1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
|
/* SPDX-License-Identifier: BSD-2-Clause */
/*
* Copyright (C) 2019, Raspberry Pi Ltd
*
* cam_helper.cpp - helper information for different sensors
*/
#include <linux/videodev2.h>
#include <limits>
#include <map>
#include <string.h>
#include "libcamera/internal/v4l2_videodevice.h"
#include "cam_helper.h"
#include "md_parser.h"
using namespace RPiController;
using namespace libcamera;
using libcamera::utils::Duration;
using namespace std::literals::chrono_literals;
namespace libcamera {
LOG_DECLARE_CATEGORY(IPARPI)
}
static std::map<std::string, CamHelperCreateFunc> camHelpers;
CamHelper *CamHelper::create(std::string const &camName)
{
/*
* CamHelpers get registered by static RegisterCamHelper
* initialisers.
*/
for (auto &p : camHelpers) {
if (camName.find(p.first) != std::string::npos)
return p.second();
}
return nullptr;
}
CamHelper::CamHelper(std::unique_ptr<MdParser> parser, unsigned int frameIntegrationDiff)
: parser_(std::move(parser)), frameIntegrationDiff_(frameIntegrationDiff)
{
}
CamHelper::~CamHelper()
{
}
void CamHelper::prepare(Span<const uint8_t> buffer,
Metadata &metadata)
{
parseEmbeddedData(buffer, metadata);
}
void CamHelper::process([[maybe_unused]] StatisticsPtr &stats,
[[maybe_unused]] Metadata &metadata)
{
}
uint32_t CamHelper::exposureLines(const Duration exposure, const Duration lineLength) const
{
return exposure / lineLength;
}
Duration CamHelper::exposure(uint32_t exposureLines, const Duration lineLength) const
{
return exposureLines * lineLength;
}
std::pair<uint32_t, uint32_t> CamHelper::getBlanking(Duration &exposure,
Duration minFrameDuration,
Duration maxFrameDuration) const
{
uint32_t frameLengthMin, frameLengthMax, vblank, hblank;
Duration lineLength = mode_.minLineLength;
/*
* minFrameDuration and maxFrameDuration are clamped by the caller
* based on the limits for the active sensor mode.
*
* frameLengthMax gets calculated on the smallest line length as we do
* not want to extend that unless absolutely necessary.
*/
frameLengthMin = minFrameDuration / mode_.minLineLength;
frameLengthMax = maxFrameDuration / mode_.minLineLength;
/*
* Watch out for (exposureLines + frameIntegrationDiff_) overflowing a
* uint32_t in the std::clamp() below when the exposure time is
* extremely (extremely!) long - as happens when the IPA calculates the
* maximum possible exposure time.
*/
uint32_t exposureLines = std::min(CamHelper::exposureLines(exposure, lineLength),
std::numeric_limits<uint32_t>::max() - frameIntegrationDiff_);
uint32_t frameLengthLines = std::clamp(exposureLines + frameIntegrationDiff_,
frameLengthMin, frameLengthMax);
/*
* If our frame length lines is above the maximum allowed, see if we can
* extend the line length to accommodate the requested frame length.
*/
if (frameLengthLines > mode_.maxFrameLength) {
Duration lineLengthAdjusted = lineLength * frameLengthLines / mode_.maxFrameLength;
lineLength = std::min(mode_.maxLineLength, lineLengthAdjusted);
frameLengthLines = mode_.maxFrameLength;
}
hblank = lineLengthToHblank(lineLength);
vblank = frameLengthLines - mode_.height;
/*
* Limit the exposure to the maximum frame duration requested, and
* re-calculate if it has been clipped.
