data.push_back(sensorMetadata);

		result->operation |= RPi::IPA_CONFIG_STAGGERED_WRITE;
	}

	/* Re-assemble camera mode using the sensor info. */
	setMode(sensorInfo);

	/*
	 * The ipaConfig.data always gives us the user transform first. Note that
	 * this will always make the LS table pointer (if present) element 1.
	 */
	mode_.transform = static_cast<libcamera::Transform>(ipaConfig.data[0]);

	/* Store the lens shading table pointer and handle if available. */
	if (ipaConfig.operation & RPi::IPA_CONFIG_LS_TABLE) {
		/* Remove any previous table, if there was one. */
		if (lsTable_) {
			munmap(lsTable_, RPi::MaxLsGridSize);
			lsTable_ = nullptr;
		}

		/* Map the LS table buffer into user space (now element 1). */
		lsTableHandle_ = FileDescriptor(ipaConfig.data[1]);
		if (lsTableHandle_.isValid()) {
			lsTable_ = mmap(nullptr, RPi::MaxLsGridSize, PROT_READ | PROT_WRITE,
					MAP_SHARED, lsTableHandle_.fd(), 0);

			if (lsTable_ == MAP_FAILED) {
				LOG(IPARPI, Error) << "dmaHeap mmap failure for LS table.";
				lsTable_ = nullptr;
			}
		}
	}

	/* Pass the camera mode to the CamHelper to setup algorithms. */
	helper_->SetCameraMode(mode_);

	/*
	 * Initialise frame counts, and decide how many frames must be hidden or
	 *"mistrusted", which depends on whether this is a startup from cold,
	 * or merely a mode switch in a running system.
	 */
	frameCount_ = 0;
	checkCount_ = 0;
	unsigned int dropFrame = 0;
	if (controllerInit_) {
		dropFrame = helper_->HideFramesModeSwitch();
		mistrustCount_ = helper_->MistrustFramesModeSwitch();
	} else {
		dropFrame = helper_->HideFramesStartup();
		mistrustCount_ = helper_->MistrustFramesStartup();
	}

	result->data.push_back(dropFrame);
	result->operation |= RPi::IPA_CONFIG_DROP_FRAMES;

	/* These zero values mean not program anything (unless overwritten). */
	struct AgcStatus agcStatus;
	agcStatus.shutter_time = 0.0;
	agcStatus.analogue_gain = 0.0;

	if (!controllerInit_) {
		/* Load the tuning file for this sensor. */
		controller_.Read(tuningFile_.c_str());
		controller_.Initialise();
		controllerInit_ = true;

		/* Supply initial values for gain and exposure. */
		agcStatus.shutter_time = DefaultExposureTime;
		agcStatus.analogue_gain = DefaultAnalogueGain;
	}

	RPiController::Metadata metadata;
	controller_.SwitchMode(mode_, &metadata);

	/* SwitchMode may supply updated exposure/gain values to use. */
	metadata.Get("agc.status", agcStatus);
	if (agcStatus.shutter_time != 0.0 && agcStatus.analogue_gain != 0.0) {
		ControlList ctrls(unicamCtrls_);
		applyAGC(&agcStatus, ctrls);
		result->controls.push_back(ctrls);

		result->operation |= RPi::IPA_CONFIG_SENSOR;
	}

	lastMode_ = mode_;
}

void IPARPi::mapBuffers(const std::vector<IPABuffer> &buffers)
{
	for (const IPABuffer &buffer : buffers) {
		auto elem = buffers_.emplace(std::piecewise_construct,
					     std::forward_as_tuple(buffer.id),
					     std::forward_as_tuple(buffer.planes));
		const FrameBuffer &fb = elem.first->second;

		buffersMemory_[buffer.id] = mmap(nullptr, fb.planes()[0].length,
						 PROT_READ | PROT_WRITE, MAP_SHARED,
						 fb.planes()[0].fd.fd(), 0);

		if (buffersMemory_[buffer.id] == MAP_FAILED) {
			int ret = -errno;
			LOG(IPARPI, Fatal) << "Failed to mmap buffer: " << strerror(-ret);
		}
	}
}

void IPARPi::unmapBuffers(const std::vector<unsigned int> &ids)
{
	for (unsigned int id : ids) {
		const auto fb = buffers_.find(id);
		if (fb == buffers_.end())
			continue;

		munmap(buffersMemory_[id], fb->second.planes()[0].length);
		buffersMemory_.erase(id);
		buffers_.erase(id);
	}
}

void IPARPi::processEvent(const IPAOperationData &event)
{
	switch (event.operation) {
	case RPi::IPA_EVENT_SIGNAL_STAT_READY: {
		unsigned int bufferId = event.data[0];

		if (++checkCount_ != frameCount_) /* assert here? */
			LOG(IPARPI, Error) << "WARNING: Prepare/Process mismatch!!!";
		if (frameCount_ > mistrustCount_)
			processStats(bufferId);

		reportMetadata();

