summaryrefslogtreecommitdiff
path: root/src/ipa/libipa/algorithm.cpp
blob: bc1c29a6dbcc561dc418f37271bcb8b404a6ef69 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
 * Copyright (C) 2021, Ideas On Board
 *
 * algorithm.cpp - IPA control algorithm interface
 */

#include "algorithm.h"

/**
 * \file algorithm.h
 * \brief Algorithm common interface
 */

namespace libcamera {

namespace ipa {

/**
 * \class Algorithm
 * \brief The base class for all IPA algorithms
 * \tparam Module The IPA module type for this class of algorithms
 *
 * The Algorithm class defines a standard interface for IPA algorithms
 * compatible with the \a Module. By abstracting algorithms, it makes possible
 * the implementation of generic code to manage algorithms regardless of their
 * specific type.
 *
 * To specialize the Algorithm class template, an IPA module shall specialize
 * the Module class template with module-specific context and configuration
 * types, and pass the specialized Module class as the \a Module template
 * argument.
 */

/**
 * \typedef Algorithm::Module
 * \brief The IPA module type for this class of algorithms
 */

/**
 * \fn Algorithm::init()
 * \brief Initialize the Algorithm with tuning data
 * \param[in] context The shared IPA context
 * \param[in] tuningData The tuning data for the algorithm
 *
 * This function is called once, when the IPA module is initialized, to
 * initialize the algorithm. The \a tuningData YamlObject contains the tuning
 * data for algorithm.
 *
 * \return 0 if successful, an error code otherwise
 */

/**
 * \fn Algorithm::configure()
 * \brief Configure the Algorithm given an IPAConfigInfo
 * \param[in] context The shared IPA context
 * \param[in] configInfo The IPA configuration data, received from the pipeline
 * handler
 *
 * Algorithms may implement a configure operation to pre-calculate
 * parameters prior to commencing streaming.
 *
 * Configuration state may be stored in the IPASessionConfiguration structure of
 * the IPAContext.
 *
 * \return 0 if successful, an error code otherwise
 */

/**
 * \fn Algorithm::queueRequest()
 * \brief Provide control values to the algorithm
 * \param[in] context The shared IPA context
 * \param[in] frame The frame number to apply the control values
 * \param[in] frameContext The current frame's context
 * \param[in] controls The list of user controls
 *
 * This function is called for each request queued to the camera. It provides
 * the controls stored in the request to the algorithm. The \a frame number
 * is the Request sequence number and identifies the desired corresponding
 * frame to target for the controls to take effect.
 *
 * Algorithms shall read the applicable controls and store their value for later
 * use during frame processing.
 */

/**
 * \fn Algorithm::prepare()
 * \brief Fill the \a params buffer with ISP processing parameters for a frame
 * \param[in] context The shared IPA context
 * \param[in] frame The frame context sequence number
 * \param[in] frameContext The FrameContext for this frame
 * \param[out] params The ISP specific parameters
 *
 * This function is called for every frame when the camera is running before it
 * is processed by the ISP to prepare the ISP processing parameters for that
 * frame.
 *
 * Algorithms shall fill in the parameter structure fields appropriately to
 * configure the ISP processing blocks that they are responsible for. This
 * includes setting fields and flags that enable those processing blocks.
 */

/**
 * \fn Algorithm::process()
 * \brief Process ISP statistics, and run algorithm operations
 * \param[in] context The shared IPA context
 * \param[in] frame The frame context sequence number
 * \param[in] frameContext The current frame's context
 * \param[in] stats The IPA statistics and ISP results
 * \param[out] metadata Metadata for the frame, to be filled by the algorithm
 *
 * This function is called while camera is running for every frame processed by
 * the ISP, to process statistics generated from that frame by the ISP.
 * Algorithms shall use this data to run calculations, update their state
 * accordingly, and fill the frame metadata.
 *
 * Processing shall not take an undue amount of time, and any extended or
 * computationally expensive calculations or operations must be handled
 * asynchronously in a separate thread.
 *
 * Algorithms can store state in their respective IPAFrameContext structures,
 * and reference state from the IPAFrameContext of other algorithms.
 *
 * \todo Historical data may be required as part of the processing.
 * Either the previous frame, or the IPAFrameContext state of the frame
 * that generated the statistics for this operation may be required for
 * some advanced algorithms to prevent oscillations or support control
 * loops correctly. Only a single IPAFrameContext is available currently,
 * and so any data stored may represent the results of the previously
 * completed operations.
 *
 * Care shall be taken to ensure the ordering of access to the information
 * such that the algorithms use up to date state as required.
 */

