summaryrefslogtreecommitdiff
path: root/src/ipa/raspberrypi/controller/rpi/alsc.cpp
blob: be3d1ae476cdcc7523d60e737e5a319d16de1e0a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315{#-
 # SPDX-License-Identifier: LGPL-2.1-or-later
 # Copyright (C) 2020, Google Inc.
-#}
{#
 # \brief Verify that there is enough bytes to deserialize
 #
 # Generate code that verifies that \a size is not greater than \a dataSize.
 # Otherwise log an error with \a name and \a typename.
 #}
{%- macro check_data_size(size, dataSize, name, typename) %}
		if ({{dataSize}} < {{size}}) {
			LOG(IPADataSerializer, Error)
				<< "Failed to deserialize " << "{{name}}"
				<< ": not enough {{typename}}, expected "
				<< ({{size}}) << ", got " << ({{dataSize}});
			return ret;
		}
{%- endmacro %}


{#
 # \brief Serialize a field into return vector
 #
 # Generate code to serialize \a field into retData, including size of the
 # field and fds (where appropriate).
 # This code is meant to be used by the IPADataSerializer specialization.
 #
 # \todo Avoid intermediate vectors
 #}
{%- macro serializer_field(field, namespace, loop) %}
{%- if field|is_pod or field|is_enum %}
		std::vector<uint8_t> {{field.mojom_name}};
		std::tie({{field.mojom_name}}, std::ignore) =
	{%- if field|is_pod %}
			IPADataSerializer<{{field|name}}>::serialize(data.{{field.mojom_name}});
	{%- elif field|is_enum %}
			IPADataSerializer<uint{{field|bit_width}}_t>::serialize(data.{{field.mojom_name}});
	{%- endif %}
		retData.insert(retData.end(), {{field.mojom_name}}.begin(), {{field.mojom_name}}.end());
{%- elif field|is_fd %}
		std::vector<uint8_t> {{field.mojom_name}};
		std::vector<int32_t> {{field.mojom_name}}Fds;
		std::tie({{field.mojom_name}}, {{field.mojom_name}}Fds) =
			IPADataSerializer<{{field|name}}>::serialize(data.{{field.mojom_name}});
		retData.insert(retData.end(), {{field.mojom_name}}.begin(), {{field.mojom_name}}.end());
		retFds.insert(retFds.end(), {{field.mojom_name}}Fds.begin(), {{field.mojom_name}}Fds.end());
{%- elif field|is_controls %}
		if (data.{{field.mojom_name}}.size() > 0) {
			std::vector<uint8_t> {{field.mojom_name}};
			std::tie({{field.mojom_name}}, std::ignore) =
				IPADataSerializer<{{field|name}}>::serialize(data.{{field.mojom_name}}, cs);
			appendPOD<uint32_t>(retData, {{field.mojom_name}}.size());
			retData.insert(retData.end(), {{field.mojom_name}}.begin(), {{field.mojom_name}}.end());
		} else {
			appendPOD<uint32_t>(retData, 0);
		}
{%- elif field|is_plain_struct or field|is_array or field|is_map or field|is_str %}
		std::vector<uint8_t> {{field.mojom_name}};
	{%- if field|has_fd %}
		std::vector<int32_t> {{field.mojom_name}}Fds;
		std::tie({{field.mojom_name}}, {{field.mojom_name}}Fds) =
	{%- else %}
		std::tie({{field.mojom_name}}, std::ignore) =
	{%- endif %}
	{%- if field|is_array or field|is_map %}
			IPADataSerializer<{{field|name}}>::serialize(data.{{field.mojom_name}}, cs);
	{%- elif field|is_str %}
			IPADataSerializer<{{field|name}}>::serialize(data.{{field.mojom_name}});
	{%- else %}
			IPADataSerializer<{{field|name_full}}>::serialize(data.{{field.mojom_name}}, cs);
	{%- endif %}
		appendPOD<uint32_t>(retData, {{field.mojom_name}}.size());
	{%- if field|has_fd %}
		appendPOD<uint32_t>(retData, {{field.mojom_name}}Fds.size());
	{%- endif %}
		retData.insert(retData.end(), {{field.mojom_name}}.begin(), {{field.mojom_name}}.end());
	{%- if field|has_fd %}
		retFds.insert(retFds.end(), {{field.mojom_name}}Fds.begin(), {{field.mojom_name}}Fds.end());
	{%- endif %}
{%- else %}
		/* Unknown serialization for {{field.mojom_name}}. */
{%- endif %}
{%- endmacro %}