		IPAOperationData op;
		op.operation = RPi::IPA_ACTION_STATS_METADATA_COMPLETE;
		op.data = { bufferId & RPi::BufferMask::ID };
		op.controls = { libcameraMetadata_ };
		queueFrameAction.emit(0, op);
		break;
	}

	case RPi::IPA_EVENT_SIGNAL_ISP_PREPARE: {
		unsigned int embeddedbufferId = event.data[0];
		unsigned int bayerbufferId = event.data[1];

		/*
		 * At start-up, or after a mode-switch, we may want to
		 * avoid running the control algos for a few frames in case
		 * they are "unreliable".
		 */
		prepareISP(embeddedbufferId);
		frameCount_++;

		/* Ready to push the input buffer into the ISP. */
		IPAOperationData op;
		op.operation = RPi::IPA_ACTION_RUN_ISP;
		op.data = { bayerbufferId & RPi::BufferMask::ID };
		queueFrameAction.emit(0, op);
		break;
	}

	case RPi::IPA_EVENT_QUEUE_REQUEST: {
		queueRequest(event.controls[0]);
		break;
	}

	default:
		LOG(IPARPI, Error) << "Unknown event " << event.operation;
		break;
	}
}

void IPARPi::reportMetadata()
{
	std::unique_lock<RPiController::Metadata> lock(rpiMetadata_);

	/*
	 * Certain information about the current frame and how it will be
	 * processed can be extracted and placed into the libcamera metadata
	 * buffer, where an application could query it.
	 */
	DeviceStatus *deviceStatus = rpiMetadata_.GetLocked<DeviceStatus>("device.status");
	if (deviceStatus) {
		libcameraMetadata_.set(controls::ExposureTime, deviceStatus->shutter_speed);
		libcameraMetadata_.set(controls::AnalogueGain, deviceStatus->analogue_gain);
	}

	AgcStatus *agcStatus = rpiMetadata_.GetLocked<AgcStatus>("agc.status");
	if (agcStatus)
		libcameraMetadata_.set(controls::AeLocked, agcStatus->locked);

	LuxStatus *luxStatus = rpiMetadata_.GetLocked<LuxStatus>("lux.status");
	if (luxStatus)
		libcameraMetadata_.set(controls::Lux, luxStatus->lux);

	AwbStatus *awbStatus = rpiMetadata_.GetLocked<AwbStatus>("awb.status");
	if (awbStatus) {
		libcameraMetadata_.set(controls::ColourGains, { static_cast<float>(awbStatus->gain_r),
								static_cast<float>(awbStatus->gain_b) });
		libcameraMetadata_.set(controls::ColourTemperature, awbStatus->temperature_K);
	}

	BlackLevelStatus *blackLevelStatus = rpiMetadata_.GetLocked<BlackLevelStatus>("black_level.status");
	if (blackLevelStatus)
		libcameraMetadata_.set(controls::SensorBlackLevels,
				       { static_cast<int32_t>(blackLevelStatus->black_level_r),
					 static_cast<int32_t>(blackLevelStatus->black_level_g),
					 static_cast<int32_t>(blackLevelStatus->black_level_g),
					 static_cast<int32_t>(blackLevelStatus->black_level_b) });

	FocusStatus *focusStatus = rpiMetadata_.GetLocked<FocusStatus>("focus.status");
	if (focusStatus && focusStatus->num == 12) {
		/*
		 * We get a 4x3 grid of regions by default. Calculate the average
		 * FoM over the central two positions to give an overall scene FoM.
		 * This can change later if it is not deemed suitable.
		 */
		int32_t focusFoM = (focusStatus->focus_measures[5] + focusStatus->focus_measures[6]) / 2;
		libcameraMetadata_.set(controls::FocusFoM, focusFoM);
	}

	CcmStatus *ccmStatus = rpiMetadata_.GetLocked<CcmStatus>("ccm.status");
	if (ccmStatus) {
		float m[9];
		for (unsigned int i = 0; i < 9; i++)
			m[i] = ccmStatus->matrix[i];
		libcameraMetadata_.set(controls::ColourCorrectionMatrix, m);
	}
}