/**
 * \class AlgorithmFactory
 * \brief Registration of Algorithm classes and creation of instances
 * \tparam _Algorithm The algorithm class type for this factory
 *
 * To facilitate instantiation of Algorithm classes, the AlgorithmFactory class
 * implements auto-registration of algorithms with the IPA Module class. Each
 * Algorithm subclass shall register itself using the REGISTER_IPA_ALGORITHM()
 * macro, which will create a corresponding instance of an AlgorithmFactory and
 * register it with the IPA Module.
 */

/**
 * \fn AlgorithmFactory::AlgorithmFactory()
 * \brief Construct an algorithm factory
 * \param[in] name Name of the algorithm class
 *
 * Creating an instance of the factory automatically registers is with the IPA
 * Module class, enabling creation of algorithm instances through
 * Module::createAlgorithm().
 *
 * The factory \a name identifies the algorithm and shall be unique.
 */

/**
 * \fn AlgorithmFactory::create()
 * \brief Create an instance of the Algorithm corresponding to the factory
 * \return A pointer to a newly constructed instance of the Algorithm subclass
 * corresponding to the factory
 */

/**
 * \def REGISTER_IPA_ALGORITHM
 * \brief Register an algorithm with the IPA module
 * \param[in] algorithm Class name of Algorithm derived class to register
 * \param[in] name Name of the algorithm
 *
 * Register an Algorithm subclass with the IPA module to make it available for
 * instantiation through Module::createAlgorithm(). The \a name identifies the
 * algorithm and must be unique across all algorithms registered for the IPA
 * module.
 */

} /* namespace ipa */

} /* namespace libcamera */
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
 * Copyright (C) 2019, Google Inc.
 *
 * camera_sensor.cpp - A camera sensor
 */

#include "libcamera/internal/camera_sensor.h"
#include "libcamera/internal/media_device.h"

#include <algorithm>
#include <float.h>
#include <iomanip>
#include <limits.h>
#include <math.h>
#include <regex>
#include <string.h>

#include <libcamera/property_ids.h>

#include "libcamera/internal/bayer_format.h"
#include "libcamera/internal/formats.h"
#include "libcamera/internal/sysfs.h"
#include "libcamera/internal/utils.h"

/**
 * \file camera_sensor.h
 * \brief A camera sensor
 */

namespace libcamera {

LOG_DEFINE_CATEGORY(CameraSensor)

/**
 * \struct CameraSensorInfo
 * \brief Report the image sensor characteristics
 *
 * The structure reports image sensor characteristics used by IPA modules to
 * tune their algorithms based on the image sensor model currently in use and
 * its configuration.
 *
 * The reported information describes the sensor's intrinsics characteristics,
 * such as its pixel array size and the sensor model name, as well as
 * information relative to the currently configured mode, such as the produced
 * image size and the bit depth of the requested image format.
 *
 * Instances of this structure are meant to be assembled by the CameraSensor
 * class by inspecting the sensor static properties as well as information
 * relative to the current configuration.
 */

/**
 * \var CameraSensorInfo::model
 * \brief The image sensor model name
 *
 * The sensor model name is a free-formed string that uniquely identifies the
 * sensor model.
 */

/**
 * \var CameraSensorInfo::bitsPerPixel
 * \brief The number of bits per pixel of the image format produced by the
 * image sensor
 */

/**
 * \var CameraSensorInfo::activeAreaSize
 * \brief The size of the pixel array active area of the sensor
 */

/**
 * \var CameraSensorInfo::analogCrop
 * \brief The portion of the pixel array active area which is read-out and
 * processed
 *
 * The analog crop rectangle top-left corner is defined as the displacement
 * from the top-left corner of the pixel array active area. The rectangle
 * horizontal and vertical sizes define the portion of the pixel array which
 * is read-out and provided to the sensor's internal processing pipeline, before
 * any pixel sub-sampling method, such as pixel binning, skipping and averaging
 * take place.
 */

