1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
|
/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
* Copyright (C) 2021, Ideas On Board
*
* ipu3_agc.cpp - AGC/AEC mean-based control algorithm
*/
#include "agc.h"
#include <algorithm>
#include <chrono>
#include <cmath>
#include <libcamera/base/log.h>
#include <libcamera/base/utils.h>
#include <libcamera/ipa/core_ipa_interface.h>
#include "libipa/histogram.h"
/**
* \file agc.h
*/
namespace libcamera {
using namespace std::literals::chrono_literals;
namespace ipa::ipu3::algorithms {
/**
* \class Agc
* \brief A mean-based auto-exposure algorithm
*
* This algorithm calculates a shutter time and an analogue gain so that the
* average value of the green channel of the brightest 2% of pixels approaches
* 0.5. The AWB gains are not used here, and all cells in the grid have the same
* weight, like an average-metering case. In this metering mode, the camera uses
* light information from the entire scene and creates an average for the final
* exposure setting, giving no weighting to any particular portion of the
* metered area.
*
* Reference: Battiato, Messina & Castorina. (2008). Exposure
* Correction for Imaging Devices: An Overview. 10.1201/9781420054538.ch12.
*/
LOG_DEFINE_CATEGORY(IPU3Agc)
/* Limits for analogue gain values */
static constexpr double kMinAnalogueGain = 1.0;
static constexpr double kMaxAnalogueGain = 8.0;
/* \todo Honour the FrameDurationLimits control instead of hardcoding a limit */
static constexpr utils::Duration kMaxShutterSpeed = 60ms;
/* Histogram constants */
static constexpr uint32_t knumHistogramBins = 256;
/* Target value to reach for the top 2% of the histogram */
static constexpr double kEvGainTarget = 0.5;
/* Number of frames to wait before calculating stats on minimum exposure */
static constexpr uint32_t kNumStartupFrames = 10;
/*
* Relative luminance target.
*
* It's a number that's chosen so that, when the camera points at a grey
* target, the resulting image brightness is considered right.
*/
static constexpr double kRelativeLuminanceTarget = 0.16;
Agc::Agc()
: frameCount_(0), minShutterSpeed_(0s),
maxShutterSpeed_(0s), filteredExposure_(0s)
{
}
/**
* \brief Configure the AGC given a configInfo
* \param[in] context The shared IPA context
* \param[in] configInfo The IPA configuration data
*
* \return 0
*/
int Agc::configure(IPAContext &context,
[[maybe_unused]] const IPAConfigInfo &configInfo)
{
const IPASessionConfiguration &configuration = context.configuration;
IPAActiveState &activeState = context.activeState;
stride_ = configuration.grid.stride;
minShutterSpeed_ = configuration.agc.minShutterSpeed;
maxShutterSpeed_ = std::min(configuration.agc.maxShutterSpeed,
kMaxShutterSpeed);
minAnalogueGain_ = std::max(configuration.agc.minAnalogueGain, kMinAnalogueGain);
maxAnalogueGain_ = std::min(configuration.agc.maxAnalogueGain, kMaxAnalogueGain);
/* Configure the default exposure and gain. */
activeState.agc.gain = std::max(minAnalogueGain_, kMinAnalogueGain);
activeState.agc.exposure = 10ms / configuration.sensor.lineDuration;
frameCount_ = 0;
return 0;
}
/**
* \brief Estimate the mean value of the top 2% of the histogram
* \param[in] stats The statistics computed by the ImgU
* \param[in] grid The grid used to store the statistics in the IPU3
* \return The mean value of the top 2% of the histogram
*/
double Agc::measureBrightness(const ipu3_uapi_stats_3a *stats,
const ipu3_uapi_grid_config &grid) const
{
/* Initialise the histogram array */
uint32_t hist[knumHistogramBins] = { 0 };
for (unsigned int cellY = 0; cellY < grid.height; cellY++) {
for (unsigned int cellX = 0; cellX < grid.width; cellX++) {
uint32_t cellPosition = cellY * stride_ + cellX;
const ipu3_uapi_awb_set_item *cell =
reinterpret_cast<const ipu3_uapi_awb_set_item *>(
&stats->awb_raw_buffer.meta_data[cellPosition]
);
uint8_t gr = cell->Gr_avg;
uint8_t gb = cell->Gb_avg;
/*
* Store the average green value to estimate the
* brightness. Even the overexposed pixels are
* taken into account.
