1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
|
/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
* Copyright (C) 2019, Google Inc.
*
* camera_device.cpp - libcamera Android Camera Device
*/
#include "camera_device.h"
#include "camera_ops.h"
#include "post_processor.h"
#include <sys/mman.h>
#include <tuple>
#include <vector>
#include <libcamera/control_ids.h>
#include <libcamera/controls.h>
#include <libcamera/formats.h>
#include <libcamera/property_ids.h>
#include "libcamera/internal/formats.h"
#include "libcamera/internal/log.h"
#include "libcamera/internal/utils.h"
#include "system/graphics.h"
using namespace libcamera;
LOG_DECLARE_CATEGORY(HAL)
namespace {
/*
* \var camera3Resolutions
* \brief The list of image resolutions defined as mandatory to be supported by
* the Android Camera3 specification
*/
const std::vector<Size> camera3Resolutions = {
{ 320, 240 },
{ 640, 480 },
{ 1280, 720 },
{ 1920, 1080 }
};
/*
* \struct Camera3Format
* \brief Data associated with an Android format identifier
* \var libcameraFormats List of libcamera pixel formats compatible with the
* Android format
* \var name The human-readable representation of the Android format code
*/
struct Camera3Format {
std::vector<PixelFormat> libcameraFormats;
bool mandatory;
const char *name;
};
/*
* \var camera3FormatsMap
* \brief Associate Android format code with ancillary data
*/
const std::map<int, const Camera3Format> camera3FormatsMap = {
{
HAL_PIXEL_FORMAT_BLOB, {
{ formats::MJPEG },
true,
"BLOB"
}
}, {
HAL_PIXEL_FORMAT_YCbCr_420_888, {
{ formats::NV12, formats::NV21 },
true,
"YCbCr_420_888"
}
}, {
/*
* \todo Translate IMPLEMENTATION_DEFINED inspecting the gralloc
* usage flag. For now, copy the YCbCr_420 configuration.
*/
HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED, {
{ formats::NV12, formats::NV21 },
true,
"IMPLEMENTATION_DEFINED"
}
}, {
HAL_PIXEL_FORMAT_RAW10, {
{
formats::SBGGR10_CSI2P,
formats::SGBRG10_CSI2P,
formats::SGRBG10_CSI2P,
formats::SRGGB10_CSI2P
},
false,
"RAW10"
}
}, {
HAL_PIXEL_FORMAT_RAW12, {
{
formats::SBGGR12_CSI2P,
formats::SGBRG12_CSI2P,
formats::SGRBG12_CSI2P,
formats::SRGGB12_CSI2P
},
false,
"RAW12"
}
}, {
HAL_PIXEL_FORMAT_RAW16, {
{
formats::SBGGR16,
formats::SGBRG16,
formats::SGRBG16,
formats::SRGGB16
},
false,
"RAW16"
}
}, {
HAL_PIXEL_FORMAT_RAW_OPAQUE, {
{
formats::SBGGR10_IPU3,
formats::SGBRG10_IPU3,
formats::SGRBG10_IPU3,
formats::SRGGB10_IPU3
},
false,
"RAW_OPAQUE"
}
},
};
/*
* \struct Camera3StreamConfig
* \brief Data to store StreamConfiguration associated with camera3_stream(s)
* \var streams List of the pairs of a stream requested by Android HAL client
* and CameraStream::Type associated with the stream
* \var config StreamConfiguration for streams
*/
struct Camera3StreamConfig {
struct Camera3Stream {
camera3_stream_t *stream;
CameraStream::Type type;
};
std::vector<Camera3Stream> streams;
StreamConfiguration config;
};
/*
* Reorder the configurations so that libcamera::Camera can accept them as much
* as possible. The sort rule is as follows.
* 1.) The configuration for NV12 request whose resolution is the largest.
* 2.) The configuration for JPEG request.
* 3.) Others. Larger resolutions and different formats are put earlier.
*/
void sortCamera3StreamConfigs(std::vector<Camera3StreamConfig> &unsortedConfigs,
const camera3_stream_t *jpegStream)
{
const Camera3StreamConfig *jpegConfig = nullptr;
std::map<PixelFormat, std::vector<const Camera3StreamConfig *>> formatToConfigs;
for (const auto &streamConfig : unsortedConfigs) {
if (jpegStream && !jpegConfig) {
const auto &streams = streamConfig.streams;
if (std::find_if(streams.begin(), streams.end(),
[jpegStream](const auto &stream) {
return stream.stream == jpegStream;
}) != streams.end()) {
jpegConfig = &streamConfig;
continue;
}
}
formatToConfigs[streamConfig.config.pixelFormat].push_back(&streamConfig);
}
if (jpegStream && !jpegConfig)
LOG(HAL, Fatal) << "No Camera3StreamConfig is found for JPEG";
for (auto &fmt : formatToConfigs) {
auto &streamConfigs = fmt.second;
/* Sorted by resolution. Smaller is put first. */
std::sort(streamConfigs.begin(), streamConfigs.end(),
[](const auto *streamConfigA, const auto *streamConfigB) {
const Size &sizeA = streamConfigA->config.size;
const Size &sizeB = streamConfigB->config.size;
return sizeA < sizeB;
});
}
std::vector<Camera3StreamConfig> sortedConfigs;
sortedConfigs.reserve(unsortedConfigs.size());
/*
* NV12 is the most prioritized format. Put the configuration with NV12
* and the largest resolution first.
*/
const auto nv12It = formatToConfigs.find(formats::NV12);
if (nv12It != formatToConfigs.end()) {
auto &nv12Configs = nv12It->second;
const Camera3StreamConfig *nv12Largest = nv12Configs.back();
/*
* If JPEG will be created from NV12 and the size is larger than
* the largest NV12 configurations, then put the NV12
* configuration for JPEG first.
*/
if (jpegConfig && jpegConfig->config.pixelFormat == formats::NV12) {
const Size &nv12SizeForJpeg = jpegConfig->config.size;
const Size &nv12LargestSize = nv12Largest->config.size;
if (nv12LargestSize < nv12SizeForJpeg) {
LOG(HAL, Debug) << "Insert " << jpegConfig->config.toString();
sortedConfigs.push_back(std::move(*jpegConfig));
jpegConfig = nullptr;
}
}
LOG(HAL, Debug) << "Insert " << nv12Largest->config.toString();
sortedConfigs.push_back(*nv12Largest);
nv12Configs.pop_back();
if (nv12Configs.empty())
formatToConfigs.erase(nv12It);
}
/* If the configuration for JPEG is there, then put it. */
if (jpegConfig) {
LOG(HAL, Debug) << "Insert " << jpegConfig->config.toString();
sortedConfigs.push_back(std::move(*jpegConfig));
jpegConfig = nullptr;
}
/*
* Put configurations with different formats and larger resolutions
* earlier.
