summaryrefslogtreecommitdiff
path: root/src/android/camera_device.h
blob: 00472c21938871a15e7529c5a96e651e5918d7dd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
 * Copyright (C) 2019, Google Inc.
 *
 * camera_device.h - libcamera Android Camera Device
 */
#ifndef __ANDROID_CAMERA_DEVICE_H__
#define __ANDROID_CAMERA_DEVICE_H__

#include <map>
#include <memory>
#include <tuple>
#include <vector>

#include <hardware/camera3.h>

#include <libcamera/buffer.h>
#include <libcamera/camera.h>
#include <libcamera/geometry.h>
#include <libcamera/request.h>
#include <libcamera/stream.h>

#include "libcamera/internal/log.h"
#include "libcamera/internal/message.h"

class CameraMetadata;

struct CameraStream {
	/*
	 * The index of the libcamera StreamConfiguration as added during
	 * configureStreams(). A single libcamera Stream may be used to deliver
	 * one or more streams to the Android framework.
	 */
	unsigned int index;
};

class CameraDevice : protected libcamera::Loggable
{
public:
	CameraDevice(unsigned int id, const std::shared_ptr<libcamera::Camera> &camera);
	~CameraDevice();

	int initialize();

	int open(const hw_module_t *hardwareModule);
	void close();

	unsigned int id() const { return id_; }
	camera3_device_t *camera3Device() { return &camera3Device_; }

	int facing() const { return facing_; }
	int orientation() const { return orientation_; }

	void setCallbacks(const camera3_callback_ops_t *callbacks);
	const camera_metadata_t *getStaticMetadata();
	const camera_metadata_t *constructDefaultRequestSettings(int type);
	int configureStreams(camera3_stream_configuration_t *stream_list);
	int processCaptureRequest(camera3_capture_request_t *request);
	void requestComplete(libcamera::Request *request);

protected:
	std::string logPrefix() const override;

private:
	struct Camera3RequestDescriptor {
		Camera3RequestDescriptor(unsigned int frameNumber,
					 unsigned int numBuffers);
		~Camera3RequestDescriptor();

		uint32_t frameNumber;
		uint32_t numBuffers;
		camera3_stream_buffer_t *buffers;
		std::vector<std::unique_ptr<libcamera::FrameBuffer>> frameBuffers;
	};

	struct Camera3StreamConfiguration {
		libcamera::Size resolution;
		int androidFormat;
	};

	int initializeStreamConfigurations();
	std::tuple<uint32_t, uint32_t> calculateStaticMetadataSize();
	libcamera::FrameBuffer *createFrameBuffer(const buffer_handle_t camera3buffer);
	void notifyShutter(uint32_t frameNumber, uint64_t timestamp);
	void notifyError(uint32_t frameNumber, camera3_stream_t *stream);
	libcamera::PixelFormat toPixelFormat(int format);
	std::unique_ptr<CameraMetadata> getResultMetadata(int frame_number,
							  int64_t timestamp);

	unsigned int id_;
	camera3_device_t camera3Device_;

	bool running_;
	std::shared_ptr<libcamera::Camera> camera_;
	std::unique_ptr<libcamera::CameraConfiguration> config_;

	CameraMetadata *staticMetadata_;
	std::map<unsigned int, CameraMetadata *> requestTemplates_;
	const camera3_callback_ops_t *callbacks_;

	std::vector<Camera3StreamConfiguration> streamConfigurations_;
	std::map<int, libcamera::PixelFormat> formatsMap_;
	std::vector<CameraStream> streams_;

	int facing_;
	int orientation_;
};