/*
 * Converting between enums (used in the libcamera API) and the names that
 * we use to identify different modes. Unfortunately, the conversion tables
 * must be kept up-to-date by hand.
 */
static const std::map<int32_t, std::string> MeteringModeTable = {
	{ controls::MeteringCentreWeighted, "centre-weighted" },
	{ controls::MeteringSpot, "spot" },
	{ controls::MeteringMatrix, "matrix" },
	{ controls::MeteringCustom, "custom" },
};

static const std::map<int32_t, std::string> ConstraintModeTable = {
	{ controls::ConstraintNormal, "normal" },
	{ controls::ConstraintHighlight, "highlight" },
	{ controls::ConstraintCustom, "custom" },
};

static const std::map<int32_t, std::string> ExposureModeTable = {
	{ controls::ExposureNormal, "normal" },
	{ controls::ExposureShort, "short" },
	{ controls::ExposureLong, "long" },
	{ controls::ExposureCustom, "custom" },
};

static const std::map<int32_t, std::string> AwbModeTable = {
	{ controls::AwbAuto, "normal" },
	{ controls::AwbIncandescent, "incandescent" },
	{ controls::AwbTungsten, "tungsten" },
	{ controls::AwbFluorescent, "fluorescent" },
	{ controls::AwbIndoor, "indoor" },
	{ controls::AwbDaylight, "daylight" },
	{ controls::AwbCustom, "custom" },
};

void IPARPi::queueRequest(const ControlList &controls)
{
	/* Clear the return metadata buffer. */
	libcameraMetadata_.clear();

	for (auto const &ctrl : controls) {
		LOG(IPARPI, Info) << "Request ctrl: "
				  << controls::controls.at(ctrl.first)->name()
				  << " = " << ctrl.second.toString();

		switch (ctrl.first) {
		case controls::AE_ENABLE: {
			RPiController::Algorithm *agc = controller_.GetAlgorithm("agc");
			ASSERT(agc);
			if (ctrl.second.get<bool>() == false)
				agc->Pause();
			else
				agc->Resume();

			libcameraMetadata_.set(controls::AeEnable, ctrl.second.get<bool>());
			break;
		}

		case controls::EXPOSURE_TIME: {
			RPiController::AgcAlgorithm *agc = dynamic_cast<RPiController::AgcAlgorithm *>(
				controller_.GetAlgorithm("agc"));
			ASSERT(agc);

			/* This expects units of micro-seconds. */
			agc->SetFixedShutter(ctrl.second.get<int32_t>());

			/* For the manual values to take effect, AGC must be unpaused. */
			if (agc->IsPaused())
				agc->Resume();

			libcameraMetadata_.set(controls::ExposureTime, ctrl.second.get<int32_t>());
			break;
		}

		case controls::ANALOGUE_GAIN: {
			RPiController::AgcAlgorithm *agc = dynamic_cast<RPiController::AgcAlgorithm *>(
				controller_.GetAlgorithm("agc"));
			ASSERT(agc);
			agc->SetFixedAnalogueGain(ctrl.second.get<float>());

			/* For the manual values to take effect, AGC must be unpaused. */
			if (agc->IsPaused())
				agc->Resume();

			libcameraMetadata_.set(controls::AnalogueGain,
					       ctrl.second.get<float>());
			break;
		}

		case controls::AE_METERING_MODE: {
			RPiController::AgcAlgorithm *agc = dynamic_cast<RPiController::AgcAlgorithm *>(
				controller_.GetAlgorithm("agc"));
			ASSERT(agc);

			int32_t idx = ctrl.second.get<int32_t>();
			if (MeteringModeTable.count(idx)) {
				agc->SetMeteringMode(MeteringModeTable.at(idx));
				libcameraMetadata_.set(controls::AeMeteringMode, idx);
			} else {
				LOG(IPARPI, Error) << "Metering mode " << idx
						   << " not recognised";
			}
			break;
		}

		case controls::AE_CONSTRAINT_MODE: {
			RPiController::AgcAlgorithm *agc = dynamic_cast<RPiController::AgcAlgorithm *>(
				controller_.GetAlgorithm("agc"));
			ASSERT(agc);

			int32_t idx = ctrl.second.get<int32_t>();
			if (ConstraintModeTable.count(idx)) {
				agc->SetConstraintMode(ConstraintModeTable.at(idx));
				libcameraMetadata_.set(controls::AeConstraintMode, idx);
			} else {
				LOG(IPARPI, Error) << "Constraint mode " << idx
						   << " not recognised";
			}
			break;
		}