{#
 # \brief Deserialize a field into return struct
 #
 # Generate code to deserialize \a field into object ret.
 # This code is meant to be used by the IPADataSerializer specialization.
 #}
{%- macro deserializer_field(field, namespace, loop) %}
{% if field|is_pod or field|is_enum %}
	{%- set field_size = (field|bit_width|int / 8)|int %}
		{{- check_data_size(field_size, 'dataSize', field.mojom_name, 'data')}}
		{%- if field|is_pod %}
		ret.{{field.mojom_name}} = IPADataSerializer<{{field|name}}>::deserialize(m, m + {{field_size}});
		{%- else %}
		ret.{{field.mojom_name}} = static_cast<{{field|name_full}}>(IPADataSerializer<uint{{field|bit_width}}_t>::deserialize(m, m + {{field_size}}));
		{%- endif %}
	{%- if not loop.last %}
		m += {{field_size}};
		dataSize -= {{field_size}};
	{%- endif %}
{% elif field|is_fd %}
	{%- set field_size = 1 %}
		{{- check_data_size(field_size, 'dataSize', field.mojom_name, 'data')}}
		ret.{{field.mojom_name}} = IPADataSerializer<{{field|name}}>::deserialize(m, m + 1, n, n + 1, cs);
	{%- if not loop.last %}
		m += {{field_size}};
		dataSize -= {{field_size}};
		n += ret.{{field.mojom_name}}.isValid() ? 1 : 0;
		fdsSize -= ret.{{field.mojom_name}}.isValid() ? 1 : 0;
	{%- endif %}
{% elif field|is_controls %}
	{%- set field_size = 4 %}
		{{- check_data_size(field_size, 'dataSize', field.mojom_name + 'Size', 'data')}}
		const size_t {{field.mojom_name}}Size = readPOD<uint32_t>(m, 0, dataEnd);
		m += {{field_size}};
		dataSize -= {{field_size}};
	{%- set field_size = field.mojom_name + 'Size' -%}
		{{- check_data_size(field_size, 'dataSize', field.mojom_name, 'data')}}
		if ({{field.mojom_name}}Size > 0)
			ret.{{field.mojom_name}} =
				IPADataSerializer<{{field|name}}>::deserialize(m, m + {{field.mojom_name}}Size, cs);
	{%- if not loop.last %}
		m += {{field_size}};
		dataSize -= {{field_size}};
	{%- endif %}
{% elif field|is_plain_struct or field|is_array or field|is_map or field|is_str %}
	{%- set field_size = 4 %}
		{{- check_data_size(field_size, 'dataSize', field.mojom_name + 'Size', 'data')}}
		const size_t {{field.mojom_name}}Size = readPOD<uint32_t>(m, 0, dataEnd);
		m += {{field_size}};
		dataSize -= {{field_size}};
	{%- if field|has_fd %}
	{%- set field_size = 4 %}
		{{- check_data_size(field_size, 'dataSize', field.mojom_name + 'FdsSize', 'data')}}
		const size_t {{field.mojom_name}}FdsSize = readPOD<uint32_t>(m, 0, dataEnd);
		m += {{field_size}};
		dataSize -= {{field_size}};
		{{- check_data_size(field.mojom_name + 'FdsSize', 'fdsSize', field.mojom_name, 'fds')}}
	{%- endif %}
	{%- set field_size = field.mojom_name + 'Size' -%}
		{{- check_data_size(field_size, 'dataSize', field.mojom_name, 'data')}}
		ret.{{field.mojom_name}} =
	{%- if field|is_str %}
			IPADataSerializer<{{field|name}}>::deserialize(m, m + {{field.mojom_name}}Size);
	{%- elif field|has_fd and (field|is_array or field|is_map) %}
			IPADataSerializer<{{field|name}}>::deserialize(m, m + {{field.mojom_name}}Size, n, n + {{field.mojom_name}}FdsSize, cs);
	{%- elif field|has_fd and (not (field|is_array or field|is_map)) %}
			IPADataSerializer<{{field|name_full}}>::deserialize(m, m + {{field.mojom_name}}Size, n, n + {{field.mojom_name}}FdsSize, cs);
	{%- elif (not field|has_fd) and (field|is_array or field|is_map) %}
			IPADataSerializer<{{field|name}}>::deserialize(m, m + {{field.mojom_name}}Size, cs);
	{%- else %}
			IPADataSerializer<{{field|name_full}}>::deserialize(m, m + {{field.mojom_name}}Size, cs);
	{%- endif %}
	{%- if not loop.last %}
		m += {{field_size}};
		dataSize -= {{field_size}};
	{%- if field|has_fd %}
		n += {{field.mojom_name}}FdsSize;
		fdsSize -= {{field.mojom_name}}FdsSize;
	{%- endif %}
	{%- endif %}
{% else %}
		/* Unknown deserialization for {{field.mojom_name}}. */
{%- endif %}
{%- endmacro %}


{#
 # \brief Serialize a struct
 #
 # Generate code for IPADataSerializer specialization, for serializing
 # \a struct.
 #}
{%- macro serializer(struct, namespace) %}
	static std::tuple<std::vector<uint8_t>, std::vector<int32_t>>
	serialize(const {{struct|name_full}} &data,
{%- if struct|needs_control_serializer %}
		  ControlSerializer *cs)
{%- else %}
		  [[maybe_unused]] ControlSerializer *cs = nullptr)
{%- endif %}
	{
		std::vector<uint8_t> retData;
{%- if struct|has_fd %}
		std::vector<int32_t> retFds;
{%- endif %}
{%- for field in struct.fields %}
{{serializer_field(field, namespace, loop)}}
{%- endfor %}
{% if struct|has_fd %}
		return {retData, retFds};
{%- else %}
		return {retData, {}};
{%- endif %}
	}
{%- endmacro %}


{#
 # \brief Deserialize a struct that has fds
 #
 # Generate code for IPADataSerializer specialization, for deserializing
 # \a struct, in the case that \a struct has file descriptors.
 #}
{%- macro deserializer_fd(struct, namespace) %}
	static {{struct|name_full}}
	deserialize(std::vector<uint8_t> &data,
		    std::vector<int32_t> &fds,
{%- if struct|needs_control_serializer %}
		    ControlSerializer *cs)
{%- else %}
		    ControlSerializer *cs = nullptr)
{%- endif %}
	{
		return IPADataSerializer<{{struct|name_full}}>::deserialize(data.cbegin(), data.cend(), fds.cbegin(), fds.cend(), cs);
	}

