summaryrefslogtreecommitdiff
path: root/src/ipa/raspberrypi/controller/histogram.cpp
blob: 16a9207ff2f8043928a5c9104d896a2a3b21bb88 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
/* SPDX-License-Identifier: BSD-2-Clause */
/*
 * Copyright (C) 2019, Raspberry Pi Ltd
 *
 * histogram.cpp - histogram calculations
 */
#include <math.h>
#include <stdio.h>

#include "histogram.h"

using namespace RPiController;

uint64_t Histogram::cumulativeFreq(double bin) const
{
	if (bin <= 0)
		return 0;
	else if (bin >= bins())
		return total();
	int b = (int)bin;
	return cumulative_[b] +
	       (bin - b) * (cumulative_[b + 1] - cumulative_[b]);
}

double Histogram::quantile(double q, int first, int last) const
{
	if (first == -1)
		first = 0;
	if (last == -1)
		last = cumulative_.size() - 2;
	assert(first <= last);
	uint64_t items = q * total();
	while (first < last) /* binary search to find the right bin */
	{
		int middle = (first + last) / 2;
		if (cumulative_[middle + 1] > items)
			last = middle; /* between first and middle */
		else
			first = middle + 1; /* after middle */
	}
	assert(items >= cumulative_[first] && items <= cumulative_[last + 1]);
	double frac = cumulative_[first + 1] == cumulative_[first] ? 0
		      : (double)(items - cumulative_[first]) /
				  (cumulative_[first + 1] - cumulative_[first]);
	return first + frac;
}

double Histogram::interQuantileMean(double qLo, double qHi) const
{
	assert(qHi > qLo);
	double pLo = quantile(qLo);
	double pHi = quantile(qHi, (int)pLo);
	double sumBinFreq = 0, cumulFreq = 0;
	for (double pNext = floor(pLo) + 1.0; pNext <= ceil(pHi);
	     pLo = pNext, pNext += 1.0) {
		int bin = floor(pLo);
		double freq = (cumulative_[bin + 1] - cumulative_[bin]) *
			      (std::min(pNext, pHi) - pLo);
		sumBinFreq += bin * freq;
		cumulFreq += freq;
	}
	/* add 0.5 to give an average for bin mid-points */
	return sumBinFreq / cumulFreq + 0.5;
}
hl opt"><unsigned int> &ids) override; void queueRequest(uint32_t frame, const ControlList &controls) override; void fillParamsBuffer(uint32_t frame, uint32_t bufferId) override; private: void initTrace(); void trace(enum ipa::vimc::IPAOperationCode operation); int fd_; std::map<unsigned int, MappedFrameBuffer> buffers_; }; IPAVimc::IPAVimc() : fd_(-1) { initTrace(); } IPAVimc::~IPAVimc() { if (fd_ != -1) ::close(fd_); } int IPAVimc::init(const IPASettings &settings, const ipa::vimc::IPAOperationCode code, const Flags<ipa::vimc::TestFlag> inFlags, Flags<ipa::vimc::TestFlag> *outFlags) { trace(ipa::vimc::IPAOperationInit); LOG(IPAVimc, Debug) << "initializing vimc IPA with configuration file " << settings.configurationFile; LOG(IPAVimc, Debug) << "Got opcode " << code; LOG(IPAVimc, Debug) << "Flag 2 was " << (inFlags & ipa::vimc::TestFlag::Flag2 ? "" : "not ") << "set"; *outFlags |= ipa::vimc::TestFlag::Flag1; File conf(settings.configurationFile); if (!conf.open(File::OpenModeFlag::ReadOnly)) { LOG(IPAVimc, Error) << "Failed to open configuration file"; return -EINVAL; } return 0; } int IPAVimc::start() { trace(ipa::vimc::IPAOperationStart); LOG(IPAVimc, Debug) << "start vimc IPA!"; return 0; } void IPAVimc::stop() { trace(ipa::vimc::IPAOperationStop); LOG(IPAVimc, Debug) << "stop vimc IPA!"; } int IPAVimc::configure([[maybe_unused]] const IPACameraSensorInfo &sensorInfo, [[maybe_unused]] const std::map<unsigned int, IPAStream> &streamConfig, [[maybe_unused]] const std::map<unsigned int, ControlInfoMap> &entityControls) { LOG(IPAVimc, Debug) << "configure()"; return 0; } void IPAVimc::mapBuffers(const std::vector<IPABuffer> &buffers) { for (const IPABuffer &buffer : buffers) { const FrameBuffer fb(buffer.planes); buffers_.emplace(std::piecewise_construct, std::forward_as_tuple(buffer.id), std::forward_as_tuple(&fb, MappedFrameBuffer::MapFlag::Read)); } } void IPAVimc::unmapBuffers(const std::vector<unsigned int> &ids) { for (unsigned int id : ids) { auto it = buffers_.find(id); if (it == buffers_.end()) continue; buffers_.erase(it); } } void IPAVimc::queueRequest([[maybe_unused]] uint32_t frame, [[maybe_unused]] const ControlList &controls) { } void IPAVimc::fillParamsBuffer([[maybe_unused]] uint32_t frame, uint32_t bufferId) { auto it = buffers_.find(bufferId); if (it == buffers_.end()) { LOG(IPAVimc, Error) << "Could not find parameter buffer"; return; } Flags<ipa::vimc::TestFlag> flags; paramsBufferReady.emit(bufferId, flags); } void IPAVimc::initTrace() { struct stat fifoStat; int ret = stat(ipa::vimc::VimcIPAFIFOPath.c_str(), &fifoStat); if (ret) return; ret = ::open(ipa::vimc::VimcIPAFIFOPath.c_str(), O_WRONLY | O_CLOEXEC); if (ret < 0) { ret = errno; LOG(IPAVimc, Error) << "Failed to open vimc IPA test FIFO: " << strerror(ret); return; } fd_ = ret; } void IPAVimc::trace(enum ipa::vimc::IPAOperationCode operation) { if (fd_ < 0) return; int ret = ::write(fd_, &operation, sizeof(operation)); if (ret < 0) { ret = errno; LOG(IPAVimc, Error) << "Failed to write to vimc IPA test FIFO: " << strerror(ret); } } /* * External IPA module interface */ extern "C" { const struct IPAModuleInfo ipaModuleInfo = { IPA_MODULE_API_VERSION, 0, "PipelineHandlerVimc", "vimc", }; IPAInterface *ipaCreate() { return new IPAVimc(); } } } /* namespace libcamera */