summaryrefslogtreecommitdiff
path: root/src/ipa/raspberrypi/controller/pwl.cpp
blob: 130c820b559f2029342c2fe69f0beb7901bfbf6d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
generated by cgit v1.2.1 (git 2.18.0) at 2024-12-25 03:15:44 +0000
 


ass="hl kwa">return points_[span].y +
	       (x - points_[span].x) * (points_[span + 1].y - points_[span].y) /
		       (points_[span + 1].x - points_[span].x);
}

int Pwl::findSpan(double x, int span) const
{
	// Pwls are generally small, so linear search may well be faster than
	// binary, though could review this if large PWls start turning up.
	int last_span = points_.size() - 2;
	// some algorithms may call us with span pointing directly at the last
	// control point
	span = std::max(0, std::min(last_span, span));
	while (span < last_span && x >= points_[span + 1].x)
		span++;
	while (span && x < points_[span].x)
		span--;
	return span;
}

Pwl::PerpType Pwl::Invert(Point const &xy, Point &perp, int &span,
			  const double eps) const
{
	assert(span >= -1);
	bool prev_off_end = false;
	for (span = span + 1; span < (int)points_.size() - 1; span++) {
		Point span_vec = points_[span + 1] - points_[span];
		double t = ((xy - points_[span]) % span_vec) / span_vec.Len2();
		if (t < -eps) // off the start of this span
		{
			if (span == 0) {
				perp = points_[span];
				return PerpType::Start;
			} else if (prev_off_end) {
				perp = points_[span];
				return PerpType::Vertex;
			}
		} else if (t > 1 + eps) // off the end of this span
		{
			if (span == (int)points_.size() - 2) {
				perp = points_[span + 1];
				return PerpType::End;
			}
			prev_off_end = true;
		} else // a true perpendicular
		{
			perp = points_[span] + span_vec * t;
			return PerpType::Perpendicular;
		}
	}
	return PerpType::None;
}

Pwl Pwl::Inverse(bool *true_inverse, const double eps) const
{
	bool appended = false, prepended = false, neither = false;
	Pwl inverse;

	for (Point const &p : points_) {
		if (inverse.Empty())
			inverse.Append(p.y, p.x, eps);
		else if (std::abs(inverse.points_.back().x - p.y) <= eps ||
			 std::abs(inverse.points_.front().x - p.y) <= eps)
			/* do nothing */;
		else if (p.y > inverse.points_.back().x) {
			inverse.Append(p.y, p.x, eps);
			appended = true;
		} else if (p.y < inverse.points_.front().x) {
			inverse.Prepend(p.y, p.x, eps);
			prepended = true;
		} else
			neither = true;
	}

	// This is not a proper inverse if we found ourselves putting points
	// onto both ends of the inverse, or if there were points that couldn't
	// go on either.
	if (true_inverse)
		*true_inverse = !(neither || (appended && prepended));

	return inverse;
}

Pwl Pwl::Compose(Pwl const &other, const double eps) const
{
	double this_x = points_[0].x, this_y = points_[0].y;
	int this_span = 0, other_span = other.findSpan(this_y, 0);
	Pwl result({ { this_x, other.Eval(this_y, &other_span, false) } });
	while (this_span != (int)points_.size() - 1) {
		double dx = points_[this_span + 1].x - points_[this_span].x,
		       dy = points_[this_span + 1].y - points_[this_span].y;
		if (abs(dy) > eps &&
		    other_span + 1 < (int)other.points_.size() &&
		    points_[this_span + 1].y >=
			    other.points_[other_span + 1].x + eps) {
			// next control point in result will be where this
			// function's y reaches the next span in other
			this_x = points_[this_span].x +
				 (other.points_[other_span + 1].x -
				  points_[this_span].y) * dx / dy;
			this_y = other.points_[++other_span].x;
		} else if (abs(dy) > eps && other_span > 0 &&
			   points_[this_span + 1].y <=
				   other.points_[other_span - 1].x - eps) {
			// next control point in result will be where this
			// function's y reaches the previous span in other
			this_x = points_[this_span].x +
				 (other.points_[other_span + 1].x -
				  points_[this_span].y) * dx / dy;
			this_y = other.points_[--other_span].x;
		} else {
			// we stay in the same span in other
			this_span++;
			this_x = points_[this_span].x,
			this_y = points_[this_span].y;
		}
		result.Append(this_x, other.Eval(this_y, &other_span, false),
			      eps);
	}
	return result;
}

void Pwl::Map(std::function<void(double x, double y)> f) const
{
	for (auto &pt : points_)
		f(pt.x, pt.y);
}

void Pwl::Map2(Pwl const &pwl0, Pwl const &pwl1,
	       std::function<void(double x, double y0, double y1)> f)
{
	int span0 = 0, span1 = 0;
	double x = std::min(pwl0.points_[0].x, pwl1.points_[0].x);
	f(x, pwl0.Eval(x, &span0, false), pwl1.Eval(x, &span1, false));
	while (span0 < (int)pwl0.points_.size() - 1 ||
	       span1 < (int)pwl1.points_.size() - 1) {
		if (span0 == (int)pwl0.points_.size() - 1)
			x = pwl1.points_[++span1].x;
		else if (span1 == (int)pwl1.points_.size() - 1)
			x = pwl0.points_[++span0].x;
		else if (pwl0.points_[span0 + 1].x > pwl1.points_[span1 + 1].x)
			x = pwl1.points_[++span1].x;
		else
			x = pwl0.points_[++span0].x;
		f(x, pwl0.Eval(x, &span0, false), pwl1.Eval(x, &span1, false));
	}
}

Pwl Pwl::Combine(Pwl const &pwl0, Pwl const &pwl1,
		 std::function<double(double x, double y0, double y1)> f,
		 const double eps)
{
	Pwl result;
	Map2(pwl0, pwl1, [&](double x, double y0, double y1) {
		result.Append(x, f(x, y0, y1), eps);
	});
	return result;
}

void Pwl::MatchDomain(Interval const &domain, bool clip, const double eps)
{
	int span = 0;
	Prepend(domain.start, Eval(clip ? points_[0].x : domain.start, &span),
		eps);
	span = points_.size() - 2;
	Append(domain.end, Eval(clip ? points_.back().x : domain.end, &span),
	       eps);
}

Pwl &Pwl::operator*=(double d)
{
	for (auto &pt : points_)
		pt.y *= d;
	return *this;
}

void Pwl::Debug(FILE *fp) const
{
	fprintf(fp, "Pwl {\n");
	for (auto &p : points_)
		fprintf(fp, "\t(%g, %g)\n", p.x, p.y);
	fprintf(fp, "}\n");
}