# SPDX-License-Identifier: BSD-2-Clause # # Copyright (C) 2019, Raspberry Pi (Trading) Limited # # ctt_alsc.py - camera tuning tool for ALSC (auto lens shading correction) from ctt_image_load import * import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot3d import Axes3D """ preform alsc calibration on a set of images """ def alsc_all(Cam, do_alsc_colour, plot): imgs_alsc = Cam.imgs_alsc """ create list of colour temperatures and associated calibration tables """ list_col = [] list_cr = [] list_cb = [] list_cg = [] for Img in imgs_alsc: col, cr, cb, cg, size = alsc(Cam, Img, do_alsc_colour, plot) list_col.append(col) list_cr.append(cr) list_cb.append(cb) list_cg.append(cg) Cam.log += '\n' Cam.log += '\nFinished processing images' w, h, dx, dy = size Cam.log += '\nChannel dimensions: w = {} h = {}'.format(int(w), int(h)) Cam.log += '\n16x12 grid rectangle size: w = {} h = {}'.format(dx, dy) """ convert to numpy array for data manipulation """ list_col = np.array(list_col) list_cr = np.array(list_cr) list_cb = np.array(list_cb) list_cg = np.array(list_cg) cal_cr_list = [] cal_cb_list = [] """ only do colour calculations if required """ if do_alsc_colour: Cam.log += '\nALSC colour tables' for ct in sorted(set(list_col)): Cam.log += '\nColour temperature: {} K'.format(ct) """ average tables for the same colour temperature """ indices = np.where(list_col == ct) ct = int(ct) t_r = np.mean(list_cr[indices], axis=0) t_b = np.mean(list_cb[indices], axis=0) """ force numbers to be stored to 3dp.... :( """ t_r = np.where((100*t_r) % 1 <= 0.05, t_r+0.001, t_r) t_b = np.where((100*t_b) % 1 <= 0.05, t_b+0.001, t_b) t_r = np.where((100*t_r) % 1 >= 0.95, t_r-0.001, t_r) t_b = np.where((100*t_b) % 1 >= 0.95, t_b-0.001, t_b) t_r = np.round(t_r, 3) t_b = np.round(t_b, 3) r_corners = (t_r[0], t_r[15], t_r[-1], t_r[-16]) b_corners = (t_b[0], t_b[15], t_b[-1], t_b[-16]) r_cen = t_r[5*16+7]+t_r[5*16+8]+t_r[6*16+7]+t_r[6*16+8] r_cen = round(r_cen/4, 3) b_cen = t_b[5*16+7]+t_b[5*16+8]+t_b[6*16+7]+t_b[6*16+8] b_cen = round(b_cen/4, 3) Cam.log += '\nRed table corners: {}'.format(r_corners) Cam.log += '\nRed table centre: {}'.format(r_cen) Cam.log += '\nBlue table corners: {}'.format(b_corners) Cam.log += '\nBlue table centre: {}'.format(b_cen) cr_dict = { 'ct': ct, 'table': list(t_r) } cb_dict = { 'ct': ct, 'table': list(t_b) } cal_cr_list.append(cr_dict) cal_cb_list.append(cb_dict) Cam.log += '\n' else: cal_cr_list, cal_cb_list = None, None """ average all values for luminance shading and return one table for all temperatures """ lum_lut = np.mean(list_cg, axis=0) lum_lut = np.where((100*lum_lut) % 1 <= 0.05, lum_lut+0.001, lum_lut) lum_lut = np.where((100*lum_lut) % 1 >= 0.95, lum_lut-0.001, lum_lut) lum_lut = list(np.round(lum_lut, 3)) """ calculate average corner for lsc gain calculation further on """ corners = (lum_lut[0], lum_lut[15], lum_lut[-1], lum_lut[-16]) Cam.log += '\nLuminance table corners: {}'.format(corners) l_cen = lum_lut[5*16+7]+lum_lut[5*16+8]+lum_lut[6*16+7]+lum_lut[6*16+8] l_cen = round(l_cen/4, 3) Cam.log += '\nLuminance table centre: {}'.format(l_cen) av_corn = np.sum(corners)/4 return cal_cr_list, cal_cb_list, lum_lut, av_corn """ calculate g/r and g/b for 32x32 points arranged in a grid for a single image """ def alsc(Cam, Img, do_alsc_colour, plot=False): Cam.log += '\nProcessing image: ' + Img.name """ get channel in correct order """ channels = [Img.channels[i] for i in Img.order] """ calculate size of single rectangle. -(-(w-1)//32) is a ceiling division. w-1 is to deal robustly with the case where w is a multiple of 32. """ w, h = Img.w/2, Img.h/2 dx, dy = int(-(-(w-1)//16)), int(-(-(h-1)//12)) """ average the green channels into one """ av_ch_g = np.mean((channels[1:2]), axis=0) if do_alsc_colour: """ obtain 16x12 grid of intensities for each channel and subtract black level """ g = get_16x12_grid(av_ch_g, dx, dy) - Img.blacklevel_16 r = ge/* SPDX-License-Identifier: LGPL-2.1-or-later */ /* * Copyright (C) 2020, Google Inc. * * encoder_libjpeg.h - JPEG encoding using libjpeg */ #pragma once #include "encoder.h" #include <vector> #include "libcamera/internal/formats.h" #include <jpeglib.h> class EncoderLibJpeg : public Encoder { public: EncoderLibJpeg(); ~EncoderLibJpeg(); int configure(const libcamera::StreamConfiguration &cfg) override; int encode(const libcamera::FrameBuffer &source, libcamera::Span<uint8_t> destination, libcamera::Span<const uint8_t> exifData, unsigned int quality) override; int encode(const std::vector<libcamera::Span<uint8_t>> &planes, libcamera::Span<uint8_t> destination, libcamera::Span<const uint8_t> exifData, unsigned int quality); private: void compressRGB(const std::vector<libcamera::Span<uint8_t>> &planes); void compressNV(const std::vector<libcamera::Span<uint8_t>> &planes); struct jpeg_compress_struct compress_; struct jpeg_error_mgr jerr_; const libcamera::PixelFormatInfo *pixelFormatInfo_; bool nv_; bool nvSwap_; };