*/
while (!formatToConfigs.empty()) {
for (auto it = formatToConfigs.begin(); it != formatToConfigs.end();) {
auto &configs = it->second;
LOG(HAL, Debug) << "Insert " << configs.back()->config.toString();
sortedConfigs.push_back(*configs.back());
configs.pop_back();
if (configs.empty())
it = formatToConfigs.erase(it);
else
it++;
}
}
ASSERT(sortedConfigs.size() == unsortedConfigs.size());
unsortedConfigs = sortedConfigs;
}
} /* namespace */
MappedCamera3Buffer::MappedCamera3Buffer(const buffer_handle_t camera3buffer,
int flags)
{
maps_.reserve(camera3buffer->numFds);
error_ = 0;
for (int i = 0; i < camera3buffer->numFds; i++) {
if (camera3buffer->data[i] == -1)
continue;
off_t length = lseek(camera3buffer->data[i], 0, SEEK_END);
if (length < 0) {
error_ = -errno;
LOG(HAL, Error) << "Failed to query plane length";
break;
}
void *address = mmap(nullptr, length, flags, MAP_SHARED,
camera3buffer->data[i], 0);
if (address == MAP_FAILED) {
error_ = -errno;
LOG(HAL, Error) << "Failed to mmap plane";
break;
}
maps_.emplace_back(static_cast<uint8_t *>(address),
static_cast<size_t>(length));
}
}
/*
* \struct Camera3RequestDescriptor
*
* A utility structure that groups information about a capture request to be
* later re-used at request complete time to notify the framework.
*/
CameraDevice::Camera3RequestDescriptor::Camera3RequestDescriptor(
Camera *camera, const camera3_capture_request_t *camera3Request)
{
frameNumber_ = camera3Request->frame_number;
/* Copy the camera3 request stream information for later access. */
numBuffers_ = camera3Request->num_output_buffers;
buffers_ = new camera3_stream_buffer_t[numBuffers_];
for (unsigned int i = 0; i < numBuffers_; ++i)
buffers_[i] = camera3Request->output_buffers[i];
/*
* FrameBuffer instances created by wrapping a camera3 provided dmabuf
* are emplaced in this vector of unique_ptr<> for lifetime management.
*/
frameBuffers_.reserve(numBuffers_);
/* Clone the controls associated with the camera3 request. */
settings_ = CameraMetadata(camera3Request->settings);
/*
* Create the libcamera::Request unique_ptr<> to tie its lifetime
* to the descriptor's one. Set the descriptor's address as the
* request's cookie to retrieve it at completion time.
*/
request_ = std::make_unique<CaptureRequest>(camera,
reinterpret_cast<uint64_t>(this));
}
CameraDevice::Camera3RequestDescriptor::~Camera3RequestDescriptor()
{
delete[] buffers_;
}
/*
* \class CameraDevice
*
* The CameraDevice class wraps a libcamera::Camera instance, and implements
* the camera3_device_t interface, bridging calls received from the Android
* camera service to the CameraDevice.
*
* The class translates parameters and operations from the Camera HALv3 API to
* the libcamera API to provide static information for a Camera, create request
* templates for it, process capture requests and then deliver capture results
* back to the framework using the designated callbacks.
*/
CameraDevice::CameraDevice(unsigned int id, const std::shared_ptr<Camera> &camera)
: id_(id), running_(false), camera_(camera), staticMetadata_(nullptr),
facing_(CAMERA_FACING_FRONT), orientation_(0)
{
camera_->requestCompleted.connect(this, &CameraDevice::requestComplete);
/*
* \todo Determine a more accurate value for this during
* streamConfiguration.
*/
maxJpegBufferSize_ = 13 << 20; /* 13631488 from USB HAL */
}
CameraDevice::~CameraDevice()
{
if (staticMetadata_)
delete staticMetadata_;
for (auto &it : requestTemplates_)
delete it.second;
}
std::shared_ptr<CameraDevice> CameraDevice::create(unsigned int id,
const std::shared_ptr<Camera> &cam)
{
CameraDevice *camera = new CameraDevice(id, cam);
return std::shared_ptr<CameraDevice>(camera);
}
/*
* Initialize the camera static information.
* This method is called before the camera device is opened.
*/
int CameraDevice::initialize()
{
/* Initialize orientation and facing side of the camera. */
const ControlList &properties = camera_->properties();
if (properties.contains(properties::Location)) {
int32_t location = properties.get(properties::Location);
switch (location) {
case properties::CameraLocationFront:
facing_ = CAMERA_FACING_FRONT;
break;
case properties::CameraLocationBack:
facing_ = CAMERA_FACING_BACK;
break;
case properties::CameraLocationExternal:
facing_ = CAMERA_FACING_EXTERNAL;
break;
}
}
/*
* The Android orientation metadata specifies its rotation correction
* value in clockwise direction whereas libcamera specifies the
* rotation property in anticlockwise direction. Read the libcamera's
* rotation property (anticlockwise) and compute the corresponding
* value for clockwise direction as required by the Android orientation
* metadata.
*/
if (properties.contains(properties::Rotation)) {
int rotation = properties.get(properties::Rotation);
orientation_ = (360 - rotation) % 360;
}
int ret = camera_->acquire();
if (ret) {
LOG(HAL, Error) << "Failed to temporarily acquire the camera";
return ret;
}
ret = initializeStreamConfigurations();
camera_->release();
return ret;
}
std::vector<Size> CameraDevice::getYUVResolutions(CameraConfiguration *cameraConfig,
const PixelFormat &pixelFormat,
const std::vector<Size> &resolutions)
{
std::vector<Size> supportedResolutions;
StreamConfiguration &cfg = cameraConfig->at(0);
for (const Size &res : resolutions) {
cfg.pixelFormat = pixelFormat;
cfg.size = res;
CameraConfiguration::Status status = cameraConfig->validate();
if (status != CameraConfiguration::Valid) {
LOG(HAL, Debug) << cfg.toString() << " not supported";
continue;
}
LOG(HAL, Debug) << cfg.toString() << " supported";
supportedResolutions.push_back(res);
}
return supportedResolutions;
}
std::vector<Size> CameraDevice::getRawResolutions(const libcamera::PixelFormat &pixelFormat)
{
std::unique_ptr<CameraConfiguration> cameraConfig =
camera_->generateConfiguration({ StreamRole::Raw });
StreamConfiguration &cfg = cameraConfig->at(0);
const StreamFormats &formats = cfg.formats();
std::vector<Size> supportedResolutions = formats.sizes(pixelFormat);
return supportedResolutions;
}
/*
* Initialize the format conversion map to translate from Android format
* identifier to libcamera pixel formats and fill in the list of supported
* stream configurations to be reported to the Android camera framework through
* the static stream configuration metadata.
*/
int CameraDevice::initializeStreamConfigurations()
{
/*
* Get the maximum output resolutions
* \todo Get this from the camera properties once defined
*/
std::unique_ptr<CameraConfiguration> cameraConfig =
camera_->generateConfiguration({ StillCapture });
if (!cameraConfig) {
LOG(HAL, Error) << "Failed to get maximum resolution";
return -EINVAL;
}
StreamConfiguration &cfg = cameraConfig->at(0);
/*
* \todo JPEG - Adjust the maximum available resolution by taking the
* JPEG encoder requirements into account (alignment and aspect ratio).
*/
const Size maxRes = cfg.size;
LOG(HAL, Debug) << "Maximum supported resolution: " << maxRes.toString();
/*
* Build the list of supported image resolutions.
*
* The resolutions listed in camera3Resolution are mandatory to be
* supported, up to the camera maximum resolution.
*
* Augment the list by adding resolutions calculated from the camera
* maximum one.
*/
std::vector<Size> cameraResolutions;
std::copy_if(camera3Resolutions.begin(), camera3Resolutions.end(),
std::back_inserter(cameraResolutions),
[&](const Size &res) { return res < maxRes; });
/*
* The Camera3 specification suggests adding 1/2 and 1/4 of the maximum
* resolution.