/**
 * \var CameraSensorInfo::outputSize
 * \brief The size of the images produced by the camera sensor
 *
 * The output image size defines the horizontal and vertical sizes of the images
 * produced by the image sensor. The output image size is defined as the end
 * result of the sensor's internal image processing pipeline stages, applied on
 * the pixel array portion defined by the analog crop rectangle. Each image
 * processing stage that performs pixel sub-sampling techniques, such as pixel
 * binning or skipping, or perform any additional digital scaling concur in the
 * definition of the output image size.
 */

/**
 * \var CameraSensorInfo::pixelRate
 * \brief The number of pixels produced in a second
 *
 * To obtain the read-out time in seconds of a full line:
 *
 * \verbatim
	lineDuration(s) = lineLength(pixels) / pixelRate(pixels per second)
   \endverbatim
 */

/**
 * \var CameraSensorInfo::lineLength
 * \brief Total line length in pixels
 *
 * The total line length in pixel clock periods, including blanking.
 */

/**
 * \var CameraSensorInfo::minFrameLength
 * \brief The minimum allowable frame length in units of lines
 *
 * The sensor frame length comprises of active output lines and blanking lines
 * in a frame. The minimum frame length value dictates the minimum allowable
 * frame duration of the sensor mode.
 *
 * To obtain the minimum frame duration:
 *
 * \verbatim
	frameDuration(s) = minFrameLength(lines) * lineLength(pixels) / pixelRate(pixels per second)
   \endverbatim
 */

/**
 * \var CameraSensorInfo::maxFrameLength
 * \brief The maximum allowable frame length in units of lines
 *
 * The sensor frame length comprises of active output lines and blanking lines
 * in a frame. The maximum frame length value dictates the maximum allowable
 * frame duration of the sensor mode.
 *
 * To obtain the maximum frame duration:
 *
 * \verbatim
	frameDuration(s) = maxFrameLength(lines) * lineLength(pixels) / pixelRate(pixels per second)
   \endverbatim
 */

/**
 * \class CameraSensor
 * \brief A camera sensor based on V4L2 subdevices
 *
 * The CameraSensor class eases handling of sensors for pipeline handlers by
 * hiding the details of the V4L2 subdevice kernel API and caching sensor
 * information.
 *
 * The implementation is currently limited to sensors that expose a single V4L2
 * subdevice with a single pad. It will be extended to support more complex
 * devices as the needs arise.
 */

/**
 * \brief Construct a CameraSensor
 * \param[in] entity The media entity backing the camera sensor
 *
 * Once constructed the instance must be initialized with init().
 */
CameraSensor::CameraSensor(const MediaEntity *entity)
	: entity_(entity), pad_(UINT_MAX), bayerFormat_(nullptr),
	  properties_(properties::properties)
{
}

/**
 * \brief Destroy a CameraSensor
 */
CameraSensor::~CameraSensor()
{
}

/**
 * \brief Initialize the camera sensor instance
 *
 * This method performs the initialisation steps of the CameraSensor that may
 * fail. It shall be called once and only once after constructing the instance.
 *
 * \return 0 on success or a negative error code otherwise
 */
int CameraSensor::init()
{
	for (const MediaPad *pad : entity_->pads()) {
		if (pad->flags() & MEDIA_PAD_FL_SOURCE) {
			pad_ = pad->index();
			break;
		}
	}

	if (pad_ == UINT_MAX) {
		LOG(CameraSensor, Error)
			<< "Sensors with more than one pad are not supported";
		return -EINVAL;
	}

	switch (entity_->function()) {
	case MEDIA_ENT_F_CAM_SENSOR:
	case MEDIA_ENT_F_PROC_VIDEO_ISP:
		break;

	default:
		LOG(CameraSensor, Error)
			<< "Invalid sensor function "
			<< utils::hex(entity_->function());
		return -EINVAL;
	}

	/* Create and open the subdev. */
	subdev_ = std::make_unique<V4L2Subdevice>(entity_);
	int ret = subdev_->open();
	if (ret < 0)
		return ret;