{# \todo Don't inline this function #}
	static {{struct|name_full}}
	deserialize(std::vector<uint8_t>::const_iterator dataBegin,
		    std::vector<uint8_t>::const_iterator dataEnd,
		    std::vector<int32_t>::const_iterator fdsBegin,
		    std::vector<int32_t>::const_iterator fdsEnd,
{%- if struct|needs_control_serializer %}
		    ControlSerializer *cs)
{%- else %}
		    [[maybe_unused]] ControlSerializer *cs = nullptr)
{%- endif %}
	{
		{{struct|name_full}} ret;
		std::vector<uint8_t>::const_iterator m = dataBegin;
		std::vector<int32_t>::const_iterator n = fdsBegin;

		size_t dataSize = std::distance(dataBegin, dataEnd);
		[[maybe_unused]] size_t fdsSize = std::distance(fdsBegin, fdsEnd);
{%- for field in struct.fields -%}
{{deserializer_field(field, namespace, loop)}}
{%- endfor %}
		return ret;
	}
{%- endmacro %}

{#
 # \brief Deserialize a struct that has fds, using non-fd
 #
 # Generate code for IPADataSerializer specialization, for deserializing
 # \a struct, in the case that \a struct has no file descriptors but requires
 # deserializers with file descriptors.
 #}
{%- macro deserializer_fd_simple(struct, namespace) %}
	static {{struct|name_full}}
	deserialize(std::vector<uint8_t> &data,
		    [[maybe_unused]] std::vector<int32_t> &fds,
		    ControlSerializer *cs = nullptr)
	{
		return IPADataSerializer<{{struct|name_full}}>::deserialize(data.cbegin(), data.cend(), cs);
	}

	static {{struct|name_full}}
	deserialize(std::vector<uint8_t>::const_iterator dataBegin,
		    std::vector<uint8_t>::const_iterator dataEnd,
		    [[maybe_unused]] std::vector<int32_t>::const_iterator fdsBegin,
		    [[maybe_unused]] std::vector<int32_t>::const_iterator fdsEnd,
		    ControlSerializer *cs = nullptr)
	{
		return IPADataSerializer<{{struct|name_full}}>::deserialize(dataBegin, dataEnd, cs);
	}
{%- endmacro %}


{#
 # \brief Deserialize a struct that has no fds
 #
 # Generate code for IPADataSerializer specialization, for deserializing
 # \a struct, in the case that \a struct does not have file descriptors.
 #}
{%- macro deserializer_no_fd(struct, namespace) %}
	static {{struct|name_full}}
	deserialize(std::vector<uint8_t> &data,
{%- if struct|needs_control_serializer %}
		    ControlSerializer *cs)
{%- else %}
		    ControlSerializer *cs = nullptr)
{%- endif %}
	{
		return IPADataSerializer<{{struct|name_full}}>::deserialize(data.cbegin(), data.cend(), cs);
	}

{# \todo Don't inline this function #}
	static {{struct|name_full}}
	deserialize(std::vector<uint8_t>::const_iterator dataBegin,
		    std::vector<uint8_t>::const_iterator dataEnd,
{%- if struct|needs_control_serializer %}
		    ControlSerializer *cs)
{%- else %}
		    [[maybe_unused]] ControlSerializer *cs = nullptr)
{%- endif %}
	{
		{{struct|name_full}} ret;
		std::vector<uint8_t>::const_iterator m = dataBegin;

		size_t dataSize = std::distance(dataBegin, dataEnd);
{%- for field in struct.fields -%}
{{deserializer_field(field, namespace, loop)}}
{%- endfor %}
		return ret;
	}
{%- endmacro %}
'>684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
/* SPDX-License-Identifier: BSD-2-Clause */
/*
 * Copyright (C) 2019, Raspberry Pi (Trading) Limited
 *
 * alsc.cpp - ALSC (auto lens shading correction) control algorithm
 */
#include <math.h>

#include <libcamera/base/log.h>

#include "../awb_status.h"
#include "alsc.hpp"

// Raspberry Pi ALSC (Auto Lens Shading Correction) algorithm.

using namespace RPiController;
using namespace libcamera;

LOG_DEFINE_CATEGORY(RPiAlsc)

#define NAME "rpi.alsc"

static const int X = ALSC_CELLS_X;
static const int Y = ALSC_CELLS_Y;
static const int XY = X * Y;
static const double INSUFFICIENT_DATA = -1.0;

Alsc::Alsc(Controller *controller)
	: Algorithm(controller)
{
	async_abort_ = async_start_ = async_started_ = async_finished_ = false;
	async_thread_ = std::thread(std::bind(&Alsc::asyncFunc, this));
}

Alsc::~Alsc()
{
	{
		std::lock_guard<std::mutex> lock(mutex_);
		async_abort_ = true;
	}
	async_signal_.notify_one();
	async_thread_.join();
}

char const *Alsc::Name() const
{
	return NAME;
}

static void generate_lut(double *lut, boost::property_tree::ptree const &params)
{
	double cstrength = params.get<double>("corner_strength", 2.0);
	if (cstrength <= 1.0)
		throw std::runtime_error("Alsc: corner_strength must be > 1.0");
	double asymmetry = params.get<double>("asymmetry", 1.0);
	if (asymmetry < 0)
		throw std::runtime_error("Alsc: asymmetry must be >= 0");
	double f1 = cstrength - 1, f2 = 1 + sqrt(cstrength);
	double R2 = X * Y / 4 * (1 + asymmetry * asymmetry);
	int num = 0;
	for (int y = 0; y < Y; y++) {
		for (int x = 0; x < X; x++) {
			double dy = y - Y / 2 + 0.5,
			       dx = (x - X / 2 + 0.5) * asymmetry;
			double r2 = (dx * dx + dy * dy) / R2;
			lut[num++] =
				(f1 * r2 + f2) * (f1 * r2 + f2) /
				(f2 * f2); // this reproduces the cos^4 rule
		}
	}
}

