# SPDX-License-Identifier: BSD-2-Clause # # Copyright (C) 2019, Raspberry Pi Ltd # # camera tuning tool noise calibration from ctt_image_load import * import matplotlib.pyplot as plt """ Find noise standard deviation and fit to model: noise std = a + b*sqrt(pixel mean) """ def noise(Cam, Img, plot): Cam.log += '\nProcessing image: {}'.format(Img.name) stds = [] means = [] """ iterate through macbeth square patches """ for ch_patches in Img.patches: for patch in ch_patches: """ renormalise patch """ patch = np.array(patch) patch = (patch-Img.blacklevel_16)/Img.againQ8_norm std = np.std(patch) mean = np.mean(patch) stds.append(std) means.append(mean) """ clean data and ensure all means are above 0 """ stds = np.array(stds) means = np.array(means) means = np.clip(np.array(means), 0, None) sq_means = np.sqrt(means) """ least squares fit model """ fit = np.polyfit(sq_means, stds, 1) Cam.log += '\nBlack level = {}'.format(Img.blacklevel_16) Cam.log += '\nNoise profile: offset = {}'.format(int(fit[1])) Cam.log += ' slope = {:.3f}'.format(fit[0]) """ remove any values further than std from the fit anomalies most likely caused by: > ucharacteristically noisy white patch > saturation in the white patch """ fit_score = np.abs(stds - fit[0]*sq_means - fit[1]) fit_std = np.std(stds) fit_score_norm = fit_score - fit_std anom_ind = np.where(fit_score_norm > 1) fit_score_norm.sort() sq_means_clean = np.delete(sq_means, anom_ind) stds_clean = np.delete(stds, anom_ind) removed = len(stds) - len(stds_clean) if removed != 0: Cam.log += '\nIdentified and removed {} anomalies.'.format(removed) Cam.log += '\nRecalculating fit' """ recalculate fit with outliers removed """ fit = np.polyfit(sq_means_clean, stds_clean, 1) Cam.log += '\nNoise profile: offset = {}'.format(int(fit[1])) Cam.log += ' slope = {:.3f}'.format(fit[0]) """ if fit const is < 0 then force through 0 by dividing by sq_means and fitting poly order 0 """ corrected = 0 if fit[1] < 0: corrected = 1 ones = np.ones(len(means)) y_data = stds/sq_means fit2 = np.polyfit(ones, y_data, 0) Cam.log += '\nOffset below zero. Fit recalculated with zero offset' Cam.log += '\nNoise profile: offset = 0' Cam.log += ' slope = {:.3f}'.format(fit2[0]) # print('new fit') # print(fit2) """ plot fit for debug """ if plot: x = np.arange(sq_means.max()//0.88) fit_plot = x*fit[0] + fit[1] plt.scatter(sq_means, stds, label='data', color='blue') plt.scatter(sq_means[anom_ind], stds[anom_ind], color='orange', label='anomalies') plt.plot(x, fit_plot, label='fit', color='red', ls=':') if fit[1] < 0: fit_plot_2 = x*fit2[0] plt.plot(x, fit_plot_2, label='fit 0 intercept', color='green', ls='--') plt.plot(0, 0) plt.title('Noise Plot\nImg: {}'.format(Img.str)) plt.legend(loc='upper left') plt.xlabel('Sqrt Pixel Value') plt.ylabel('Noise Standard Deviation') plt.grid() plt.show() """ End of plotting code """ """ format output to include forced 0 constant """ Cam.log += '\n' if corrected: fit = [fit2[0], 0] return fit else: return fit 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
* Copyright (C) 2021, Google Inc.