	/* Enumerate, sort and cache media bus codes and sizes. */
	formats_ = subdev_->formats(pad_);
	if (formats_.empty()) {
		LOG(CameraSensor, Error) << "No image format found";
		return -EINVAL;
	}

	mbusCodes_ = utils::map_keys(formats_);
	std::sort(mbusCodes_.begin(), mbusCodes_.end());

	for (const auto &format : formats_) {
		const std::vector<SizeRange> &ranges = format.second;
		std::transform(ranges.begin(), ranges.end(), std::back_inserter(sizes_),
			       [](const SizeRange &range) { return range.max; });
	}

	std::sort(sizes_.begin(), sizes_.end());

	/* Remove duplicates. */
	auto last = std::unique(sizes_.begin(), sizes_.end());
	sizes_.erase(last, sizes_.end());

	/*
	 * VIMC is a bit special, as it does not yet support all the mandatory
	 * requirements regular sensors have to respect.
	 *
	 * Do not validate the driver if it's VIMC and initialize the sensor
	 * properties with static information.
	 *
	 * \todo Remove the special case once the VIMC driver has been
	 * updated in all test platforms.
	 */
	if (entity_->device()->driver() == "vimc") {
		initVimcDefaultProperties();
		return initProperties();
	}

	/* Get the color filter array pattern (only for RAW sensors). */
	for (unsigned int mbusCode : mbusCodes_) {
		const BayerFormat &bayerFormat = BayerFormat::fromMbusCode(mbusCode);
		if (bayerFormat.isValid()) {
			bayerFormat_ = &bayerFormat;
			break;
		}
	}

	ret = validateSensorDriver();
	if (ret)
		return ret;

	ret = initProperties();
	if (ret)
		return ret;

	return 0;
}

int CameraSensor::validateSensorDriver()
{
	int err = 0;

	/*
	 * Optional controls are used to register optional sensor properties. If
	 * not present, some values will be defaulted.
	 */
	static constexpr uint32_t optionalControls[] = {
		V4L2_CID_CAMERA_SENSOR_ROTATION,
	};

	const ControlIdMap &controls = subdev_->controls().idmap();
	for (uint32_t ctrl : optionalControls) {
		if (!controls.count(ctrl))
			LOG(CameraSensor, Debug)
				<< "Optional V4L2 control " << utils::hex(ctrl)
				<< " not supported";
	}

	/*
	 * Recommended controls are similar to optional controls, but will
	 * become mandatory in the near future. Be loud if they're missing.
	 */
	static constexpr uint32_t recommendedControls[] = {
		V4L2_CID_CAMERA_ORIENTATION,
	};

	for (uint32_t ctrl : recommendedControls) {
		if (!controls.count(ctrl)) {
			LOG(CameraSensor, Warning)
				<< "Recommended V4L2 control " << utils::hex(ctrl)
				<< " not supported";
			err = -EINVAL;
		}
	}

	/*
	 * Make sure the required selection targets are supported.
	 *
	 * Failures in reading any of the targets are not deemed to be fatal,
	 * but some properties and features, like constructing a
	 * CameraSensorInfo for the IPA module, won't be supported.
	 *
	 * \todo Make support for selection targets mandatory as soon as all
	 * test platforms have been updated.
	 */
	Rectangle rect;
	int ret = subdev_->getSelection(pad_, V4L2_SEL_TGT_CROP_BOUNDS, &rect);
	if (ret) {
		/*
		 * Default the pixel array size to the largest size supported
		 * by the sensor. The sizes_ vector is sorted in ascending
		 * order, the largest size is thus the last element.
		 */
		pixelArraySize_ = sizes_.back();

		LOG(CameraSensor, Warning)
			<< "The PixelArraySize property has been defaulted to "
			<< pixelArraySize_.toString();
		err = -EINVAL;
	} else {
		pixelArraySize_ = rect.size();
	}

	ret = subdev_->getSelection(pad_, V4L2_SEL_TGT_CROP_DEFAULT, &activeArea_);
	if (ret) {
		activeArea_ = Rectangle(pixelArraySize_);
		LOG(CameraSensor, Warning)
			<< "The PixelArrayActiveAreas property has been defaulted to "
			<< activeArea_.toString();
		err = -EINVAL;
	}

	ret = subdev_->getSelection(pad_, V4L2_SEL_TGT_CROP, &rect);
	if (ret) {
		LOG(CameraSensor, Warning)
			<< "Failed to retrieve the sensor crop rectangle";
		err = -EINVAL;
	}

	if (err) {
		LOG(CameraSensor, Warning)
			<< "The sensor kernel driver needs to be fixed";
		LOG(CameraSensor, Warning)
			<< "See Documentation/sensor_driver_requirements.rst in the libcamera sources for more information";
	}

	if (!bayerFormat_)
		return 0;