static void read_lut(double *lut, boost::property_tree::ptree const &params)
{
	int num = 0;
	const int max_num = XY;
	for (auto &p : params) {
		if (num == max_num)
			throw std::runtime_error(
				"Alsc: too many entries in LSC table");
		lut[num++] = p.second.get_value<double>();
	}
	if (num < max_num)
		throw std::runtime_error("Alsc: too few entries in LSC table");
}

static void read_calibrations(std::vector<AlscCalibration> &calibrations,
			      boost::property_tree::ptree const &params,
			      std::string const &name)
{
	if (params.get_child_optional(name)) {
		double last_ct = 0;
		for (auto &p : params.get_child(name)) {
			double ct = p.second.get<double>("ct");
			if (ct <= last_ct)
				throw std::runtime_error(
					"Alsc: entries in " + name +
					" must be in increasing ct order");
			AlscCalibration calibration;
			calibration.ct = last_ct = ct;
			boost::property_tree::ptree const &table =
				p.second.get_child("table");
			int num = 0;
			for (auto it = table.begin(); it != table.end(); it++) {
				if (num == XY)
					throw std::runtime_error(
						"Alsc: too many values for ct " +
						std::to_string(ct) + " in " +
						name);
				calibration.table[num++] =
					it->second.get_value<double>();
			}
			if (num != XY)
				throw std::runtime_error(
					"Alsc: too few values for ct " +
					std::to_string(ct) + " in " + name);
			calibrations.push_back(calibration);
			LOG(RPiAlsc, Debug)
				<< "Read " << name << " calibration for ct " << ct;
		}
	}
}

void Alsc::Read(boost::property_tree::ptree const &params)
{
	config_.frame_period = params.get<uint16_t>("frame_period", 12);
	config_.startup_frames = params.get<uint16_t>("startup_frames", 10);
	config_.speed = params.get<double>("speed", 0.05);
	double sigma = params.get<double>("sigma", 0.01);
	config_.sigma_Cr = params.get<double>("sigma_Cr", sigma);
	config_.sigma_Cb = params.get<double>("sigma_Cb", sigma);
	config_.min_count = params.get<double>("min_count", 10.0);
	config_.min_G = params.get<uint16_t>("min_G", 50);
	config_.omega = params.get<double>("omega", 1.3);
	config_.n_iter = params.get<uint32_t>("n_iter", X + Y);
	config_.luminance_strength =
		params.get<double>("luminance_strength", 1.0);
	for (int i = 0; i < XY; i++)
		config_.luminance_lut[i] = 1.0;
	if (params.get_child_optional("corner_strength"))
		generate_lut(config_.luminance_lut, params);
	else if (params.get_child_optional("luminance_lut"))
		read_lut(config_.luminance_lut,
			 params.get_child("luminance_lut"));
	else
		LOG(RPiAlsc, Warning)
			<< "no luminance table - assume unity everywhere";
	read_calibrations(config_.calibrations_Cr, params, "calibrations_Cr");
	read_calibrations(config_.calibrations_Cb, params, "calibrations_Cb");
	config_.default_ct = params.get<double>("default_ct", 4500.0);
	config_.threshold = params.get<double>("threshold", 1e-3);
}

static double get_ct(Metadata *metadata, double default_ct);
static void get_cal_table(double ct,
			  std::vector<AlscCalibration> const &calibrations,
			  double cal_table[XY]);
static void resample_cal_table(double const cal_table_in[XY],
			       CameraMode const &camera_mode,
			       double cal_table_out[XY]);
static void compensate_lambdas_for_cal(double const cal_table[XY],
				       double const old_lambdas[XY],
				       double new_lambdas[XY]);
static void add_luminance_to_tables(double results[3][Y][X],
				    double const lambda_r[XY], double lambda_g,
				    double const lambda_b[XY],
				    double const luminance_lut[XY],
				    double luminance_strength);

void Alsc::Initialise()
{
	frame_count2_ = frame_count_ = frame_phase_ = 0;
	first_time_ = true;
	ct_ = config_.default_ct;
	// The lambdas are initialised in the SwitchMode.
}

void Alsc::waitForAysncThread()
{
	if (async_started_) {
		async_started_ = false;
		std::unique_lock<std::mutex> lock(mutex_);
		sync_signal_.wait(lock, [&] {
			return async_finished_;
		});
		async_finished_ = false;
	}
}

static bool compare_modes(CameraMode const &cm0, CameraMode const &cm1)
{
	// Return true if the modes crop from the sensor significantly differently,
	// or if the user transform has changed.
	if (cm0.transform != cm1.transform)
		return true;
	int left_diff = abs(cm0.crop_x - cm1.crop_x);
	int top_diff = abs(cm0.crop_y - cm1.crop_y);
	int right_diff = fabs(cm0.crop_x + cm0.scale_x * cm0.width -
			      cm1.crop_x - cm1.scale_x * cm1.width);
	int bottom_diff = fabs(cm0.crop_y + cm0.scale_y * cm0.height -
			       cm1.crop_y - cm1.scale_y * cm1.height);
	// These thresholds are a rather arbitrary amount chosen to trigger
	// when carrying on with the previously calculated tables might be
	// worse than regenerating them (but without the adaptive algorithm).
	int threshold_x = cm0.sensor_width >> 4;
	int threshold_y = cm0.sensor_height >> 4;
	return left_diff > threshold_x || right_diff > threshold_x ||
	       top_diff > threshold_y || bottom_diff > threshold_y;
}

void Alsc::SwitchMode(CameraMode const &camera_mode,
		      [[maybe_unused]] Metadata *metadata)
{
	// We're going to start over with the tables if there's any "significant"
	// change.
	bool reset_tables = first_time_ || compare_modes(camera_mode_, camera_mode);