*/
for (unsigned int divider = 2;; divider <<= 1) {
Size derivedSize{
maxRes.width / divider,
maxRes.height / divider,
};
if (derivedSize.width < 320 ||
derivedSize.height < 240)
break;
cameraResolutions.push_back(derivedSize);
}
cameraResolutions.push_back(maxRes);
/* Remove duplicated entries from the list of supported resolutions. */
std::sort(cameraResolutions.begin(), cameraResolutions.end());
auto last = std::unique(cameraResolutions.begin(), cameraResolutions.end());
cameraResolutions.erase(last, cameraResolutions.end());
/*
* Build the list of supported camera formats.
*
* To each Android format a list of compatible libcamera formats is
* associated. The first libcamera format that tests successful is added
* to the format translation map used when configuring the streams.
* It is then tested against the list of supported camera resolutions to
* build the stream configuration map reported through the camera static
* metadata.
*/
for (const auto &format : camera3FormatsMap) {
int androidFormat = format.first;
const Camera3Format &camera3Format = format.second;
const std::vector<PixelFormat> &libcameraFormats =
camera3Format.libcameraFormats;
LOG(HAL, Debug) << "Trying to map Android format "
<< camera3Format.name;
/*
* JPEG is always supported, either produced directly by the
* camera, or encoded in the HAL.
*/
if (androidFormat == HAL_PIXEL_FORMAT_BLOB) {
formatsMap_[androidFormat] = formats::MJPEG;
LOG(HAL, Debug) << "Mapped Android format "
<< camera3Format.name << " to "
<< formats::MJPEG.toString()
<< " (fixed mapping)";
continue;
}
/*
* Test the libcamera formats that can produce images
* compatible with the format defined by Android.
*/
PixelFormat mappedFormat;
for (const PixelFormat &pixelFormat : libcameraFormats) {
LOG(HAL, Debug) << "Testing " << pixelFormat.toString();
/*
* The stream configuration size can be adjusted,
* not the pixel format.
*
* \todo This could be simplified once all pipeline
* handlers will report the StreamFormats list of
* supported formats.
*/
cfg.pixelFormat = pixelFormat;
CameraConfiguration::Status status = cameraConfig->validate();
if (status != CameraConfiguration::Invalid &&
cfg.pixelFormat == pixelFormat) {
mappedFormat = pixelFormat;
break;
}
}
if (!mappedFormat.isValid()) {
/* If the format is not mandatory, skip it. */
if (!camera3Format.mandatory)
continue;
LOG(HAL, Error)
<< "Failed to map mandatory Android format "
<< camera3Format.name << " ("
<< utils::hex(androidFormat) << "): aborting";
return -EINVAL;
}
/*
* Record the mapping and then proceed to generate the
* stream configurations map, by testing the image resolutions.
*/
formatsMap_[androidFormat] = mappedFormat;
LOG(HAL, Debug) << "Mapped Android format "
<< camera3Format.name << " to "
<< mappedFormat.toString();
std::vector<Size> resolutions;
const PixelFormatInfo &info = PixelFormatInfo::info(mappedFormat);
if (info.colourEncoding == PixelFormatInfo::ColourEncodingRAW)
resolutions = getRawResolutions(mappedFormat);
else
resolutions = getYUVResolutions(cameraConfig.get(),
mappedFormat,
cameraResolutions);
for (const Size &res : resolutions) {
streamConfigurations_.push_back({ res, androidFormat });
/*
* If the format is HAL_PIXEL_FORMAT_YCbCr_420_888
* from which JPEG is produced, add an entry for
* the JPEG stream.
*
* \todo Wire the JPEG encoder to query the supported
* sizes provided a list of formats it can encode.
*
* \todo Support JPEG streams produced by the Camera
* natively.
*/
if (androidFormat == HAL_PIXEL_FORMAT_YCbCr_420_888)
streamConfigurations_.push_back(
{ res, HAL_PIXEL_FORMAT_BLOB });
}
}
LOG(HAL, Debug) << "Collected stream configuration map: ";
for (const auto &entry : streamConfigurations_)
LOG(HAL, Debug) << "{ " << entry.resolution.toString() << " - "
<< utils::hex(entry.androidFormat) << " }";
return 0;
}
/*
* Open a camera device. The static information on the camera shall have been
* initialized with a call to CameraDevice::initialize().
*/
int CameraDevice::open(const hw_module_t *hardwareModule)
{
int ret = camera_->acquire();
if (ret) {
LOG(HAL, Error) << "Failed to acquire the camera";
return ret;
}
/* Initialize the hw_device_t in the instance camera3_module_t. */
camera3Device_.common.tag = HARDWARE_DEVICE_TAG;
camera3Device_.common.version = CAMERA_DEVICE_API_VERSION_3_3;
camera3Device_.common.module = (hw_module_t *)hardwareModule;
camera3Device_.common.close = hal_dev_close;
/*
* The camera device operations. These actually implement
* the Android Camera HALv3 interface.
*/
camera3Device_.ops = &hal_dev_ops;
camera3Device_.priv = this;
return 0;
}
void CameraDevice::close()
{
streams_.clear();
worker_.stop();
camera_->stop();
camera_->release();
running_ = false;
}
void CameraDevice::setCallbacks(const camera3_callback_ops_t *callbacks)
{
callbacks_ = callbacks;
}
std::tuple<uint32_t, uint32_t> CameraDevice::calculateStaticMetadataSize()
{
/*
* \todo Keep this in sync with the actual number of entries.
* Currently: 53 entries, 714 bytes of static metadata
*/
uint32_t numEntries = 53;
uint32_t byteSize = 714;
/*
* Calculate space occupation in bytes for dynamically built metadata
* entries.
*
* Each stream configuration entry requires 52 bytes:
* 4 32bits integers for ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS
* 4 64bits integers for ANDROID_SCALER_AVAILABLE_MIN_FRAME_DURATIONS
*/
byteSize += streamConfigurations_.size() * 48;
return std::make_tuple(numEntries, byteSize);
}
/*
* Return static information for the camera.
*/
const camera_metadata_t *CameraDevice::getStaticMetadata()
{
if (staticMetadata_)
return staticMetadata_->get();
/*
* The here reported metadata are enough to implement a basic capture
* example application, but a real camera implementation will require
* more.