	/*
	 * For raw sensors, make sure the sensor driver supports the controls
	 * required by the CameraSensor class.
	 */
	static constexpr uint32_t mandatoryControls[] = {
		V4L2_CID_EXPOSURE,
		V4L2_CID_HBLANK,
		V4L2_CID_PIXEL_RATE,
		V4L2_CID_VBLANK,
	};

	err = 0;
	for (uint32_t ctrl : mandatoryControls) {
		if (!controls.count(ctrl)) {
			LOG(CameraSensor, Error)
				<< "Mandatory V4L2 control " << utils::hex(ctrl)
				<< " not available";
			err = -EINVAL;
		}
	}

	if (err) {
		LOG(CameraSensor, Error)
			<< "The sensor kernel driver needs to be fixed";
		LOG(CameraSensor, Error)
			<< "See Documentation/sensor_driver_requirements.rst in the libcamera sources for more information";
		return err;
	}

	return 0;
}

/*
 * \brief Initialize properties that cannot be intialized by the
 * regular initProperties() function for VIMC
 */
void CameraSensor::initVimcDefaultProperties()
{
	/* Use the largest supported size. */
	pixelArraySize_ = sizes_.back();
	activeArea_ = Rectangle(pixelArraySize_);
}

int CameraSensor::initProperties()
{
	/*
	 * Extract the camera sensor model name from the media entity name.
	 *
	 * There is no standardized naming scheme for sensor entities in the
	 * Linux kernel at the moment.
	 *
	 * - The most common rule, used by I2C sensors, associates the model
	 *   name with the I2C bus number and address (e.g. 'imx219 0-0010').
	 *
	 * - When the sensor exposes multiple subdevs, the model name is
	 *   usually followed by a function name, as in the smiapp driver (e.g.
	 *   'jt8ew9 pixel_array 0-0010').
	 *
	 * - The vimc driver names its sensors 'Sensor A' and 'Sensor B'.
	 *
	 * Other schemes probably exist. As a best effort heuristic, use the
	 * part of the entity name before the first space if the name contains
	 * an I2C address, and use the full entity name otherwise.
	 */
	std::string entityName = entity_->name();
	std::regex i2cRegex{ " [0-9]+-[0-9a-f]{4}" };
	std::smatch match;

	if (std::regex_search(entityName, match, i2cRegex))
		model_ = entityName.substr(0, entityName.find(' '));
	else
		model_ = entityName;

	properties_.set(properties::Model, utils::toAscii(model_));

	/* Generate a unique ID for the sensor. */
	int ret = generateId();
	if (ret)
		return ret;

	/* Retrieve and store the camera sensor properties. */
	const ControlInfoMap &controls = subdev_->controls();
	int32_t propertyValue;

	const auto &orientation = controls.find(V4L2_CID_CAMERA_ORIENTATION);
	if (orientation != controls.end()) {
		int32_t v4l2Orientation = orientation->second.def().get<int32_t>();

		switch (v4l2Orientation) {
		default:
			LOG(CameraSensor, Warning)
				<< "Unsupported camera location "
				<< v4l2Orientation << ", setting to External";
			/* Fall-through */
		case V4L2_CAMERA_ORIENTATION_EXTERNAL:
			propertyValue = properties::CameraLocationExternal;
			break;
		case V4L2_CAMERA_ORIENTATION_FRONT:
			propertyValue = properties::CameraLocationFront;
			break;
		case V4L2_CAMERA_ORIENTATION_BACK:
			propertyValue = properties::CameraLocationBack;
			break;
		}
	} else {
		LOG(CameraSensor, Warning)
			<< "Failed to retrieve the camera location, setting to External";
		propertyValue = properties::CameraLocationExternal;
	}
	properties_.set(properties::Location, propertyValue);

	const auto &rotationControl = controls.find(V4L2_CID_CAMERA_SENSOR_ROTATION);
	if (rotationControl != controls.end()) {
		propertyValue = rotationControl->second.def().get<int32_t>();
		properties_.set(properties::Rotation, propertyValue);
	}

	properties_.set(properties::PixelArraySize, pixelArraySize_);
	properties_.set(properties::PixelArrayActiveAreas, { activeArea_ });