	// Believe the colour temperature from the AWB, if there is one.
	ct_ = get_ct(metadata, ct_);

	// Ensure the other thread isn't running while we do this.
	waitForAysncThread();

	camera_mode_ = camera_mode;

	// We must resample the luminance table like we do the others, but it's
	// fixed so we can simply do it up front here.
	resample_cal_table(config_.luminance_lut, camera_mode_, luminance_table_);

	if (reset_tables) {
		// Upon every "table reset", arrange for something sensible to be
		// generated. Construct the tables for the previous recorded colour
		// temperature. In order to start over from scratch we initialise
		// the lambdas, but the rest of this code then echoes the code in
		// doAlsc, without the adaptive algorithm.
		for (int i = 0; i < XY; i++)
			lambda_r_[i] = lambda_b_[i] = 1.0;
		double cal_table_r[XY], cal_table_b[XY], cal_table_tmp[XY];
		get_cal_table(ct_, config_.calibrations_Cr, cal_table_tmp);
		resample_cal_table(cal_table_tmp, camera_mode_, cal_table_r);
		get_cal_table(ct_, config_.calibrations_Cb, cal_table_tmp);
		resample_cal_table(cal_table_tmp, camera_mode_, cal_table_b);
		compensate_lambdas_for_cal(cal_table_r, lambda_r_,
					   async_lambda_r_);
		compensate_lambdas_for_cal(cal_table_b, lambda_b_,
					   async_lambda_b_);
		add_luminance_to_tables(sync_results_, async_lambda_r_, 1.0,
					async_lambda_b_, luminance_table_,
					config_.luminance_strength);
		memcpy(prev_sync_results_, sync_results_,
		       sizeof(prev_sync_results_));
		frame_phase_ = config_.frame_period; // run the algo again asap
		first_time_ = false;
	}
}

void Alsc::fetchAsyncResults()
{
	LOG(RPiAlsc, Debug) << "Fetch ALSC results";
	async_finished_ = false;
	async_started_ = false;
	memcpy(sync_results_, async_results_, sizeof(sync_results_));
}

double get_ct(Metadata *metadata, double default_ct)
{
	AwbStatus awb_status;
	awb_status.temperature_K = default_ct; // in case nothing found
	if (metadata->Get("awb.status", awb_status) != 0)
		LOG(RPiAlsc, Debug) << "no AWB results found, using "
				    << awb_status.temperature_K;
	else
		LOG(RPiAlsc, Debug) << "AWB results found, using "
				    << awb_status.temperature_K;
	return awb_status.temperature_K;
}

static void copy_stats(bcm2835_isp_stats_region regions[XY], StatisticsPtr &stats,
		       AlscStatus const &status)
{
	bcm2835_isp_stats_region *input_regions = stats->awb_stats;
	double *r_table = (double *)status.r;
	double *g_table = (double *)status.g;
	double *b_table = (double *)status.b;
	for (int i = 0; i < XY; i++) {
		regions[i].r_sum = input_regions[i].r_sum / r_table[i];
		regions[i].g_sum = input_regions[i].g_sum / g_table[i];
		regions[i].b_sum = input_regions[i].b_sum / b_table[i];
		regions[i].counted = input_regions[i].counted;
		// (don't care about the uncounted value)
	}
}

void Alsc::restartAsync(StatisticsPtr &stats, Metadata *image_metadata)
{
	LOG(RPiAlsc, Debug) << "Starting ALSC calculation";
	// Get the current colour temperature. It's all we need from the
	// metadata. Default to the last CT value (which could be the default).
	ct_ = get_ct(image_metadata, ct_);
	// We have to copy the statistics here, dividing out our best guess of
	// the LSC table that the pipeline applied to them.
	AlscStatus alsc_status;
	if (image_metadata->Get("alsc.status", alsc_status) != 0) {
		LOG(RPiAlsc, Warning)
			<< "No ALSC status found for applied gains!";
		for (int y = 0; y < Y; y++)
			for (int x = 0; x < X; x++) {
				alsc_status.r[y][x] = 1.0;
				alsc_status.g[y][x] = 1.0;
				alsc_status.b[y][x] = 1.0;
			}
	}
	copy_stats(statistics_, stats, alsc_status);
	frame_phase_ = 0;
	async_started_ = true;
	{
		std::lock_guard<std::mutex> lock(mutex_);
		async_start_ = true;
	}
	async_signal_.notify_one();
}

void Alsc::Prepare(Metadata *image_metadata)
{
	// Count frames since we started, and since we last poked the async
	// thread.
	if (frame_count_ < (int)config_.startup_frames)
		frame_count_++;
	double speed = frame_count_ < (int)config_.startup_frames
			       ? 1.0
			       : config_.speed;
	LOG(RPiAlsc, Debug)
		<< "frame_count " << frame_count_ << " speed " << speed;
	{
		std::unique_lock<std::mutex> lock(mutex_);
		if (async_started_ && async_finished_)
			fetchAsyncResults();
	}
	// Apply IIR filter to results and program into the pipeline.
	double *ptr = (double *)sync_results_,
	       *pptr = (double *)prev_sync_results_;
	for (unsigned int i = 0;
	     i < sizeof(sync_results_) / sizeof(double); i++)
		pptr[i] = speed * ptr[i] + (1.0 - speed) * pptr[i];
	// Put output values into status metadata.
	AlscStatus status;
	memcpy(status.r, prev_sync_results_[0], sizeof(status.r));
	memcpy(status.g, prev_sync_results_[1], sizeof(status.g));
	memcpy(status.b, prev_sync_results_[2], sizeof(status.b));
	image_metadata->Set("alsc.status", status);
}