*/
hist[(gr + gb) / 2]++;
}
}
/* Estimate the quantile mean of the top 2% of the histogram. */
return Histogram(Span<uint32_t>(hist)).interQuantileMean(0.98, 1.0);
}
/**
* \brief Apply a filter on the exposure value to limit the speed of changes
* \param[in] exposureValue The target exposure from the AGC algorithm
*
* The speed of the filter is adaptive, and will produce the target quicker
* during startup, or when the target exposure is within 20% of the most recent
* filter output.
*
* \return The filtered exposure
*/
utils::Duration Agc::filterExposure(utils::Duration exposureValue)
{
double speed = 0.2;
/* Adapt instantly if we are in startup phase. */
if (frameCount_ < kNumStartupFrames)
speed = 1.0;
/*
* If we are close to the desired result, go faster to avoid making
* multiple micro-adjustments.
* \todo Make this customisable?
*/
if (filteredExposure_ < 1.2 * exposureValue &&
filteredExposure_ > 0.8 * exposureValue)
speed = sqrt(speed);
filteredExposure_ = speed * exposureValue +
filteredExposure_ * (1.0 - speed);
LOG(IPU3Agc, Debug) << "After filtering, exposure " << filteredExposure_;
return filteredExposure_;
}
/**
* \brief Estimate the new exposure and gain values
* \param[inout] frameContext The shared IPA frame Context
* \param[in] yGain The gain calculated based on the relative luminance target
* \param[in] iqMeanGain The gain calculated based on the relative luminance target
*/
void Agc::computeExposure(IPAContext &context, IPAFrameContext *frameContext,
double yGain, double iqMeanGain)
{
const IPASessionConfiguration &configuration = context.configuration;
/* Get the effective exposure and gain applied on the sensor. */
uint32_t exposure = frameContext->sensor.exposure;
double analogueGain = frameContext->sensor.gain;
/* Use the highest of the two gain estimates. */
double evGain = std::max(yGain, iqMeanGain);
/* Consider within 1% of the target as correctly exposed */
if (utils::abs_diff(evGain, 1.0) < 0.01)
LOG(IPU3Agc, Debug) << "We are well exposed (evGain = "
<< evGain << ")";
/* extracted from Rpi::Agc::computeTargetExposure */
/* Calculate the shutter time in seconds */
utils::Duration currentShutter = exposure * configuration.sensor.lineDuration;
/*
* Update the exposure value for the next computation using the values
* of exposure and gain really used by the sensor.
*/
utils::Duration effectiveExposureValue = currentShutter * analogueGain;
LOG(IPU3Agc, Debug) << "Actual total exposure " << currentShutter * analogueGain
<< " Shutter speed " << currentShutter
<< " Gain " << analogueGain
<< " Needed ev gain " << evGain;
/*
* Calculate the current exposure value for the scene as the latest
* exposure value applied multiplied by the new estimated gain.
*/
utils::Duration exposureValue = effectiveExposureValue * evGain;
/* Clamp the exposure value to the min and max authorized */
utils::Duration maxTotalExposure = maxShutterSpeed_ * maxAnalogueGain_;
exposureValue = std::min(exposureValue, maxTotalExposure);
LOG(IPU3Agc, Debug) << "Target total exposure " << exposureValue
<< ", maximum is " << maxTotalExposure;
/*
* Filter the exposure.
* \todo: estimate if we need to desaturate
*/
exposureValue = filterExposure(exposureValue);
/*
* Divide the exposure value as new exposure and gain values.
*
* Push the shutter time up to the maximum first, and only then
* increase the gain.
*/
utils::Duration shutterTime =
std::clamp<utils::Duration>(exposureValue / minAnalogueGain_,
minShutterSpeed_, maxShutterSpeed_);
double stepGain = std::clamp(exposureValue / shutterTime,
minAnalogueGain_, maxAnalogueGain_);
LOG(IPU3Agc, Debug) << "Divided up shutter and gain are "
<< shutterTime << " and "
<< stepGain;
IPAActiveState &activeState = context.activeState;
/* Update the estimated exposure and gain. */
activeState.agc.exposure = shutterTime / configuration.sensor.lineDuration;
activeState.agc.gain = stepGain;
}
/**
* \brief Estimate the relative luminance of the frame with a given gain
* \param[in] frameContext The shared IPA frame context
* \param[in] grid The grid used to store the statistics in the IPU3
* \param[in] stats The IPU3 statistics and ISP results
* \param[in] gain The gain to apply to the frame
* \return The relative luminance
*
* This function estimates the average relative luminance of the frame that
* would be output by the sensor if an additional \a gain was applied.