		case controls::AE_EXPOSURE_MODE: {
			RPiController::AgcAlgorithm *agc = dynamic_cast<RPiController::AgcAlgorithm *>(
				controller_.GetAlgorithm("agc"));
			ASSERT(agc);

			int32_t idx = ctrl.second.get<int32_t>();
			if (ExposureModeTable.count(idx)) {
				agc->SetExposureMode(ExposureModeTable.at(idx));
				libcameraMetadata_.set(controls::AeExposureMode, idx);
			} else {
				LOG(IPARPI, Error) << "Exposure mode " << idx
						   << " not recognised";
			}
			break;
		}

		case controls::EXPOSURE_VALUE: {
			RPiController::AgcAlgorithm *agc = dynamic_cast<RPiController::AgcAlgorithm *>(
				controller_.GetAlgorithm("agc"));
			ASSERT(agc);

			/*
			 * The SetEv() method takes in a direct exposure multiplier.
			 * So convert to 2^EV
			 */
			double ev = pow(2.0, ctrl.second.get<float>());
			agc->SetEv(ev);
			libcameraMetadata_.set(controls::ExposureValue,
					       ctrl.second.get<float>());
			break;
		}

		case controls::AWB_ENABLE: {
			RPiController::Algorithm *awb = controller_.GetAlgorithm("awb");
			ASSERT(awb);

			if (ctrl.second.get<bool>() == false)
				awb->Pause();
			else
				awb->Resume();

			libcameraMetadata_.set(controls::AwbEnable,
					       ctrl.second.get<bool>());
			break;
		}

		case controls::AWB_MODE: {
			RPiController::AwbAlgorithm *awb = dynamic_cast<RPiController::AwbAlgorithm *>(
				controller_.GetAlgorithm("awb"));
			ASSERT(awb);

			int32_t idx = ctrl.second.get<int32_t>();
			if (AwbModeTable.count(idx)) {
				awb->SetMode(AwbModeTable.at(idx));
				libcameraMetadata_.set(controls::AwbMode, idx);
			} else {
				LOG(IPARPI, Error) << "AWB mode " << idx
						   << " not recognised";
			}
			break;
		}

		case controls::COLOUR_GAINS: {
			auto gains = ctrl.second.get<Span<const float>>();
			RPiController::AwbAlgorithm *awb = dynamic_cast<RPiController::AwbAlgorithm *>(
				controller_.GetAlgorithm("awb"));
			ASSERT(awb);

			awb->SetManualGains(gains[0], gains[1]);
			if (gains[0] != 0.0f && gains[1] != 0.0f)
				/* A gain of 0.0f will switch back to auto mode. */
				libcameraMetadata_.set(controls::ColourGains,
						       { gains[0], gains[1] });
			break;
		}

		case controls::BRIGHTNESS: {
			RPiController::ContrastAlgorithm *contrast = dynamic_cast<RPiController::ContrastAlgorithm *>(
				controller_.GetAlgorithm("contrast"));
			ASSERT(contrast);

			contrast->SetBrightness(ctrl.second.get<float>() * 65536);
			libcameraMetadata_.set(controls::Brightness,
					       ctrl.second.get<float>());
			break;
		}

		case controls::CONTRAST: {
			RPiController::ContrastAlgorithm *contrast = dynamic_cast<RPiController::ContrastAlgorithm *>(
				controller_.GetAlgorithm("contrast"));
			ASSERT(contrast);

			contrast->SetContrast(ctrl.second.get<float>());
			libcameraMetadata_.set(controls::Contrast,
					       ctrl.second.get<float>());
			break;
		}

		case controls::SATURATION: {
			RPiController::CcmAlgorithm *ccm = dynamic_cast<RPiController::CcmAlgorithm *>(
				controller_.GetAlgorithm("ccm"));
			ASSERT(ccm);

			ccm->SetSaturation(ctrl.second.get<float>());
			libcameraMetadata_.set(controls::Saturation,
					       ctrl.second.get<float>());
			break;
		}

		case controls::SHARPNESS: {
			RPiController::SharpenAlgorithm *sharpen = dynamic_cast<RPiController::SharpenAlgorithm *>(
				controller_.GetAlgorithm("sharpen"));
			ASSERT(sharpen);

			sharpen->SetStrength(ctrl.second.get<float>());
			libcameraMetadata_.set(controls::Sharpness,
					       ctrl.second.get<float>());
			break;
		}

		default:
			LOG(IPARPI, Warning)
				<< "Ctrl " << controls::controls.at(ctrl.first)->name()
				<< " is not handled.";
			break;
		}
	}
}

void IPARPi::returnEmbeddedBuffer(unsigned int bufferId)
{
	IPAOperationData op;
	op.operation = RPi::IPA_ACTION_EMBEDDED_COMPLETE;
	op.data = { bufferId & RPi::BufferMask::ID };
	queueFrameAction.emit(0, op);
}

void IPARPi::prepareISP(unsigned int bufferId)
{
	struct DeviceStatus deviceStatus = {};
	bool success = parseEmbeddedData(bufferId, deviceStatus);