void Alsc::Process(StatisticsPtr &stats, Metadata *image_metadata)
{
	// Count frames since we started, and since we last poked the async
	// thread.
	if (frame_phase_ < (int)config_.frame_period)
		frame_phase_++;
	if (frame_count2_ < (int)config_.startup_frames)
		frame_count2_++;
	LOG(RPiAlsc, Debug) << "frame_phase " << frame_phase_;
	if (frame_phase_ >= (int)config_.frame_period ||
	    frame_count2_ < (int)config_.startup_frames) {
		if (async_started_ == false)
			restartAsync(stats, image_metadata);
	}
}

void Alsc::asyncFunc()
{
	while (true) {
		{
			std::unique_lock<std::mutex> lock(mutex_);
			async_signal_.wait(lock, [&] {
				return async_start_ || async_abort_;
			});
			async_start_ = false;
			if (async_abort_)
				break;
		}
		doAlsc();
		{
			std::lock_guard<std::mutex> lock(mutex_);
			async_finished_ = true;
		}
		sync_signal_.notify_one();
	}
}

void get_cal_table(double ct, std::vector<AlscCalibration> const &calibrations,
		   double cal_table[XY])
{
	if (calibrations.empty()) {
		for (int i = 0; i < XY; i++)
			cal_table[i] = 1.0;
		LOG(RPiAlsc, Debug) << "no calibrations found";
	} else if (ct <= calibrations.front().ct) {
		memcpy(cal_table, calibrations.front().table,
		       XY * sizeof(double));
		LOG(RPiAlsc, Debug) << "using calibration for "
				    << calibrations.front().ct;
	} else if (ct >= calibrations.back().ct) {
		memcpy(cal_table, calibrations.back().table,
		       XY * sizeof(double));
		LOG(RPiAlsc, Debug) << "using calibration for "
				    << calibrations.back().ct;
	} else {
		int idx = 0;
		while (ct > calibrations[idx + 1].ct)
			idx++;
		double ct0 = calibrations[idx].ct,
		       ct1 = calibrations[idx + 1].ct;
		LOG(RPiAlsc, Debug)
			<< "ct is " << ct << ", interpolating between "
			<< ct0 << " and " << ct1;
		for (int i = 0; i < XY; i++)
			cal_table[i] =
				(calibrations[idx].table[i] * (ct1 - ct) +
				 calibrations[idx + 1].table[i] * (ct - ct0)) /
				(ct1 - ct0);
	}
}

void resample_cal_table(double const cal_table_in[XY],
			CameraMode const &camera_mode, double cal_table_out[XY])
{
	// Precalculate and cache the x sampling locations and phases to save
	// recomputing them on every row.
	int x_lo[X], x_hi[X];
	double xf[X];
	double scale_x = camera_mode.sensor_width /
			 (camera_mode.width * camera_mode.scale_x);
	double x_off = camera_mode.crop_x / (double)camera_mode.sensor_width;
	double x = .5 / scale_x + x_off * X - .5;
	double x_inc = 1 / scale_x;
	for (int i = 0; i < X; i++, x += x_inc) {
		x_lo[i] = floor(x);
		xf[i] = x - x_lo[i];
		x_hi[i] = std::min(x_lo[i] + 1, X - 1);
		x_lo[i] = std::max(x_lo[i], 0);
		if (!!(camera_mode.transform & libcamera::Transform::HFlip)) {
			x_lo[i] = X - 1 - x_lo[i];
			x_hi[i] = X - 1 - x_hi[i];
		}
	}
	// Now march over the output table generating the new values.
	double scale_y = camera_mode.sensor_height /
			 (camera_mode.height * camera_mode.scale_y);
	double y_off = camera_mode.crop_y / (double)camera_mode.sensor_height;
	double y = .5 / scale_y + y_off * Y - .5;
	double y_inc = 1 / scale_y;
	for (int j = 0; j < Y; j++, y += y_inc) {
		int y_lo = floor(y);
		double yf = y - y_lo;
		int y_hi = std::min(y_lo + 1, Y - 1);
		y_lo = std::max(y_lo, 0);
		if (!!(camera_mode.transform & libcamera::Transform::VFlip)) {
			y_lo = Y - 1 - y_lo;
			y_hi = Y - 1 - y_hi;
		}
		double const *row_above = cal_table_in + X * y_lo;
		double const *row_below = cal_table_in + X * y_hi;
		for (int i = 0; i < X; i++) {
			double above = row_above[x_lo[i]] * (1 - xf[i]) +
				       row_above[x_hi[i]] * xf[i];
			double below = row_below[x_lo[i]] * (1 - xf[i]) +
				       row_below[x_hi[i]] * xf[i];
			*(cal_table_out++) = above * (1 - yf) + below * yf;
		}
	}
}