*/
uint32_t numEntries;
uint32_t byteSize;
std::tie(numEntries, byteSize) = calculateStaticMetadataSize();
staticMetadata_ = new CameraMetadata(numEntries, byteSize);
if (!staticMetadata_->isValid()) {
LOG(HAL, Error) << "Failed to allocate static metadata";
delete staticMetadata_;
staticMetadata_ = nullptr;
return nullptr;
}
const ControlInfoMap &controlsInfo = camera_->controls();
const ControlList &properties = camera_->properties();
/* Color correction static metadata. */
{
std::vector<uint8_t> data;
data.reserve(3);
const auto &infoMap = controlsInfo.find(&controls::draft::ColorCorrectionAberrationMode);
if (infoMap != controlsInfo.end()) {
for (const auto &value : infoMap->second.values())
data.push_back(value.get<int32_t>());
} else {
data.push_back(ANDROID_COLOR_CORRECTION_ABERRATION_MODE_OFF);
}
staticMetadata_->addEntry(ANDROID_COLOR_CORRECTION_AVAILABLE_ABERRATION_MODES,
data.data(), data.size());
}
/* Control static metadata. */
std::vector<uint8_t> aeAvailableAntiBandingModes = {
ANDROID_CONTROL_AE_ANTIBANDING_MODE_OFF,
ANDROID_CONTROL_AE_ANTIBANDING_MODE_50HZ,
ANDROID_CONTROL_AE_ANTIBANDING_MODE_60HZ,
ANDROID_CONTROL_AE_ANTIBANDING_MODE_AUTO,
};
staticMetadata_->addEntry(ANDROID_CONTROL_AE_AVAILABLE_ANTIBANDING_MODES,
aeAvailableAntiBandingModes.data(),
aeAvailableAntiBandingModes.size());
std::vector<uint8_t> aeAvailableModes = {
ANDROID_CONTROL_AE_MODE_ON,
};
staticMetadata_->addEntry(ANDROID_CONTROL_AE_AVAILABLE_MODES,
aeAvailableModes.data(),
aeAvailableModes.size());
std::vector<int32_t> availableAeFpsTarget = {
15, 30,
};
staticMetadata_->addEntry(ANDROID_CONTROL_AE_AVAILABLE_TARGET_FPS_RANGES,
availableAeFpsTarget.data(),
availableAeFpsTarget.size());
std::vector<int32_t> aeCompensationRange = {
0, 0,
};
staticMetadata_->addEntry(ANDROID_CONTROL_AE_COMPENSATION_RANGE,
aeCompensationRange.data(),
aeCompensationRange.size());
const camera_metadata_rational_t aeCompensationStep[] = {
{ 0, 1 }
};
staticMetadata_->addEntry(ANDROID_CONTROL_AE_COMPENSATION_STEP,
aeCompensationStep, 1);
std::vector<uint8_t> availableAfModes = {
ANDROID_CONTROL_AF_MODE_OFF,
};
staticMetadata_->addEntry(ANDROID_CONTROL_AF_AVAILABLE_MODES,
availableAfModes.data(),
availableAfModes.size());
std::vector<uint8_t> availableEffects = {
ANDROID_CONTROL_EFFECT_MODE_OFF,
};
staticMetadata_->addEntry(ANDROID_CONTROL_AVAILABLE_EFFECTS,
availableEffects.data(),
availableEffects.size());
std::vector<uint8_t> availableSceneModes = {
ANDROID_CONTROL_SCENE_MODE_DISABLED,
};
staticMetadata_->addEntry(ANDROID_CONTROL_AVAILABLE_SCENE_MODES,
availableSceneModes.data(),
availableSceneModes.size());
std::vector<uint8_t> availableStabilizationModes = {
ANDROID_CONTROL_VIDEO_STABILIZATION_MODE_OFF,
};
staticMetadata_->addEntry(ANDROID_CONTROL_AVAILABLE_VIDEO_STABILIZATION_MODES,
availableStabilizationModes.data(),
availableStabilizationModes.size());
/*
* \todo Inspect the Camera capabilities to report the available
* AWB modes. Default to AUTO as CTS tests require it.
*/
std::vector<uint8_t> availableAwbModes = {
ANDROID_CONTROL_AWB_MODE_AUTO,
};
staticMetadata_->addEntry(ANDROID_CONTROL_AWB_AVAILABLE_MODES,
availableAwbModes.data(),
availableAwbModes.size());
std::vector<int32_t> availableMaxRegions = {
0, 0, 0,
};
staticMetadata_->addEntry(ANDROID_CONTROL_MAX_REGIONS,
availableMaxRegions.data(),
availableMaxRegions.size());
std::vector<uint8_t> sceneModesOverride = {
ANDROID_CONTROL_AE_MODE_ON,
ANDROID_CONTROL_AWB_MODE_AUTO,
ANDROID_CONTROL_AF_MODE_AUTO,
};
staticMetadata_->addEntry(ANDROID_CONTROL_SCENE_MODE_OVERRIDES,
sceneModesOverride.data(),
sceneModesOverride.size());
uint8_t aeLockAvailable = ANDROID_CONTROL_AE_LOCK_AVAILABLE_FALSE;
staticMetadata_->addEntry(ANDROID_CONTROL_AE_LOCK_AVAILABLE,
&aeLockAvailable, 1);
uint8_t awbLockAvailable = ANDROID_CONTROL_AWB_LOCK_AVAILABLE_FALSE;
staticMetadata_->addEntry(ANDROID_CONTROL_AWB_LOCK_AVAILABLE,
&awbLockAvailable, 1);
char availableControlModes = ANDROID_CONTROL_MODE_AUTO;
staticMetadata_->addEntry(ANDROID_CONTROL_AVAILABLE_MODES,
&availableControlModes, 1);
/* JPEG static metadata. */
std::vector<int32_t> availableThumbnailSizes = {
0, 0,
};
staticMetadata_->addEntry(ANDROID_JPEG_AVAILABLE_THUMBNAIL_SIZES,
availableThumbnailSizes.data(),
availableThumbnailSizes.size());
/*
* \todo Calculate the maximum JPEG buffer size by asking the encoder
* giving the maximum frame size required.
*/
staticMetadata_->addEntry(ANDROID_JPEG_MAX_SIZE, &maxJpegBufferSize_, 1);
/* Sensor static metadata. */
{
const Size &size =
properties.get(properties::PixelArraySize);
std::vector<int32_t> data{
static_cast<int32_t>(size.width),
static_cast<int32_t>(size.height),
};
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_PIXEL_ARRAY_SIZE,
data.data(), data.size());
}
{
const Span<const Rectangle> &rects =
properties.get(properties::PixelArrayActiveAreas);
std::vector<int32_t> data{
static_cast<int32_t>(rects[0].x),
static_cast<int32_t>(rects[0].y),
static_cast<int32_t>(rects[0].width),
static_cast<int32_t>(rects[0].height),
};
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_ACTIVE_ARRAY_SIZE,
data.data(), data.size());
}
int32_t sensitivityRange[] = {
32, 2400,
};
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_SENSITIVITY_RANGE,
&sensitivityRange, 2);
/* Report the color filter arrangement if the camera reports it. */
if (properties.contains(properties::draft::ColorFilterArrangement)) {
uint8_t filterArr = properties.get(properties::draft::ColorFilterArrangement);
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT,
&filterArr, 1);
}
const auto &exposureInfo = controlsInfo.find(&controls::ExposureTime);
if (exposureInfo != controlsInfo.end()) {
int64_t exposureTimeRange[2] = {
exposureInfo->second.min().get<int32_t>() * 1000LL,