*
* The estimation is based on the AWB statistics for the current frame. Red,
* green and blue averages for all cells are first multiplied by the gain, and
* then saturated to approximate the sensor behaviour at high brightness
* values. The approximation is quite rough, as it doesn't take into account
* non-linearities when approaching saturation.
*
* The relative luminance (Y) is computed from the linear RGB components using
* the Rec. 601 formula. The values are normalized to the [0.0, 1.0] range,
* where 1.0 corresponds to a theoretical perfect reflector of 100% reference
* white.
*
* More detailed information can be found in:
* https://en.wikipedia.org/wiki/Relative_luminance
*/
double Agc::estimateLuminance(IPAActiveState &activeState,
const ipu3_uapi_grid_config &grid,
const ipu3_uapi_stats_3a *stats,
double gain)
{
double redSum = 0, greenSum = 0, blueSum = 0;
/* Sum the per-channel averages, saturated to 255. */
for (unsigned int cellY = 0; cellY < grid.height; cellY++) {
for (unsigned int cellX = 0; cellX < grid.width; cellX++) {
uint32_t cellPosition = cellY * stride_ + cellX;
const ipu3_uapi_awb_set_item *cell =
reinterpret_cast<const ipu3_uapi_awb_set_item *>(
&stats->awb_raw_buffer.meta_data[cellPosition]
);
const uint8_t G_avg = (cell->Gr_avg + cell->Gb_avg) / 2;
redSum += std::min(cell->R_avg * gain, 255.0);
greenSum += std::min(G_avg * gain, 255.0);
blueSum += std::min(cell->B_avg * gain, 255.0);
}
}
/*
* Apply the AWB gains to approximate colours correctly, use the Rec.
* 601 formula to calculate the relative luminance, and normalize it.
*/
double ySum = redSum * activeState.awb.gains.red * 0.299
+ greenSum * activeState.awb.gains.green * 0.587
+ blueSum * activeState.awb.gains.blue * 0.114;
return ySum / (grid.height * grid.width) / 255;
}
/**
* \brief Process IPU3 statistics, and run AGC operations
* \param[in] context The shared IPA context
* \param[in] frameContext The current frame context
* \param[in] stats The IPU3 statistics and ISP results
*
* Identify the current image brightness, and use that to estimate the optimal
* new exposure and gain for the scene.
*/
void Agc::process(IPAContext &context, [[maybe_unused]] IPAFrameContext *frameContext,
const ipu3_uapi_stats_3a *stats)
{
/*
* Estimate the gain needed to have the proportion of pixels in a given
* desired range. iqMean is the mean value of the top 2% of the
* cumulative histogram, and we want it to be as close as possible to a
* configured target.
*/
double iqMean = measureBrightness(stats, context.configuration.grid.bdsGrid);
double iqMeanGain = kEvGainTarget * knumHistogramBins / iqMean;
/*
* Estimate the gain needed to achieve a relative luminance target. To
* account for non-linearity caused by saturation, the value needs to be
* estimated in an iterative process, as multiplying by a gain will not
* increase the relative luminance by the same factor if some image
* regions are saturated.
*/
double yGain = 1.0;
double yTarget = kRelativeLuminanceTarget;
for (unsigned int i = 0; i < 8; i++) {
double yValue = estimateLuminance(context.activeState,
context.configuration.grid.bdsGrid,
stats, yGain);
double extraGain = std::min(10.0, yTarget / (yValue + .001));
yGain *= extraGain;
LOG(IPU3Agc, Debug) << "Y value: " << yValue
<< ", Y target: " << yTarget
<< ", gives gain " << yGain;
if (extraGain < 1.01)
break;
}
computeExposure(context, frameContext, yGain, iqMeanGain);
frameCount_++;
}
} /* namespace ipa::ipu3::algorithms */
} /* namespace libcamera */
|