*
* Generic Android frame buffer backend
*/
#include "../camera_buffer.h"
#include <sys/mman.h>
#include <unistd.h>
#include <libcamera/base/log.h>
#include "libcamera/internal/formats.h"
#include "libcamera/internal/mapped_framebuffer.h"
using namespace libcamera;
LOG_DECLARE_CATEGORY(HAL)
class CameraBuffer::Private : public Extensible::Private,
public MappedBuffer
{
LIBCAMERA_DECLARE_PUBLIC(CameraBuffer)
public:
Private(CameraBuffer *cameraBuffer, buffer_handle_t camera3Buffer,
PixelFormat pixelFormat, const Size &size, int flags);
~Private();
unsigned int numPlanes() const;
Span<uint8_t> plane(unsigned int plane);
unsigned int stride(unsigned int plane) const;
unsigned int offset(unsigned int plane) const;
unsigned int size(unsigned int plane) const;
size_t jpegBufferSize(size_t maxJpegBufferSize) const;
private:
struct PlaneInfo {
unsigned int stride;
unsigned int offset;
unsigned int size;
};
void map();
int fd_;
int flags_;
off_t bufferLength_;
bool mapped_;
std::vector<PlaneInfo> planeInfo_;
};
CameraBuffer::Private::Private([[maybe_unused]] CameraBuffer *cameraBuffer,
buffer_handle_t camera3Buffer,
PixelFormat pixelFormat,
const Size &size, int flags)
: fd_(-1), flags_(flags), bufferLength_(-1), mapped_(false)
{
error_ = 0;
const auto &info = PixelFormatInfo::info(pixelFormat);
if (!info.isValid()) {
error_ = -EINVAL;
LOG(HAL, Error) << "Invalid pixel format: " << pixelFormat;
return;
}
/*
* As Android doesn't offer an API to query buffer layouts, assume for
* now that the buffer is backed by a single dmabuf, with planes being
* stored contiguously.
*/
for (int i = 0; i < camera3Buffer->numFds; i++) {
if (camera3Buffer->data[i] == -1 || camera3Buffer->data[i] == fd_)
continue;
if (fd_ != -1) {
error_ = -EINVAL;
LOG(HAL, Error) << "Discontiguous planes are not supported";
return;
}
fd_ = camera3Buffer->data[i];
}
if (fd_ == -1) {
error_ = -EINVAL;
LOG(HAL, Error) << "No valid file descriptor";
return;
}
bufferLength_ = lseek(fd_, 0, SEEK_END);
if (bufferLength_ < 0) {
error_ = -errno;
LOG(HAL, Error) << "Failed to get buffer length";
return;
}
const unsigned int numPlanes = info.numPlanes();
planeInfo_.resize(numPlanes);
unsigned int offset = 0;
for (unsigned int i = 0; i < numPlanes; ++i) {
const unsigned int planeSize = info.planeSize(size, i);
planeInfo_[i].stride = info.stride(size.width, i, 1u);
planeInfo_[i].offset = offset;
planeInfo_[i].size = planeSize;
if (bufferLength_ < offset + planeSize) {
LOG(HAL, Error) << "Plane " << i << " is out of buffer:"
<< " plane offset=" << offset
<< ", plane size=" << planeSize
<< ", buffer length=" << bufferLength_;
return;
}
offset += planeSize;
}
}
CameraBuffer::Private::~Private()
{
}
unsigned int CameraBuffer::Private::numPlanes() const
{
return planeInfo_.size();
}
Span<uint8_t> CameraBuffer::Private::plane(unsigned int plane)
{
if (!mapped_)
map();
if (!mapped_)
return {};
return planes_[plane];
}
unsigned int CameraBuffer::Private::stride(unsigned int plane) const
{
if (plane >= planeInfo_.size())
return 0;
return planeInfo_[plane].stride;
}
unsigned int CameraBuffer::Private::offset(unsigned int plane) const
{
if (plane >= planeInfo_.size())
return 0;
return planeInfo_[plane].offset;
}
unsigned int CameraBuffer::Private::size(unsigned int plane) const
{
if (plane >= planeInfo_.size())
return 0;
return planeInfo_[plane].size;
}
size_t CameraBuffer::Private::jpegBufferSize(size_t maxJpegBufferSize) const
{
ASSERT(bufferLength_ >= 0);
return std::min<unsigned int>(bufferLength_, maxJpegBufferSize);
}
void CameraBuffer::Private::map()
{
ASSERT(fd_ != -1);
ASSERT(bufferLength_ >= 0);
void *address = mmap(nullptr, bufferLength_, flags_, MAP_SHARED, fd_, 0);
if (address == MAP_FAILED) {
error_ = -errno;
LOG(HAL, Error) << "Failed to mmap plane";
return;
}
maps_.emplace_back(static_cast<uint8_t *>(address), bufferLength_);
planes_.reserve(planeInfo_.size());
for (const auto &info : planeInfo_) {
planes_.emplace_back(
static_cast<uint8_t *>(address) + info.offset, info.size);
}
mapped_ = true;
}
PUBLIC_CAMERA_BUFFER_IMPLEMENTATION