exposureInfo->second.max().get<int32_t>() * 1000LL,
};
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_EXPOSURE_TIME_RANGE,
&exposureTimeRange, 2);
}
staticMetadata_->addEntry(ANDROID_SENSOR_ORIENTATION, &orientation_, 1);
std::vector<int32_t> testPatterModes = {
ANDROID_SENSOR_TEST_PATTERN_MODE_OFF,
};
staticMetadata_->addEntry(ANDROID_SENSOR_AVAILABLE_TEST_PATTERN_MODES,
testPatterModes.data(),
testPatterModes.size());
std::vector<float> physicalSize = {
2592, 1944,
};
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_PHYSICAL_SIZE,
physicalSize.data(),
physicalSize.size());
uint8_t timestampSource = ANDROID_SENSOR_INFO_TIMESTAMP_SOURCE_UNKNOWN;
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_TIMESTAMP_SOURCE,
×tampSource, 1);
/* Statistics static metadata. */
uint8_t faceDetectMode = ANDROID_STATISTICS_FACE_DETECT_MODE_OFF;
staticMetadata_->addEntry(ANDROID_STATISTICS_INFO_AVAILABLE_FACE_DETECT_MODES,
&faceDetectMode, 1);
int32_t maxFaceCount = 0;
staticMetadata_->addEntry(ANDROID_STATISTICS_INFO_MAX_FACE_COUNT,
&maxFaceCount, 1);
{
std::vector<uint8_t> data;
data.reserve(2);
const auto &infoMap = controlsInfo.find(&controls::draft::LensShadingMapMode);
if (infoMap != controlsInfo.end()) {
for (const auto &value : infoMap->second.values())
data.push_back(value.get<int32_t>());
} else {
data.push_back(ANDROID_STATISTICS_LENS_SHADING_MAP_MODE_OFF);
}
staticMetadata_->addEntry(ANDROID_STATISTICS_INFO_AVAILABLE_LENS_SHADING_MAP_MODES,
data.data(), data.size());
}
/* Sync static metadata. */
int32_t maxLatency = ANDROID_SYNC_MAX_LATENCY_UNKNOWN;
staticMetadata_->addEntry(ANDROID_SYNC_MAX_LATENCY, &maxLatency, 1);
/* Flash static metadata. */
char flashAvailable = ANDROID_FLASH_INFO_AVAILABLE_FALSE;
staticMetadata_->addEntry(ANDROID_FLASH_INFO_AVAILABLE,
&flashAvailable, 1);
/* Lens static metadata. */
std::vector<float> lensApertures = {
2.53 / 100,
};
staticMetadata_->addEntry(ANDROID_LENS_INFO_AVAILABLE_APERTURES,
lensApertures.data(),
lensApertures.size());
uint8_t lensFacing;
switch (facing_) {
default:
case CAMERA_FACING_FRONT:
lensFacing = ANDROID_LENS_FACING_FRONT;
break;
case CAMERA_FACING_BACK:
lensFacing = ANDROID_LENS_FACING_BACK;
break;
case CAMERA_FACING_EXTERNAL:
lensFacing = ANDROID_LENS_FACING_EXTERNAL;
break;
}
staticMetadata_->addEntry(ANDROID_LENS_FACING, &lensFacing, 1);
std::vector<float> lensFocalLenghts = {
1,
};
staticMetadata_->addEntry(ANDROID_LENS_INFO_AVAILABLE_FOCAL_LENGTHS,
lensFocalLenghts.data(),
lensFocalLenghts.size());
std::vector<uint8_t> opticalStabilizations = {
ANDROID_LENS_OPTICAL_STABILIZATION_MODE_OFF,
};
staticMetadata_->addEntry(ANDROID_LENS_INFO_AVAILABLE_OPTICAL_STABILIZATION,
opticalStabilizations.data(),
opticalStabilizations.size());
float hypeFocalDistance = 0;
staticMetadata_->addEntry(ANDROID_LENS_INFO_HYPERFOCAL_DISTANCE,
&hypeFocalDistance, 1);
float minFocusDistance = 0;
staticMetadata_->addEntry(ANDROID_LENS_INFO_MINIMUM_FOCUS_DISTANCE,
&minFocusDistance, 1);
/* Noise reduction modes. */
{
std::vector<uint8_t> data;
data.reserve(5);
const auto &infoMap = controlsInfo.find(&controls::draft::NoiseReductionMode);
if (infoMap != controlsInfo.end()) {
for (const auto &value : infoMap->second.values())
data.push_back(value.get<int32_t>());
} else {
data.push_back(ANDROID_NOISE_REDUCTION_MODE_OFF);
}
staticMetadata_->addEntry(ANDROID_NOISE_REDUCTION_AVAILABLE_NOISE_REDUCTION_MODES,
data.data(), data.size());
}
/* Scaler static metadata. */
{
/*
* \todo The digital zoom factor is a property that depends
* on the desired output configuration and the sensor frame size
* input to the ISP. This information is not available to the
* Android HAL, not at initialization time at least.
*
* As a workaround rely on pipeline handlers initializing the
* ScalerCrop control with the camera default configuration and
* use the maximum and minimum crop rectangles to calculate the
* digital zoom factor.
*/
const auto info = controlsInfo.find(&controls::ScalerCrop);
Rectangle min = info->second.min().get<Rectangle>();
Rectangle max = info->second.max().get<Rectangle>();
float maxZoom = std::min(1.0f * max.width / min.width,
1.0f * max.height / min.height);
staticMetadata_->addEntry(ANDROID_SCALER_AVAILABLE_MAX_DIGITAL_ZOOM,
&maxZoom, 1);
}
std::vector<uint32_t> availableStreamConfigurations;
availableStreamConfigurations.reserve(streamConfigurations_.size() * 4);
for (const auto &entry : streamConfigurations_) {
availableStreamConfigurations.push_back(entry.androidFormat);
availableStreamConfigurations.push_back(entry.resolution.width);
availableStreamConfigurations.push_back(entry.resolution.height);
availableStreamConfigurations.push_back(
ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT);
}
staticMetadata_->addEntry(ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS,
availableStreamConfigurations.data(),
availableStreamConfigurations.size());
std::vector<int64_t> availableStallDurations = {
ANDROID_SCALER_AVAILABLE_FORMATS_BLOB, 2560, 1920, 33333333,
};
staticMetadata_->addEntry(ANDROID_SCALER_AVAILABLE_STALL_DURATIONS,
availableStallDurations.data(),
availableStallDurations.size());
/* \todo Collect the minimum frame duration from the camera. */
std::vector<int64_t> minFrameDurations;
minFrameDurations.reserve(streamConfigurations_.size() * 4);
for (const auto &entry : streamConfigurations_) {
minFrameDurations.push_back(entry.androidFormat);
minFrameDurations.push_back(entry.resolution.width);
minFrameDurations.push_back(entry.resolution.height);
minFrameDurations.push_back(33333333);
}
staticMetadata_->addEntry(ANDROID_SCALER_AVAILABLE_MIN_FRAME_DURATIONS,
minFrameDurations.data(),
minFrameDurations.size());
uint8_t croppingType = ANDROID_SCALER_CROPPING_TYPE_CENTER_ONLY;