	/* Done with embedded data now, return to pipeline handler asap. */
	returnEmbeddedBuffer(bufferId);

	if (success) {
		ControlList ctrls(ispCtrls_);

		rpiMetadata_.Clear();
		rpiMetadata_.Set("device.status", deviceStatus);
		controller_.Prepare(&rpiMetadata_);

		/* Lock the metadata buffer to avoid constant locks/unlocks. */
		std::unique_lock<RPiController::Metadata> lock(rpiMetadata_);

		AwbStatus *awbStatus = rpiMetadata_.GetLocked<AwbStatus>("awb.status");
		if (awbStatus)
			applyAWB(awbStatus, ctrls);

		CcmStatus *ccmStatus = rpiMetadata_.GetLocked<CcmStatus>("ccm.status");
		if (ccmStatus)
			applyCCM(ccmStatus, ctrls);

		AgcStatus *dgStatus = rpiMetadata_.GetLocked<AgcStatus>("agc.status");
		if (dgStatus)
			applyDG(dgStatus, ctrls);

		AlscStatus *lsStatus = rpiMetadata_.GetLocked<AlscStatus>("alsc.status");
		if (lsStatus)
			applyLS(lsStatus, ctrls);

		ContrastStatus *contrastStatus = rpiMetadata_.GetLocked<ContrastStatus>("contrast.status");
		if (contrastStatus)
			applyGamma(contrastStatus, ctrls);

		BlackLevelStatus *blackLevelStatus = rpiMetadata_.GetLocked<BlackLevelStatus>("black_level.status");
		if (blackLevelStatus)
			applyBlackLevel(blackLevelStatus, ctrls);

		GeqStatus *geqStatus = rpiMetadata_.GetLocked<GeqStatus>("geq.status");
		if (geqStatus)
			applyGEQ(geqStatus, ctrls);

		SdnStatus *denoiseStatus = rpiMetadata_.GetLocked<SdnStatus>("sdn.status");
		if (denoiseStatus)
			applyDenoise(denoiseStatus, ctrls);

		SharpenStatus *sharpenStatus = rpiMetadata_.GetLocked<SharpenStatus>("sharpen.status");
		if (sharpenStatus)
			applySharpen(sharpenStatus, ctrls);

		DpcStatus *dpcStatus = rpiMetadata_.GetLocked<DpcStatus>("dpc.status");
		if (dpcStatus)
			applyDPC(dpcStatus, ctrls);

		if (!ctrls.empty()) {
			IPAOperationData op;
			op.operation = RPi::IPA_ACTION_V4L2_SET_ISP;
			op.controls.push_back(ctrls);
			queueFrameAction.emit(0, op);
		}
	}
}

bool IPARPi::parseEmbeddedData(unsigned int bufferId, struct DeviceStatus &deviceStatus)
{
	auto it = buffersMemory_.find(bufferId);
	if (it == buffersMemory_.end()) {
		LOG(IPARPI, Error) << "Could not find embedded buffer!";
		return false;
	}

	int size = buffers_.find(bufferId)->second.planes()[0].length;
	helper_->Parser().SetBufferSize(size);
	RPiController::MdParser::Status status = helper_->Parser().Parse(it->second);
	if (status != RPiController::MdParser::Status::OK) {
		LOG(IPARPI, Error) << "Embedded Buffer parsing failed, error " << status;
	} else {
		uint32_t exposureLines, gainCode;
		if (helper_->Parser().GetExposureLines(exposureLines) != RPiController::MdParser::Status::OK) {
			LOG(IPARPI, Error) << "Exposure time failed";
			return false;
		}

		deviceStatus.shutter_speed = helper_->Exposure(exposureLines);
		if (helper_->Parser().GetGainCode(gainCode) != RPiController::MdParser::Status::OK) {
			LOG(IPARPI, Error) << "Gain failed";
			return false;
		}

		deviceStatus.analogue_gain = helper_->Gain(gainCode);
		LOG(IPARPI, Debug) << "Metadata - Exposure : "
				   << deviceStatus.shutter_speed << " Gain : "
				   << deviceStatus.analogue_gain;
	}