// Calculate chrominance statistics (R/G and B/G) for each region.
static_assert(XY == AWB_REGIONS, "ALSC/AWB statistics region mismatch");
static void calculate_Cr_Cb(bcm2835_isp_stats_region *awb_region, double Cr[XY],
			    double Cb[XY], uint32_t min_count, uint16_t min_G)
{
	for (int i = 0; i < XY; i++) {
		bcm2835_isp_stats_region &zone = awb_region[i];
		if (zone.counted <= min_count ||
		    zone.g_sum / zone.counted <= min_G) {
			Cr[i] = Cb[i] = INSUFFICIENT_DATA;
			continue;
		}
		Cr[i] = zone.r_sum / (double)zone.g_sum;
		Cb[i] = zone.b_sum / (double)zone.g_sum;
	}
}

static void apply_cal_table(double const cal_table[XY], double C[XY])
{
	for (int i = 0; i < XY; i++)
		if (C[i] != INSUFFICIENT_DATA)
			C[i] *= cal_table[i];
}

void compensate_lambdas_for_cal(double const cal_table[XY],
				double const old_lambdas[XY],
				double new_lambdas[XY])
{
	double min_new_lambda = std::numeric_limits<double>::max();
	for (int i = 0; i < XY; i++) {
		new_lambdas[i] = old_lambdas[i] * cal_table[i];
		min_new_lambda = std::min(min_new_lambda, new_lambdas[i]);
	}
	for (int i = 0; i < XY; i++)
		new_lambdas[i] /= min_new_lambda;
}

[[maybe_unused]] static void print_cal_table(double const C[XY])
{
	printf("table: [\n");
	for (int j = 0; j < Y; j++) {
		for (int i = 0; i < X; i++) {
			printf("%5.3f", 1.0 / C[j * X + i]);
			if (i != X - 1 || j != Y - 1)
				printf(",");
		}
		printf("\n");
	}
	printf("]\n");
}

// Compute weight out of 1.0 which reflects how similar we wish to make the
// colours of these two regions.
static double compute_weight(double C_i, double C_j, double sigma)
{
	if (C_i == INSUFFICIENT_DATA || C_j == INSUFFICIENT_DATA)
		return 0;
	double diff = (C_i - C_j) / sigma;
	return exp(-diff * diff / 2);
}

// Compute all weights.
static void compute_W(double const C[XY], double sigma, double W[XY][4])
{
	for (int i = 0; i < XY; i++) {
		// Start with neighbour above and go clockwise.
		W[i][0] = i >= X ? compute_weight(C[i], C[i - X], sigma) : 0;
		W[i][1] = i % X < X - 1 ? compute_weight(C[i], C[i + 1], sigma)
					: 0;
		W[i][2] =
			i < XY - X ? compute_weight(C[i], C[i + X], sigma) : 0;
		W[i][3] = i % X ? compute_weight(C[i], C[i - 1], sigma) : 0;
	}
}

// Compute M, the large but sparse matrix such that M * lambdas = 0.
static void construct_M(double const C[XY], double const W[XY][4],
			double M[XY][4])
{
	double epsilon = 0.001;
	for (int i = 0; i < XY; i++) {
		// Note how, if C[i] == INSUFFICIENT_DATA, the weights will all
		// be zero so the equation is still set up correctly.
		int m = !!(i >= X) + !!(i % X < X - 1) + !!(i < XY - X) +
			!!(i % X); // total number of neighbours
		// we'll divide the diagonal out straight away
		double diagonal =
			(epsilon + W[i][0] + W[i][1] + W[i][2] + W[i][3]) *
			C[i];
		M[i][0] = i >= X ? (W[i][0] * C[i - X] + epsilon / m * C[i]) /
					   diagonal
				 : 0;
		M[i][1] = i % X < X - 1
				  ? (W[i][1] * C[i + 1] + epsilon / m * C[i]) /
					    diagonal
				  : 0;
		M[i][2] = i < XY - X
				  ? (W[i][2] * C[i + X] + epsilon / m * C[i]) /
					    diagonal
				  : 0;
		M[i][3] = i % X ? (W[i][3] * C[i - 1] + epsilon / m * C[i]) /
					  diagonal
				: 0;
	}
}

// In the compute_lambda_ functions, note that the matrix coefficients for the
// left/right neighbours are zero down the left/right edges, so we don't need
// need to test the i value to exclude them.
static double compute_lambda_bottom(int i, double const M[XY][4],
				    double lambda[XY])
{
	return M[i][1] * lambda[i + 1] + M[i][2] * lambda[i + X] +
	       M[i][3] * lambda[i - 1];
}
static double compute_lambda_bottom_start(int i, double const M[XY][4],
					  double lambda[XY])
{
	return M[i][1] * lambda[i + 1] + M[i][2] * lambda[i + X];
}
static double compute_lambda_interior(int i, double const M[XY][4],
				      double lambda[XY])
{
	return M[i][0] * lambda[i - X] + M[i][1] * lambda[i + 1] +
	       M[i][2] * lambda[i + X] + M[i][3] * lambda[i - 1];
}
static double compute_lambda_top(int i, double const M[XY][4],
				 double lambda[XY])
{
	return M[i][0] * lambda[i - X] + M[i][1] * lambda[i + 1] +
	       M[i][3] * lambda[i - 1];
}
static double compute_lambda_top_end(int i, double const M[XY][4],
				     double lambda[XY])
{
	return M[i][0] * lambda[i - X] + M[i][3] * lambda[i - 1];
}

// Gauss-Seidel iteration with over-relaxation.
static double gauss_seidel2_SOR(double const M[XY][4], double omega,
				double lambda[XY])
{
	double old_lambda[XY];
	int i;
	for (i = 0; i < XY; i++)
		old_lambda[i] = lambda[i];
	lambda[0] = compute_lambda_bottom_start(0, M, lambda);
	for (i = 1; i < X; i++)
		lambda[i] = compute_lambda_bottom(i, M, lambda);
	for (; i < XY - X; i++)
		lambda[i] = compute_lambda_interior(i, M, lambda);
	for (; i < XY - 1; i++)
		lambda[i] = compute_lambda_top(i, M, lambda);
	lambda[i] = compute_lambda_top_end(i, M, lambda);
	// Also solve the system from bottom to top, to help spread the updates
	// better.
	lambda[i] = compute_lambda_top_end(i, M, lambda);
	for (i = XY - 2; i >= XY - X; i--)
		lambda[i] = compute_lambda_top(i, M, lambda);
	for (; i >= X; i--)
		lambda[i] = compute_lambda_interior(i, M, lambda);
	for (; i >= 1; i--)
		lambda[i] = compute_lambda_bottom(i, M, lambda);
	lambda[0] = compute_lambda_bottom_start(0, M, lambda);
	double max_diff = 0;
	for (i = 0; i < XY; i++) {
		lambda[i] = old_lambda[i] + (lambda[i] - old_lambda[i]) * omega;
		if (fabs(lambda[i] - old_lambda[i]) > fabs(max_diff))
			max_diff = lambda[i] - old_lambda[i];
	}
	return max_diff;
}