	/* Color filter array pattern, register only for RAW sensors. */
	if (bayerFormat_) {
		int32_t cfa;
		switch (bayerFormat_->order) {
		case BayerFormat::BGGR:
			cfa = properties::draft::BGGR;
			break;
		case BayerFormat::GBRG:
			cfa = properties::draft::GBRG;
			break;
		case BayerFormat::GRBG:
			cfa = properties::draft::GRBG;
			break;
		case BayerFormat::RGGB:
			cfa = properties::draft::RGGB;
			break;
		}

		properties_.set(properties::draft::ColorFilterArrangement, cfa);
	}

	return 0;
}

/**
 * \fn CameraSensor::model()
 * \brief Retrieve the sensor model name
 *
 * The sensor model name is a free-formed string that uniquely identifies the
 * sensor model.
 *
 * \return The sensor model name
 */

/**
 * \fn CameraSensor::id()
 * \brief Retrieve the sensor ID
 *
 * The sensor ID is a free-form string that uniquely identifies the sensor in
 * the system. The ID satisfies the requirements to be used as a camera ID.
 *
 * \return The sensor ID
 */

/**
 * \fn CameraSensor::entity()
 * \brief Retrieve the sensor media entity
 * \return The sensor media entity
 */

/**
 * \fn CameraSensor::mbusCodes()
 * \brief Retrieve the media bus codes supported by the camera sensor
 * \return The supported media bus codes sorted in increasing order
 */

/**
 * \fn CameraSensor::sizes()
 * \brief Retrieve the frame sizes supported by the camera sensor
 *
 * The reported sizes span all media bus codes supported by the camera sensor.
 * Not all sizes may be supported by all media bus codes.
 *
 * \return The supported frame sizes sorted in increasing order
 */

/**
 * \brief Retrieve the camera sensor resolution
 *
 * The camera sensor resolution is the active pixel area size, clamped to the
 * maximum frame size the sensor can produce if it is smaller than the active
 * pixel area.
 *
 * \todo Consider if it desirable to distinguish between the maximum resolution
 * the sensor can produce (also including upscaled ones) and the actual pixel
 * array size by splitting this method in two.
 *
 * \return The camera sensor resolution in pixels
 */
Size CameraSensor::resolution() const
{
	return std::min(sizes_.back(), activeArea_.size());
}

/**
 * \brief Retrieve the best sensor format for a desired output
 * \param[in] mbusCodes The list of acceptable media bus codes
 * \param[in] size The desired size
 *
 * Media bus codes are selected from \a mbusCodes, which lists all acceptable
 * codes in decreasing order of preference. Media bus codes supported by the
 * sensor but not listed in \a mbusCodes are ignored. If none of the desired
 * codes is supported, it returns an error.
 *
 * \a size indicates the desired size at the output of the sensor. This method
 * selects the best media bus code and size supported by the sensor according
 * to the following criteria.
 *
 * - The desired \a size shall fit in the sensor output size to avoid the need
 *   to up-scale.
 * - The sensor output size shall match the desired aspect ratio to avoid the
 *   need to crop the field of view.
 * - The sensor output size shall be as small as possible to lower the required
 *   bandwidth.
 * - The desired \a size shall be supported by one of the media bus code listed
 *   in \a mbusCodes.
 *
 * When multiple media bus codes can produce the same size, the code at the
 * lowest position in \a mbusCodes is selected.
 *
 * The use of this method is optional, as the above criteria may not match the
 * needs of all pipeline handlers. Pipeline handlers may implement custom
 * sensor format selection when needed.
 *
 * The returned sensor output format is guaranteed to be acceptable by the
 * setFormat() method without any modification.
 *
 * \return The best sensor output format matching the desired media bus codes
 * and size on success, or an empty format otherwise.
 */
V4L2SubdeviceFormat CameraSensor::getFormat(const std::vector<unsigned int> &mbusCodes,
					    const Size &size) const
{
	unsigned int desiredArea = size.width * size.height;
	unsigned int bestArea = UINT_MAX;
	float desiredRatio = static_cast<float>(size.width) / size.height;
	float bestRatio = FLT_MAX;
	const Size *bestSize = nullptr;
	uint32_t bestCode = 0;