	return true;
}

void IPARPi::processStats(unsigned int bufferId)
{
	auto it = buffersMemory_.find(bufferId);
	if (it == buffersMemory_.end()) {
		LOG(IPARPI, Error) << "Could not find stats buffer!";
		return;
	}

	bcm2835_isp_stats *stats = static_cast<bcm2835_isp_stats *>(it->second);
	RPiController::StatisticsPtr statistics = std::make_shared<bcm2835_isp_stats>(*stats);
	controller_.Process(statistics, &rpiMetadata_);

	struct AgcStatus agcStatus;
	if (rpiMetadata_.Get("agc.status", agcStatus) == 0) {
		ControlList ctrls(unicamCtrls_);
		applyAGC(&agcStatus, ctrls);

		IPAOperationData op;
		op.operation = RPi::IPA_ACTION_V4L2_SET_STAGGERED;
		op.controls.push_back(ctrls);
		queueFrameAction.emit(0, op);
	}
}

void IPARPi::applyAWB(const struct AwbStatus *awbStatus, ControlList &ctrls)
{
	const auto gainR = ispCtrls_.find(V4L2_CID_RED_BALANCE);
	if (gainR == ispCtrls_.end()) {
		LOG(IPARPI, Error) << "Can't find red gain control";
		return;
	}

	const auto gainB = ispCtrls_.find(V4L2_CID_BLUE_BALANCE);
	if (gainB == ispCtrls_.end()) {
		LOG(IPARPI, Error) << "Can't find blue gain control";
		return;
	}

	LOG(IPARPI, Debug) << "Applying WB R: " << awbStatus->gain_r << " B: "
			   << awbStatus->gain_b;

	ctrls.set(V4L2_CID_RED_BALANCE,
		  static_cast<int32_t>(awbStatus->gain_r * 1000));
	ctrls.set(V4L2_CID_BLUE_BALANCE,
		  static_cast<int32_t>(awbStatus->gain_b * 1000));
}

void IPARPi::applyAGC(const struct AgcStatus *agcStatus, ControlList &ctrls)
{
	int32_t gainCode = helper_->GainCode(agcStatus->analogue_gain);
	int32_t exposureLines = helper_->ExposureLines(agcStatus->shutter_time);

	if (unicamCtrls_.find(V4L2_CID_ANALOGUE_GAIN) == unicamCtrls_.end()) {
		LOG(IPARPI, Error) << "Can't find analogue gain control";
		return;
	}

	if (unicamCtrls_.find(V4L2_CID_EXPOSURE) == unicamCtrls_.end()) {
		LOG(IPARPI, Error) << "Can't find exposure control";
		return;
	}

	LOG(IPARPI, Debug) << "Applying AGC Exposure: " << agcStatus->shutter_time
			   << " (Shutter lines: " << exposureLines << ") Gain: "
			   << agcStatus->analogue_gain << " (Gain Code: "
			   << gainCode << ")";

	ctrls.set(V4L2_CID_ANALOGUE_GAIN, gainCode);
	ctrls.set(V4L2_CID_EXPOSURE, exposureLines);
}

void IPARPi::applyDG(const struct AgcStatus *dgStatus, ControlList &ctrls)
{
	if (ispCtrls_.find(V4L2_CID_DIGITAL_GAIN) == ispCtrls_.end()) {
		LOG(IPARPI, Error) << "Can't find digital gain control";
		return;
	}

	ctrls.set(V4L2_CID_DIGITAL_GAIN,
		  static_cast<int32_t>(dgStatus->digital_gain * 1000));
}

void IPARPi::applyCCM(const struct CcmStatus *ccmStatus, ControlList &ctrls)
{
	if (ispCtrls_.find(V4L2_CID_USER_BCM2835_ISP_CC_MATRIX) == ispCtrls_.end()) {
		LOG(IPARPI, Error) << "Can't find CCM control";
		return;
	}

	bcm2835_isp_custom_ccm ccm;
	for (int i = 0; i < 9; i++) {
		ccm.ccm.ccm[i / 3][i % 3].den = 1000;
		ccm.ccm.ccm[i / 3][i % 3].num = 1000 * ccmStatus->matrix[i];
	}

	ccm.enabled = 1;
	ccm.ccm.offsets[0] = ccm.ccm.offsets[1] = ccm.ccm.offsets[2] = 0;