// Normalise the values so that the smallest value is 1.
static void normalise(double *ptr, size_t n)
{
	double minval = ptr[0];
	for (size_t i = 1; i < n; i++)
		minval = std::min(minval, ptr[i]);
	for (size_t i = 0; i < n; i++)
		ptr[i] /= minval;
}

static void run_matrix_iterations(double const C[XY], double lambda[XY],
				  double const W[XY][4], double omega,
				  int n_iter, double threshold)
{
	double M[XY][4];
	construct_M(C, W, M);
	double last_max_diff = std::numeric_limits<double>::max();
	for (int i = 0; i < n_iter; i++) {
		double max_diff = fabs(gauss_seidel2_SOR(M, omega, lambda));
		if (max_diff < threshold) {
			LOG(RPiAlsc, Debug)
				<< "Stop after " << i + 1 << " iterations";
			break;
		}
		// this happens very occasionally (so make a note), though
		// doesn't seem to matter
		if (max_diff > last_max_diff)
			LOG(RPiAlsc, Debug)
				<< "Iteration " << i << ": max_diff gone up "
				<< last_max_diff << " to " << max_diff;
		last_max_diff = max_diff;
	}
	// We're going to normalise the lambdas so the smallest is 1. Not sure
	// this is really necessary as they get renormalised later, but I
	// suppose it does stop these quantities from wandering off...
	normalise(lambda, XY);
}

static void add_luminance_rb(double result[XY], double const lambda[XY],
			     double const luminance_lut[XY],
			     double luminance_strength)
{
	for (int i = 0; i < XY; i++)
		result[i] = lambda[i] *
			    ((luminance_lut[i] - 1) * luminance_strength + 1);
}

static void add_luminance_g(double result[XY], double lambda,
			    double const luminance_lut[XY],
			    double luminance_strength)
{
	for (int i = 0; i < XY; i++)
		result[i] = lambda *
			    ((luminance_lut[i] - 1) * luminance_strength + 1);
}

void add_luminance_to_tables(double results[3][Y][X], double const lambda_r[XY],
			     double lambda_g, double const lambda_b[XY],
			     double const luminance_lut[XY],
			     double luminance_strength)
{
	add_luminance_rb((double *)results[0], lambda_r, luminance_lut,
			 luminance_strength);
	add_luminance_g((double *)results[1], lambda_g, luminance_lut,
			luminance_strength);
	add_luminance_rb((double *)results[2], lambda_b, luminance_lut,
			 luminance_strength);
	normalise((double *)results, 3 * XY);
}

void Alsc::doAlsc()
{
	double Cr[XY], Cb[XY], Wr[XY][4], Wb[XY][4], cal_table_r[XY],
		cal_table_b[XY], cal_table_tmp[XY];
	// Calculate our R/B ("Cr"/"Cb") colour statistics, and assess which are
	// usable.
	calculate_Cr_Cb(statistics_, Cr, Cb, config_.min_count, config_.min_G);
	// Fetch the new calibrations (if any) for this CT. Resample them in
	// case the camera mode is not full-frame.
	get_cal_table(ct_, config_.calibrations_Cr, cal_table_tmp);
	resample_cal_table(cal_table_tmp, camera_mode_, cal_table_r);
	get_cal_table(ct_, config_.calibrations_Cb, cal_table_tmp);
	resample_cal_table(cal_table_tmp, camera_mode_, cal_table_b);
	// You could print out the cal tables for this image here, if you're
	// tuning the algorithm...
	// Apply any calibration to the statistics, so the adaptive algorithm
	// makes only the extra adjustments.
	apply_cal_table(cal_table_r, Cr);
	apply_cal_table(cal_table_b, Cb);
	// Compute weights between zones.
	compute_W(Cr, config_.sigma_Cr, Wr);
	compute_W(Cb, config_.sigma_Cb, Wb);
	// Run Gauss-Seidel iterations over the resulting matrix, for R and B.
	run_matrix_iterations(Cr, lambda_r_, Wr, config_.omega, config_.n_iter,
			      config_.threshold);
	run_matrix_iterations(Cb, lambda_b_, Wb, config_.omega, config_.n_iter,
			      config_.threshold);
	// Fold the calibrated gains into our final lambda values. (Note that on
	// the next run, we re-start with the lambda values that don't have the
	// calibration gains included.)
	compensate_lambdas_for_cal(cal_table_r, lambda_r_, async_lambda_r_);
	compensate_lambdas_for_cal(cal_table_b, lambda_b_, async_lambda_b_);
	// Fold in the luminance table at the appropriate strength.
	add_luminance_to_tables(async_results_, async_lambda_r_, 1.0,
				async_lambda_b_, luminance_table_,
				config_.luminance_strength);
}

// Register algorithm with the system.
static Algorithm *Create(Controller *controller)
{
	return (Algorithm *)new Alsc(controller);
}
static RegisterAlgorithm reg(NAME, &Create);