	for (unsigned int code : mbusCodes) {
		const auto formats = formats_.find(code);
		if (formats == formats_.end())
			continue;

		for (const SizeRange &range : formats->second) {
			const Size &sz = range.max;

			if (sz.width < size.width || sz.height < size.height)
				continue;

			float ratio = static_cast<float>(sz.width) / sz.height;
			float ratioDiff = fabsf(ratio - desiredRatio);
			unsigned int area = sz.width * sz.height;
			unsigned int areaDiff = area - desiredArea;

			if (ratioDiff > bestRatio)
				continue;

			if (ratioDiff < bestRatio || areaDiff < bestArea) {
				bestRatio = ratioDiff;
				bestArea = areaDiff;
				bestSize = &sz;
				bestCode = code;
			}
		}
	}

	if (!bestSize) {
		LOG(CameraSensor, Debug) << "No supported format or size found";
		return {};
	}

	V4L2SubdeviceFormat format{
		.mbus_code = bestCode,
		.size = *bestSize,
	};

	return format;
}

/**
 * \brief Set the sensor output format
 * \param[in] format The desired sensor output format
 * \return 0 on success or a negative error code otherwise
 */
int CameraSensor::setFormat(V4L2SubdeviceFormat *format)
{
	return subdev_->setFormat(pad_, format);
}

/**
 * \brief Retrieve the supported V4L2 controls and their information
 * \return A map of the V4L2 controls supported by the sensor
 */
const ControlInfoMap &CameraSensor::controls() const
{
	return subdev_->controls();
}

/**
 * \brief Read V4L2 controls from the sensor
 * \param[in] ids The list of controls to read, specified by their ID
 *
 * This method reads the value of all controls contained in \a ids, and returns
 * their values as a ControlList. The control identifiers are defined by the
 * V4L2 specification (V4L2_CID_*).
 *
 * If any control in \a ids is not supported by the device, is disabled (i.e.
 * has the V4L2_CTRL_FLAG_DISABLED flag set), or if any other error occurs
 * during validation of the requested controls, no control is read and this
 * method returns an empty control list.
 *
 * \sa V4L2Device::getControls()
 *
 * \return The control values in a ControlList on success, or an empty list on
 * error
 */
ControlList CameraSensor::getControls(const std::vector<uint32_t> &ids)
{
	return subdev_->getControls(ids);
}

/**
 * \brief Write V4L2 controls to the sensor
 * \param[in] ctrls The list of controls to write
 *
 * This method writes the value of all controls contained in \a ctrls, and
 * stores the values actually applied to the device in the corresponding \a
 * ctrls entry. The control identifiers are defined by the V4L2 specification
 * (V4L2_CID_*).
 *
 * If any control in \a ctrls is not supported by the device, is disabled (i.e.
 * has the V4L2_CTRL_FLAG_DISABLED flag set), is read-only, or if any other
 * error occurs during validation of the requested controls, no control is
 * written and this method returns -EINVAL.
 *
 * If an error occurs while writing the controls, the index of the first
 * control that couldn't be written is returned. All controls below that index
 * are written and their values are updated in \a ctrls, while all other
 * controls are not written and their values are not changed.
 *
 * \sa V4L2Device::setControls()
 *
 * \return 0 on success or an error code otherwise
 * \retval -EINVAL One of the control is not supported or not accessible
 * \retval i The index of the control that failed
 */
int CameraSensor::setControls(ControlList *ctrls)
{
	return subdev_->setControls(ctrls);
}

/**
 * \fn CameraSensor::device()
 * \brief Retrieve the camera sensor device
 * \todo Remove this function by integrating DelayedControl with CameraSensor
 * \return The camera sensor device
 */