	ControlValue c(Span<const uint8_t>{ reinterpret_cast<uint8_t *>(&ccm),
					    sizeof(ccm) });
	ctrls.set(V4L2_CID_USER_BCM2835_ISP_CC_MATRIX, c);
}

void IPARPi::applyGamma(const struct ContrastStatus *contrastStatus, ControlList &ctrls)
{
	if (ispCtrls_.find(V4L2_CID_USER_BCM2835_ISP_GAMMA) == ispCtrls_.end()) {
		LOG(IPARPI, Error) << "Can't find Gamma control";
		return;
	}

	struct bcm2835_isp_gamma gamma;
	gamma.enabled = 1;
	for (int i = 0; i < CONTRAST_NUM_POINTS; i++) {
		gamma.x[i] = contrastStatus->points[i].x;
		gamma.y[i] = contrastStatus->points[i].y;
	}

	ControlValue c(Span<const uint8_t>{ reinterpret_cast<uint8_t *>(&gamma),
					    sizeof(gamma) });
	ctrls.set(V4L2_CID_USER_BCM2835_ISP_GAMMA, c);
}

void IPARPi::applyBlackLevel(const struct BlackLevelStatus *blackLevelStatus, ControlList &ctrls)
{
	if (ispCtrls_.find(V4L2_CID_USER_BCM2835_ISP_BLACK_LEVEL) == ispCtrls_.end()) {
		LOG(IPARPI, Error) << "Can't find black level control";
		return;
	}

	bcm2835_isp_black_level blackLevel;
	blackLevel.enabled = 1;
	blackLevel.black_level_r = blackLevelStatus->black_level_r;
	blackLevel.black_level_g = blackLevelStatus->black_level_g;
	blackLevel.black_level_b = blackLevelStatus->black_level_b;

	ControlValue c(Span<const uint8_t>{ reinterpret_cast<uint8_t *>(&blackLevel),
					    sizeof(blackLevel) });
	ctrls.set(V4L2_CID_USER_BCM2835_ISP_BLACK_LEVEL, c);
}

void IPARPi::applyGEQ(const struct GeqStatus *geqStatus, ControlList &ctrls)
{
	if (ispCtrls_.find(V4L2_CID_USER_BCM2835_ISP_GEQ) == ispCtrls_.end()) {
		LOG(IPARPI, Error) << "Can't find geq control";
		return;
	}

	bcm2835_isp_geq geq;
	geq.enabled = 1;
	geq.offset = geqStatus->offset;
	geq.slope.den = 1000;
	geq.slope.num = 1000 * geqStatus->slope;

	ControlValue c(Span<const uint8_t>{ reinterpret_cast<uint8_t *>(&geq),
					    sizeof(geq) });
	ctrls.set(V4L2_CID_USER_BCM2835_ISP_GEQ, c);
}

void IPARPi::applyDenoise(const struct SdnStatus *denoiseStatus, ControlList &ctrls)
{
	if (ispCtrls_.find(V4L2_CID_USER_BCM2835_ISP_DENOISE) == ispCtrls_.end()) {
		LOG(IPARPI, Error) << "Can't find denoise control";
		return;
	}

	bcm2835_isp_denoise denoise;
	denoise.enabled = 1;
	denoise.constant = denoiseStatus->noise_constant;
	denoise.slope.num = 1000 * denoiseStatus->noise_slope;
	denoise.slope.den = 1000;
	denoise.strength.num = 1000 * denoiseStatus->strength;
	denoise.strength.den = 1000;

	ControlValue c(Span<const uint8_t>{ reinterpret_cast<uint8_t *>(&denoise),
					    sizeof(denoise) });
	ctrls.set(V4L2_CID_USER_BCM2835_ISP_DENOISE, c);
}

void IPARPi::applySharpen(const struct SharpenStatus *sharpenStatus, ControlList &ctrls)
{
	if (ispCtrls_.find(V4L2_CID_USER_BCM2835_ISP_SHARPEN) == ispCtrls_.end()) {
		LOG(IPARPI, Error) << "Can't find sharpen control";
		return;
	}

	bcm2835_isp_sharpen sharpen;
	sharpen.enabled = 1;
	sharpen.threshold.num = 1000 * sharpenStatus->threshold;
	sharpen.threshold.den = 1000;
	sharpen.strength.num = 1000 * sharpenStatus->strength;
	sharpen.strength.den = 1000;
	sharpen.limit.num = 1000 * sharpenStatus->limit;
	sharpen.limit.den = 1000;