staticMetadata_->addEntry(ANDROID_SCALER_CROPPING_TYPE, &croppingType, 1);
/* Info static metadata. */
uint8_t supportedHWLevel = ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL_LIMITED;
staticMetadata_->addEntry(ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL,
&supportedHWLevel, 1);
/* Request static metadata. */
int32_t partialResultCount = 1;
staticMetadata_->addEntry(ANDROID_REQUEST_PARTIAL_RESULT_COUNT,
&partialResultCount, 1);
{
/* Default the value to 2 if not reported by the camera. */
uint8_t maxPipelineDepth = 2;
const auto &infoMap = controlsInfo.find(&controls::draft::PipelineDepth);
if (infoMap != controlsInfo.end())
maxPipelineDepth = infoMap->second.max().get<int32_t>();
staticMetadata_->addEntry(ANDROID_REQUEST_PIPELINE_MAX_DEPTH,
&maxPipelineDepth, 1);
}
/* LIMITED does not support reprocessing. */
uint32_t maxNumInputStreams = 0;
staticMetadata_->addEntry(ANDROID_REQUEST_MAX_NUM_INPUT_STREAMS,
&maxNumInputStreams, 1);
std::vector<uint8_t> availableCapabilities = {
ANDROID_REQUEST_AVAILABLE_CAPABILITIES_BACKWARD_COMPATIBLE,
};
/* Report if camera supports RAW. */
bool rawStreamAvailable = false;
std::unique_ptr<CameraConfiguration> cameraConfig =
camera_->generateConfiguration({ StreamRole::Raw });
if (cameraConfig && !cameraConfig->empty()) {
const PixelFormatInfo &info =
PixelFormatInfo::info(cameraConfig->at(0).pixelFormat);
/* Only advertise RAW support if RAW16 is possible. */
if (info.colourEncoding == PixelFormatInfo::ColourEncodingRAW &&
info.bitsPerPixel == 16) {
rawStreamAvailable = true;
availableCapabilities.push_back(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_RAW);
}
}
/* Number of { RAW, YUV, JPEG } supported output streams */
int32_t numOutStreams[] = { rawStreamAvailable, 2, 1 };
staticMetadata_->addEntry(ANDROID_REQUEST_MAX_NUM_OUTPUT_STREAMS,
&numOutStreams, 3);
staticMetadata_->addEntry(ANDROID_REQUEST_AVAILABLE_CAPABILITIES,
availableCapabilities.data(),
availableCapabilities.size());
std::vector<int32_t> availableCharacteristicsKeys = {
ANDROID_COLOR_CORRECTION_AVAILABLE_ABERRATION_MODES,
ANDROID_CONTROL_AE_AVAILABLE_ANTIBANDING_MODES,
ANDROID_CONTROL_AE_AVAILABLE_MODES,
ANDROID_CONTROL_AE_AVAILABLE_TARGET_FPS_RANGES,
ANDROID_CONTROL_AE_COMPENSATION_RANGE,
ANDROID_CONTROL_AE_COMPENSATION_STEP,
ANDROID_CONTROL_AF_AVAILABLE_MODES,
ANDROID_CONTROL_AVAILABLE_EFFECTS,
ANDROID_CONTROL_AVAILABLE_SCENE_MODES,
ANDROID_CONTROL_AVAILABLE_VIDEO_STABILIZATION_MODES,
ANDROID_CONTROL_AWB_AVAILABLE_MODES,
ANDROID_CONTROL_MAX_REGIONS,
ANDROID_CONTROL_SCENE_MODE_OVERRIDES,
ANDROID_CONTROL_AE_LOCK_AVAILABLE,
ANDROID_CONTROL_AWB_LOCK_AVAILABLE,
ANDROID_CONTROL_AVAILABLE_MODES,
ANDROID_JPEG_AVAILABLE_THUMBNAIL_SIZES,
ANDROID_JPEG_MAX_SIZE,
ANDROID_SENSOR_INFO_PIXEL_ARRAY_SIZE,
ANDROID_SENSOR_INFO_ACTIVE_ARRAY_SIZE,
ANDROID_SENSOR_INFO_SENSITIVITY_RANGE,
ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT,
ANDROID_SENSOR_INFO_EXPOSURE_TIME_RANGE,
ANDROID_SENSOR_ORIENTATION,
ANDROID_SENSOR_AVAILABLE_TEST_PATTERN_MODES,
ANDROID_SENSOR_INFO_PHYSICAL_SIZE,
ANDROID_SENSOR_INFO_TIMESTAMP_SOURCE,
ANDROID_STATISTICS_INFO_AVAILABLE_FACE_DETECT_MODES,
ANDROID_STATISTICS_INFO_MAX_FACE_COUNT,
ANDROID_SYNC_MAX_LATENCY,
ANDROID_FLASH_INFO_AVAILABLE,
ANDROID_LENS_INFO_AVAILABLE_APERTURES,
ANDROID_LENS_FACING,
ANDROID_LENS_INFO_AVAILABLE_FOCAL_LENGTHS,
ANDROID_LENS_INFO_AVAILABLE_OPTICAL_STABILIZATION,
ANDROID_LENS_INFO_HYPERFOCAL_DISTANCE,
ANDROID_LENS_INFO_MINIMUM_FOCUS_DISTANCE,
ANDROID_NOISE_REDUCTION_AVAILABLE_NOISE_REDUCTION_MODES,
ANDROID_SCALER_AVAILABLE_MAX_DIGITAL_ZOOM,
ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS,
ANDROID_SCALER_AVAILABLE_STALL_DURATIONS,
ANDROID_SCALER_AVAILABLE_MIN_FRAME_DURATIONS,
ANDROID_SCALER_CROPPING_TYPE,
ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL,
ANDROID_REQUEST_PARTIAL_RESULT_COUNT,
ANDROID_REQUEST_PIPELINE_MAX_DEPTH,
ANDROID_REQUEST_MAX_NUM_OUTPUT_STREAMS,
ANDROID_REQUEST_MAX_NUM_INPUT_STREAMS,
ANDROID_REQUEST_AVAILABLE_CAPABILITIES,
};
staticMetadata_->addEntry(ANDROID_REQUEST_AVAILABLE_CHARACTERISTICS_KEYS,
availableCharacteristicsKeys.data(),
availableCharacteristicsKeys.size());
std::vector<int32_t> availableRequestKeys = {
ANDROID_CONTROL_AE_MODE,
ANDROID_CONTROL_AE_EXPOSURE_COMPENSATION,
ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER,
ANDROID_CONTROL_AE_TARGET_FPS_RANGE,
ANDROID_CONTROL_AE_ANTIBANDING_MODE,
ANDROID_CONTROL_AE_LOCK,
ANDROID_CONTROL_AF_TRIGGER,
ANDROID_CONTROL_AWB_MODE,
ANDROID_CONTROL_AWB_LOCK,
ANDROID_FLASH_MODE,
ANDROID_STATISTICS_FACE_DETECT_MODE,
ANDROID_NOISE_REDUCTION_MODE,
ANDROID_COLOR_CORRECTION_ABERRATION_MODE,
ANDROID_LENS_APERTURE,
ANDROID_LENS_OPTICAL_STABILIZATION_MODE,
ANDROID_CONTROL_MODE,
ANDROID_CONTROL_CAPTURE_INTENT,
};
staticMetadata_->addEntry(ANDROID_REQUEST_AVAILABLE_REQUEST_KEYS,
availableRequestKeys.data(),
availableRequestKeys.size());
std::vector<int32_t> availableResultKeys = {
ANDROID_CONTROL_AE_STATE,
ANDROID_CONTROL_AE_LOCK,
ANDROID_CONTROL_AF_STATE,
ANDROID_CONTROL_AWB_STATE,
ANDROID_CONTROL_AWB_LOCK,
ANDROID_LENS_STATE,
ANDROID_REQUEST_PIPELINE_DEPTH,
ANDROID_SCALER_CROP_REGION,
ANDROID_SENSOR_TIMESTAMP,
ANDROID_SENSOR_ROLLING_SHUTTER_SKEW,
ANDROID_SENSOR_EXPOSURE_TIME,
ANDROID_STATISTICS_LENS_SHADING_MAP_MODE,
ANDROID_STATISTICS_SCENE_FLICKER,
ANDROID_JPEG_SIZE,
ANDROID_JPEG_QUALITY,
ANDROID_JPEG_ORIENTATION,
};
staticMetadata_->addEntry(ANDROID_REQUEST_AVAILABLE_RESULT_KEYS,
availableResultKeys.data(),
availableResultKeys.size());
if (!staticMetadata_->isValid()) {
LOG(HAL, Error) << "Failed to construct static metadata";
delete staticMetadata_;
staticMetadata_ = nullptr;
return nullptr;
}
return staticMetadata_->get();
}
CameraMetadata *CameraDevice::requestTemplatePreview()
{
/*
* \todo Keep this in sync with the actual number of entries.