/**
 * \fn CameraSensor::properties()
 * \brief Retrieve the camera sensor properties
 * \return The list of camera sensor properties
 */

/**
 * \brief Assemble and return the camera sensor info
 * \param[out] info The camera sensor info
 *
 * This function fills \a info with information that describes the camera sensor
 * and its current configuration. The information combines static data (such as
 * the the sensor model or active pixel array size) and data specific to the
 * current sensor configuration (such as the line length and pixel rate).
 *
 * Sensor information is only available for raw sensors. When called for a YUV
 * sensor, this function returns -EINVAL.
 *
 * \return 0 on success, a negative error code otherwise
 */
int CameraSensor::sensorInfo(CameraSensorInfo *info) const
{
	if (!bayerFormat_)
		return -EINVAL;

	info->model = model();

	/*
	 * The active area size is a static property, while the crop
	 * rectangle needs to be re-read as it depends on the sensor
	 * configuration.
	 */
	info->activeAreaSize = { activeArea_.width, activeArea_.height };

	/*
	 * \todo Support for retreiving the crop rectangle is scheduled to
	 * become mandatory. For the time being use the default value if it has
	 * been initialized at sensor driver validation time.
	 */
	int ret = subdev_->getSelection(pad_, V4L2_SEL_TGT_CROP, &info->analogCrop);
	if (ret) {
		info->analogCrop = activeArea_;
		LOG(CameraSensor, Error)
			<< "The analogue crop rectangle has been defaulted to the active area size";
	}

	/*
	 * CameraSensorInfo::analogCrop::x and CameraSensorInfo::analogCrop::y
	 * are defined relatively to the active pixel area, while V4L2's
	 * TGT_CROP target is defined in respect to the full pixel array.
	 *
	 * Compensate it by subtracting the active area offset.
	 */
	info->analogCrop.x -= activeArea_.x;
	info->analogCrop.y -= activeArea_.y;

	/* The bit depth and image size depend on the currently applied format. */
	V4L2SubdeviceFormat format{};
	ret = subdev_->getFormat(pad_, &format);
	if (ret)
		return ret;
	info->bitsPerPixel = format.bitsPerPixel();
	info->outputSize = format.size;

	/*
	 * Retrieve the pixel rate, line length and minimum/maximum frame
	 * duration through V4L2 controls. Support for the V4L2_CID_PIXEL_RATE,
	 * V4L2_CID_HBLANK and V4L2_CID_VBLANK controls is mandatory.
	 */
	ControlList ctrls = subdev_->getControls({ V4L2_CID_PIXEL_RATE,
						   V4L2_CID_HBLANK,
						   V4L2_CID_VBLANK });
	if (ctrls.empty()) {
		LOG(CameraSensor, Error)
			<< "Failed to retrieve camera info controls";
		return -EINVAL;
	}

	int32_t hblank = ctrls.get(V4L2_CID_HBLANK).get<int32_t>();
	info->lineLength = info->outputSize.width + hblank;
	info->pixelRate = ctrls.get(V4L2_CID_PIXEL_RATE).get<int64_t>();

	const ControlInfo vblank = ctrls.infoMap()->at(V4L2_CID_VBLANK);
	info->minFrameLength = info->outputSize.height + vblank.min().get<int32_t>();
	info->maxFrameLength = info->outputSize.height + vblank.max().get<int32_t>();

	return 0;
}

std::string CameraSensor::logPrefix() const
{
	return "'" + entity_->name() + "'";
}

int CameraSensor::generateId()
{
	const std::string devPath = subdev_->devicePath();

	/* Try to get ID from firmware description. */
	id_ = sysfs::firmwareNodePath(devPath);
	if (!id_.empty())
		return 0;

	/*
	 * Virtual sensors not described in firmware
	 *
	 * Verify it's a platform device and construct ID from the deive path
	 * and model of sensor.
	 */
	if (devPath.find("/sys/devices/platform/", 0) == 0) {
		id_ = devPath.substr(strlen("/sys/devices/")) + " " + model();
		return 0;
	}

	LOG(CameraSensor, Error) << "Can't generate sensor ID";
	return -EINVAL;
}

} /* namespace libcamera */