	ControlValue c(Span<const uint8_t>{ reinterpret_cast<uint8_t *>(&sharpen),
					    sizeof(sharpen) });
	ctrls.set(V4L2_CID_USER_BCM2835_ISP_SHARPEN, c);
}

void IPARPi::applyDPC(const struct DpcStatus *dpcStatus, ControlList &ctrls)
{
	if (ispCtrls_.find(V4L2_CID_USER_BCM2835_ISP_DPC) == ispCtrls_.end()) {
		LOG(IPARPI, Error) << "Can't find DPC control";
		return;
	}

	bcm2835_isp_dpc dpc;
	dpc.enabled = 1;
	dpc.strength = dpcStatus->strength;

	ControlValue c(Span<const uint8_t>{ reinterpret_cast<uint8_t *>(&dpc),
					    sizeof(dpc) });
	ctrls.set(V4L2_CID_USER_BCM2835_ISP_DPC, c);
}

void IPARPi::applyLS(const struct AlscStatus *lsStatus, ControlList &ctrls)
{
	if (ispCtrls_.find(V4L2_CID_USER_BCM2835_ISP_LENS_SHADING) == ispCtrls_.end()) {
		LOG(IPARPI, Error) << "Can't find LS control";
		return;
	}

	/*
	 * Program lens shading tables into pipeline.
	 * Choose smallest cell size that won't exceed 63x48 cells.
	 */
	const int cellSizes[] = { 16, 32, 64, 128, 256 };
	unsigned int numCells = ARRAY_SIZE(cellSizes);
	unsigned int i, w, h, cellSize;
	for (i = 0; i < numCells; i++) {
		cellSize = cellSizes[i];
		w = (mode_.width + cellSize - 1) / cellSize;
		h = (mode_.height + cellSize - 1) / cellSize;
		if (w < 64 && h <= 48)
			break;
	}

	if (i == numCells) {
		LOG(IPARPI, Error) << "Cannot find cell size";
		return;
	}

	/* We're going to supply corner sampled tables, 16 bit samples. */
	w++, h++;
	bcm2835_isp_lens_shading ls = {
		.enabled = 1,
		.grid_cell_size = cellSize,
		.grid_width = w,
		.grid_stride = w,
		.grid_height = h,
		.dmabuf = lsTableHandle_.fd(),
		.ref_transform = 0,
		.corner_sampled = 1,
		.gain_format = GAIN_FORMAT_U4P10
	};

	if (!lsTable_ || w * h * 4 * sizeof(uint16_t) > RPi::MaxLsGridSize) {
		LOG(IPARPI, Error) << "Do not have a correctly allocate lens shading table!";
		return;
	}

	if (lsStatus) {
		/* Format will be u4.10 */
		uint16_t *grid = static_cast<uint16_t *>(lsTable_);

		resampleTable(grid, lsStatus->r, w, h);
		resampleTable(grid + w * h, lsStatus->g, w, h);
		std::memcpy(grid + 2 * w * h, grid + w * h, w * h * sizeof(uint16_t));
		resampleTable(grid + 3 * w * h, lsStatus->b, w, h);
	}

	ControlValue c(Span<const uint8_t>{ reinterpret_cast<uint8_t *>(&ls),
					    sizeof(ls) });
	ctrls.set(V4L2_CID_USER_BCM2835_ISP_LENS_SHADING, c);
}

/*
 * Resamples a 16x12 table with central sampling to destW x destH with corner
 * sampling.
 */
void IPARPi::resampleTable(uint16_t dest[], double const src[12][16],
			   int destW, int destH)
{
	/*
	 * Precalculate and cache the x sampling locations and phases to
	 * save recomputing them on every row.
	 */
	assert(destW > 1 && destH > 1 && destW <= 64);
	int xLo[64], xHi[64];
	double xf[64];
	double x = -0.5, xInc = 16.0 / (destW - 1);
	for (int i = 0; i < destW; i++, x += xInc) {
		xLo[i] = floor(x);
		xf[i] = x - xLo[i];
		xHi[i] = xLo[i] < 15 ? xLo[i] + 1 : 15;
		xLo[i] = xLo[i] > 0 ? xLo[i] : 0;
	}

	/* Now march over the output table generating the new values. */
	double y = -0.5, yInc = 12.0 / (destH - 1);
	for (int j = 0; j < destH; j++, y += yInc) {
		int yLo = floor(y);
		double yf = y - yLo;
		int yHi = yLo < 11 ? yLo + 1 : 11;
		yLo = yLo > 0 ? yLo : 0;
		double const *rowAbove = src[yLo];
		double const *rowBelow = src[yHi];
		for (int i = 0; i < destW; i++) {