* Currently: 20 entries, 35 bytes
*/
CameraMetadata *requestTemplate = new CameraMetadata(20, 35);
if (!requestTemplate->isValid()) {
delete requestTemplate;
return nullptr;
}
uint8_t aeMode = ANDROID_CONTROL_AE_MODE_ON;
requestTemplate->addEntry(ANDROID_CONTROL_AE_MODE,
&aeMode, 1);
int32_t aeExposureCompensation = 0;
requestTemplate->addEntry(ANDROID_CONTROL_AE_EXPOSURE_COMPENSATION,
&aeExposureCompensation, 1);
uint8_t aePrecaptureTrigger = ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER_IDLE;
requestTemplate->addEntry(ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER,
&aePrecaptureTrigger, 1);
uint8_t aeLock = ANDROID_CONTROL_AE_LOCK_OFF;
requestTemplate->addEntry(ANDROID_CONTROL_AE_LOCK,
&aeLock, 1);
std::vector<int32_t> aeFpsTarget = {
15, 30,
};
requestTemplate->addEntry(ANDROID_CONTROL_AE_TARGET_FPS_RANGE,
aeFpsTarget.data(),
aeFpsTarget.size());
uint8_t aeAntibandingMode = ANDROID_CONTROL_AE_ANTIBANDING_MODE_AUTO;
requestTemplate->addEntry(ANDROID_CONTROL_AE_ANTIBANDING_MODE,
&aeAntibandingMode, 1);
uint8_t afTrigger = ANDROID_CONTROL_AF_TRIGGER_IDLE;
requestTemplate->addEntry(ANDROID_CONTROL_AF_TRIGGER,
&afTrigger, 1);
uint8_t awbMode = ANDROID_CONTROL_AWB_MODE_AUTO;
requestTemplate->addEntry(ANDROID_CONTROL_AWB_MODE,
&awbMode, 1);
uint8_t awbLock = ANDROID_CONTROL_AWB_LOCK_OFF;
requestTemplate->addEntry(ANDROID_CONTROL_AWB_LOCK,
&awbLock, 1);
uint8_t flashMode = ANDROID_FLASH_MODE_OFF;
requestTemplate->addEntry(ANDROID_FLASH_MODE,
&flashMode, 1);
uint8_t faceDetectMode = ANDROID_STATISTICS_FACE_DETECT_MODE_OFF;
requestTemplate->addEntry(ANDROID_STATISTICS_FACE_DETECT_MODE,
&faceDetectMode, 1);
uint8_t noiseReduction = ANDROID_NOISE_REDUCTION_MODE_OFF;
requestTemplate->addEntry(ANDROID_NOISE_REDUCTION_MODE,
&noiseReduction, 1);
uint8_t aberrationMode = ANDROID_COLOR_CORRECTION_ABERRATION_MODE_OFF;
requestTemplate->addEntry(ANDROID_COLOR_CORRECTION_ABERRATION_MODE,
&aberrationMode, 1);
uint8_t controlMode = ANDROID_CONTROL_MODE_AUTO;
requestTemplate->addEntry(ANDROID_CONTROL_MODE, &controlMode, 1);
float lensAperture = 2.53 / 100;
requestTemplate->addEntry(ANDROID_LENS_APERTURE, &lensAperture, 1);
uint8_t opticalStabilization = ANDROID_LENS_OPTICAL_STABILIZATION_MODE_OFF;
requestTemplate->addEntry(ANDROID_LENS_OPTICAL_STABILIZATION_MODE,
&opticalStabilization, 1);
uint8_t captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_PREVIEW;
requestTemplate->addEntry(ANDROID_CONTROL_CAPTURE_INTENT,
&captureIntent, 1);
return requestTemplate;
}
/*
* Produce a metadata pack to be used as template for a capture request.
*/
const camera_metadata_t *CameraDevice::constructDefaultRequestSettings(int type)
{
auto it = requestTemplates_.find(type);
if (it != requestTemplates_.end())
return it->second->get();
/* Use the capture intent matching the requested template type. */
CameraMetadata *requestTemplate;
uint8_t captureIntent;
switch (type) {
case CAMERA3_TEMPLATE_PREVIEW:
captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_PREVIEW;
break;
case CAMERA3_TEMPLATE_STILL_CAPTURE:
captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_STILL_CAPTURE;
break;
case CAMERA3_TEMPLATE_VIDEO_RECORD:
captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_VIDEO_RECORD;
break;
case CAMERA3_TEMPLATE_VIDEO_SNAPSHOT:
captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_VIDEO_SNAPSHOT;
break;
case CAMERA3_TEMPLATE_ZERO_SHUTTER_LAG:
captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_ZERO_SHUTTER_LAG;
break;
case CAMERA3_TEMPLATE_MANUAL:
captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_MANUAL;
break;
default:
LOG(HAL, Error) << "Invalid template request type: " << type;
return nullptr;
}
requestTemplate = requestTemplatePreview();
if (!requestTemplate || !requestTemplate->isValid()) {
LOG(HAL, Error) << "Failed to construct request template";
delete requestTemplate;
return nullptr;
}
requestTemplate->updateEntry(ANDROID_CONTROL_CAPTURE_INTENT,
&captureIntent, 1);
requestTemplates_[type] = requestTemplate;
return requestTemplate->get();
}
PixelFormat CameraDevice::toPixelFormat(int format) const
{
/* Translate Android format code to libcamera pixel format. */
auto it = formatsMap_.find(format);
if (it == formatsMap_.end()) {
LOG(HAL, Error) << "Requested format " << utils::hex(format)
<< " not supported";
return PixelFormat();
}
return it->second;
}
/*
* Inspect the stream_list to produce a list of StreamConfiguration to
* be use to configure the Camera.
*/
int CameraDevice::configureStreams(camera3_stream_configuration_t *stream_list)
{
/* Before any configuration attempt, stop the camera if it's running. */
if (running_) {
worker_.stop();
camera_->stop();
running_ = false;
}
/*
* Generate an empty configuration, and construct a StreamConfiguration
* for each camera3_stream to add to it.
*/
config_ = camera_->generateConfiguration();
if (!config_) {
LOG(HAL, Error) << "Failed to generate camera configuration";
return -EINVAL;
}
/*
* Clear and remove any existing configuration from previous calls, and
* ensure the required entries are available without further
* reallocation.
*/
streams_.clear();
streams_.reserve(stream_list->num_streams);
std::vector<Camera3StreamConfig> streamConfigs;
streamConfigs.reserve(stream_list->num_streams);
/* First handle all non-MJPEG streams. */
camera3_stream_t *jpegStream = nullptr;
for (unsigned int i = 0; i < stream_list->num_streams; ++i) {
camera3_stream_t *stream = stream_list->streams[i];
Size size(stream->width, stream->height);
PixelFormat format = toPixelFormat(stream->format);
LOG(HAL, Info) << "Stream #" << i
<< ", direction: " << stream->stream_type
<< ", width: " << stream->width
<< ", height: " << stream->height
<< ", format: " << utils::hex(stream->format)
<< " (" << format.toString() << ")";
if (!format.isValid())
return -EINVAL;
/* Defer handling of MJPEG streams until all others are known. */
if (stream->format == HAL_PIXEL_FORMAT_BLOB) {
if (jpegStream) {
LOG(HAL, Error)
<< "Multiple JPEG streams are not supported";
return -EINVAL;
}
jpegStream = stream;
continue;
}
Camera3StreamConfig streamConfig;
streamConfig.streams = { { stream, CameraStream::Type::Direct } };
streamConfig.config.size = size;
streamConfig.config.pixelFormat = format;
streamConfigs.push_back(std::move(streamConfig));
}
/* Now handle the MJPEG streams, adding a new stream if required. */
if (jpegStream) {
CameraStream::Type type;
int index = -1;
/* Search for a compatible stream in the non-JPEG ones. */
for (size_t i = 0; i < streamConfigs.size(); ++i) {
const auto &cfg = streamConfigs[i].config;
/*
* \todo The PixelFormat must also be compatible with
* the encoder.