*/
exposureLines = std::min(frameLengthLines - frameIntegrationDiff_,
CamHelper::exposureLines(exposure, lineLength));
exposure = CamHelper::exposure(exposureLines, lineLength);
return { vblank, hblank };
}
Duration CamHelper::hblankToLineLength(uint32_t hblank) const
{
return (mode_.width + hblank) * (1.0s / mode_.pixelRate);
}
uint32_t CamHelper::lineLengthToHblank(const Duration &lineLength) const
{
return (lineLength * mode_.pixelRate / 1.0s) - mode_.width;
}
Duration CamHelper::lineLengthPckToDuration(uint32_t lineLengthPck) const
{
return lineLengthPck * (1.0s / mode_.pixelRate);
}
void CamHelper::setCameraMode(const CameraMode &mode)
{
mode_ = mode;
if (parser_) {
parser_->reset();
parser_->setBitsPerPixel(mode.bitdepth);
parser_->setLineLengthBytes(0); /* We use SetBufferSize. */
}
}
void CamHelper::getDelays(int &exposureDelay, int &gainDelay,
int &vblankDelay, int &hblankDelay) const
{
/*
* These values are correct for many sensors. Other sensors will
* need to over-ride this function.
*/
exposureDelay = 2;
gainDelay = 1;
vblankDelay = 2;
hblankDelay = 2;
}
bool CamHelper::sensorEmbeddedDataPresent() const
{
return false;
}
double CamHelper::getModeSensitivity([[maybe_unused]] const CameraMode &mode) const
{
/*
* Most sensors have the same sensitivity in every mode, but this
* function can be overridden for those that do not. Note that it is
* called before mode_ is set, so it must return the sensitivity
* of the mode that is passed in.
*/
return 1.0;
}
unsigned int CamHelper::hideFramesStartup() const
{
/*
* The number of frames when a camera first starts that shouldn't be
* displayed as they are invalid in some way.
*/
return 0;
}
unsigned int CamHelper::hideFramesModeSwitch() const
{
/* After a mode switch, many sensors return valid frames immediately. */
return 0;
}
unsigned int CamHelper::mistrustFramesStartup() const
{
/* Many sensors return a single bad frame on start-up. */
return 1;
}
unsigned int CamHelper::mistrustFramesModeSwitch() const
{
/* Many sensors return valid metadata immediately. */
return 0;
}
void CamHelper::parseEmbeddedData(Span<const uint8_t> buffer,
Metadata &metadata)
{
MdParser::RegisterMap registers;
Metadata parsedMetadata;
if (buffer.empty())
return;
if (parser_->parse(buffer, registers) != MdParser::Status::OK) {
LOG(IPARPI, Error) << "Embedded data buffer parsing failed";
return;
}
populateMetadata(registers, parsedMetadata);
metadata.merge(parsedMetadata);
/*
* Overwrite the exposure/gain, frame length and sensor temperature values
* in the existing DeviceStatus with values from the parsed embedded buffer.
* Fetch it first in case any other fields were set meaningfully.
*/
DeviceStatus deviceStatus, parsedDeviceStatus;
if (metadata.get("device.status", deviceStatus) ||
parsedMetadata.get("device.status", parsedDeviceStatus)) {
LOG(IPARPI, Error) << "DeviceStatus not found";
return;
}
deviceStatus.shutterSpeed = parsedDeviceStatus.shutterSpeed;
deviceStatus.analogueGain = parsedDeviceStatus.analogueGain;
deviceStatus.frameLength = parsedDeviceStatus.frameLength;
if (parsedDeviceStatus.sensorTemperature)
deviceStatus.sensorTemperature = parsedDeviceStatus.sensorTemperature;
LOG(IPARPI, Debug) << "Metadata updated - " << deviceStatus;
metadata.set("device.status", deviceStatus);
}
void CamHelper::populateMetadata([[maybe_unused]] const MdParser::RegisterMap ®isters,
[[maybe_unused]] Metadata &metadata) const
{
}
RegisterCamHelper::RegisterCamHelper(char const *camName,
CamHelperCreateFunc createFunc)
{
camHelpers[std::string(camName)] = createFunc;
}
|