#endif /* __ANDROID_CAMERA_DEVICE_H__ */
], # cyan (goes out of gamut) [245, 245, 243], # white 9.5 [200, 202, 202], # neutral 8 [161, 163, 163], # neutral 6.5 [121, 121, 122], # neutral 5 [82, 84, 86], # neutral 3.5 [49, 49, 51] # black 2 ]) """ convert reference colours from srgb to rgb """ m_srgb = degamma(m_rgb) """ reorder reference values to match how patches are ordered """ m_srgb = np.array([m_srgb[i::6] for i in range(6)]).reshape((24, 3)) """ reformat alsc correction tables or set colour_cals to None if alsc is deactivated """ if cal_cr_list is None: colour_cals = None else: colour_cals = {} for cr, cb in zip(cal_cr_list, cal_cb_list): cr_tab = cr['table'] cb_tab = cb['table'] """ normalise tables so min value is 1 """ cr_tab = cr_tab/np.min(cr_tab) cb_tab = cb_tab/np.min(cb_tab) colour_cals[cr['ct']] = [cr_tab, cb_tab] """ for each image, perform awb and alsc corrections. Then calculate the colour correction matrix for that image, recording the ccm and the colour tempertaure. """ ccm_tab = {} for Img in imgs: Cam.log += '\nProcessing image: ' + Img.name """ get macbeth patches with alsc applied if alsc enabled. Note: if alsc is disabled then colour_cals will be set to None and no the function will simply return the macbeth patches """ r, b, g = get_alsc_patches(Img, colour_cals, grey=False) """ do awb Note: awb is done by measuring the macbeth chart in the image, rather than from the awb calibration. This is done so the awb will be perfect and the ccm matrices will be more accurate. """ r_greys, b_greys, g_greys = r[3::4], b[3::4], g[3::4] r_g = np.mean(r_greys/g_greys) b_g = np.mean(b_greys/g_greys) r = r / r_g b = b / b_g """ normalise brightness wrt reference macbeth colours and then average each channel for each patch """ gain = np.mean(m_srgb)/np.mean((r, g, b)) Cam.log += '\nGain with respect to standard colours: {:.3f}'.format(gain) r = np.mean(gain*r, axis=1) b = np.mean(gain*b, axis=1) g = np.mean(gain*g, axis=1) """ calculate ccm matrix """ ccm = do_ccm(r, g, b, m_srgb) """ if a ccm has already been calculated for that temperature then don't overwrite but save both. They will then be averaged later on """ if Img.col in ccm_tab.keys(): ccm_tab[Img.col].append(ccm) else: ccm_tab[Img.col] = [ccm] Cam.log += '\n' Cam.log += '\nFinished processing images' """ average any ccms that share a colour temperature """ for k, v in ccm_tab.items(): tab = np.mean(v, axis=0) tab = np.where((10000*tab) % 1 <= 0.05, tab+0.00001, tab) tab = np.where((10000*tab) % 1 >= 0.95, tab-0.00001, tab) ccm_tab[k] = list(np.round(tab, 5)) Cam.log += '\nMatrix calculated for colour temperature of {} K'.format(k) """ return all ccms with respective colour temperature in the correct format, sorted by their colour temperature """ sorted_ccms = sorted(ccm_tab.items(), key=lambda kv: kv[0]) ccms = [] for i in sorted_ccms: ccms.append({ 'ct': i[0], 'ccm': i[1] }) return ccms """ calculates the ccm for an individual image. ccms are calculate in rgb space, and are fit by hand. Although it is a 3x3 matrix, each row must add up to 1 in order to conserve greyness, simplifying calculation. Should you want to fit them in another space (e.g. LAB) we wish you the best of luck and send us the code when you are done! :-) """ def do_ccm(r, g, b, m_srgb): rb = r-b gb = g-b rb_2s = (rb*rb) rb_gbs = (rb*gb) gb_2s = (gb*gb) r_rbs = rb * (m_srgb[..., 0] - b) r_gbs = gb * (m_srgb[..., 0] - b) g_rbs = rb * (m_srgb[..., 1] - b) g_gbs = gb * (m_srgb[..., 1] - b) b_rbs = rb * (m_srgb[..., 2] - b) b_gbs = gb * (m_srgb[..., 2] - b) """ Obtain least squares fit """ rb_2 = np.sum(rb_2s) gb_2 = np.sum(gb_2s) rb_gb = np.sum(rb_gbs) r_rb = np.sum(r_rbs) r_gb = np.sum(r_gbs) g_rb = np.sum(g_rbs) g_gb = np.sum(g_gbs) b_rb = np.sum(b_rbs) b_gb = np.sum(b_gbs) det = rb_2*gb_2 - rb_gb*rb_gb """ Raise error if matrix is singular... This shouldn't really happen with real data but if it does just take new pictures and try again, not much else to be done unfortunately... """ if det < 0.001: raise ArithmeticError r_a = (gb_2*r_rb - rb_gb*r_gb)/det r_b = (rb_2*r_gb - rb_gb*r_rb)/det """ Last row can be calculated by knowing the sum must be 1 """ r_c = 1 - r_a - r_b g_a = (gb_2*g_rb - rb_gb*g_gb)/det g_b = (rb_2*g_gb - rb_gb*g_rb)/det g_c = 1 - g_a - g_b b_a = (gb_2*b_rb - rb_gb*b_gb)/det b_b = (rb_2*b_gb - rb_gb*b_rb)/det b_c = 1 - b_a - b_b """ format ccm """ ccm = [r_a, r_b, r_c, g_a, g_b, g_c, b_a, b_b, b_c] return ccm