*/
if (cfg.size.width != jpegStream->width ||
cfg.size.height != jpegStream->height)
continue;
LOG(HAL, Info)
<< "Android JPEG stream mapped to libcamera stream " << i;
type = CameraStream::Type::Mapped;
index = i;
break;
}
/*
* Without a compatible match for JPEG encoding we must
* introduce a new stream to satisfy the request requirements.
*/
if (index < 0) {
/*
* \todo The pixelFormat should be a 'best-fit' choice
* and may require a validation cycle. This is not yet
* handled, and should be considered as part of any
* stream configuration reworks.
*/
Camera3StreamConfig streamConfig;
streamConfig.config.size.width = jpegStream->width;
streamConfig.config.size.height = jpegStream->height;
streamConfig.config.pixelFormat = formats::NV12;
streamConfigs.push_back(std::move(streamConfig));
LOG(HAL, Info) << "Adding " << streamConfig.config.toString()
<< " for MJPEG support";
type = CameraStream::Type::Internal;
index = streamConfigs.size() - 1;
}
streamConfigs[index].streams.push_back({ jpegStream, type });
}
sortCamera3StreamConfigs(streamConfigs, jpegStream);
for (const auto &streamConfig : streamConfigs) {
config_->addConfiguration(streamConfig.config);
for (auto &stream : streamConfig.streams) {
streams_.emplace_back(this, stream.type, stream.stream,
config_->size() - 1);
stream.stream->priv = static_cast<void *>(&streams_.back());
}
}
switch (config_->validate()) {
case CameraConfiguration::Valid:
break;
case CameraConfiguration::Adjusted:
LOG(HAL, Info) << "Camera configuration adjusted";
for (const StreamConfiguration &cfg : *config_)
LOG(HAL, Info) << " - " << cfg.toString();
config_.reset();
return -EINVAL;
case CameraConfiguration::Invalid:
LOG(HAL, Info) << "Camera configuration invalid";
config_.reset();
return -EINVAL;
}
/*
* Once the CameraConfiguration has been adjusted/validated
* it can be applied to the camera.
*/
int ret = camera_->configure(config_.get());
if (ret) {
LOG(HAL, Error) << "Failed to configure camera '"
<< camera_->id() << "'";
return ret;
}
/*
* Configure the HAL CameraStream instances using the associated
* StreamConfiguration and set the number of required buffers in
* the Android camera3_stream_t.
*/
for (CameraStream &cameraStream : streams_) {
ret = cameraStream.configure();
if (ret) {
LOG(HAL, Error) << "Failed to configure camera stream";
return ret;
}
}
return 0;
}
FrameBuffer *CameraDevice::createFrameBuffer(const buffer_handle_t camera3buffer)
{
std::vector<FrameBuffer::Plane> planes;
for (int i = 0; i < camera3buffer->numFds; i++) {
/* Skip unused planes. */
if (camera3buffer->data[i] == -1)
break;
FrameBuffer::Plane plane;
plane.fd = FileDescriptor(camera3buffer->data[i]);
if (!plane.fd.isValid()) {
LOG(HAL, Error) << "Failed to obtain FileDescriptor ("
<< camera3buffer->data[i] << ") "
<< " on plane " << i;
return nullptr;
}
off_t length = lseek(plane.fd.fd(), 0, SEEK_END);
if (length == -1) {
LOG(HAL, Error) << "Failed to query plane length";
return nullptr;
}
plane.length = length;
planes.push_back(std::move(plane));
}
return new FrameBuffer(std::move(planes));
}
int CameraDevice::processControls(Camera3RequestDescriptor *descriptor)
{
const CameraMetadata &settings = descriptor->settings_;
if (!settings.isValid())
return 0;
/* Translate the Android request settings to libcamera controls. */
camera_metadata_ro_entry_t entry;
if (settings.getEntry(ANDROID_SCALER_CROP_REGION, &entry)) {
const int32_t *data = entry.data.i32;
Rectangle cropRegion{ data[0], data[1],
static_cast<unsigned int>(data[2]),
static_cast<unsigned int>(data[3]) };
ControlList &controls = descriptor->request_->controls();
controls.set(controls::ScalerCrop, cropRegion);
}
return 0;
}
int CameraDevice::processCaptureRequest(camera3_capture_request_t *camera3Request)
{
if (!camera3Request) {
LOG(HAL, Error) << "No capture request provided";
return -EINVAL;
}
if (!camera3Request->num_output_buffers) {
LOG(HAL, Error) << "No output buffers provided";
return -EINVAL;
}
/* Start the camera if that's the first request we handle. */
if (!running_) {
worker_.start();
int ret = camera_->start();
if (ret) {
LOG(HAL, Error) << "Failed to start camera";
return ret;
}
running_ = true;
}
/*
* Save the request descriptors for use at completion time.
* The descriptor and the associated memory reserved here are freed
* at request complete time.
*/
Camera3RequestDescriptor *descriptor =
new Camera3RequestDescriptor(camera_.get(), camera3Request);
LOG(HAL, Debug) << "Queueing Request to libcamera with "
<< descriptor->numBuffers_ << " HAL streams";
for (unsigned int i = 0; i < descriptor->numBuffers_; ++i) {
const camera3_stream_buffer_t *camera3Buffer = &descriptor->buffers_[i];
camera3_stream *camera3Stream = camera3Buffer->stream;
CameraStream *cameraStream = static_cast<CameraStream *>(camera3Stream->priv);
std::stringstream ss;
ss << i << " - (" << camera3Stream->width << "x"
<< camera3Stream->height << ")"
<< "[" << utils::hex(camera3Stream->format) << "] -> "
<< "(" << cameraStream->configuration().size.toString() << ")["
<< cameraStream->configuration().pixelFormat.toString() << "]";
/*
* Inspect the camera stream type, create buffers opportunely
* and add them to the Request if required.
*/
FrameBuffer *buffer = nullptr;
switch (cameraStream->type()) {
case CameraStream::Type::Mapped:
/*
* Mapped streams don't need buffers added to the
* Request.
*/
LOG(HAL, Debug) << ss.str() << " (mapped)";
continue;
case CameraStream::Type::Direct:
/*
* Create a libcamera buffer using the dmabuf
* descriptors of the camera3Buffer for each stream and
* associate it with the Camera3RequestDescriptor for
* lifetime management only.
*/
buffer = createFrameBuffer(*camera3Buffer->buffer);
descriptor->frameBuffers_.emplace_back(buffer);
LOG(HAL, Debug) << ss.str() << " (direct)";
break;
case CameraStream::Type::Internal:
/*
* Get the frame buffer from the CameraStream internal
* buffer pool.
*
* The buffer has to be returned to the CameraStream
* once it has been processed.
*/
buffer = cameraStream->getBuffer();
LOG(HAL, Debug) << ss.str() << " (internal)";
break;
}
if (!buffer) {
LOG(HAL, Error) << "Failed to create buffer";
delete descriptor;
return -ENOMEM;
}
descriptor->request_->addBuffer(cameraStream->stream(), buffer,
camera3Buffer->acquire_fence);
}
/*
* Translate controls from Android to libcamera and queue the request
* to the CameraWorker thread.
*/
int ret = processControls(descriptor);
if (ret)
return ret;
worker_.queueRequest(descriptor->request_.get());
return 0;
}
void CameraDevice::requestComplete(Request *request)
{
const Request::BufferMap &buffers = request->buffers();
camera3_buffer_status status = CAMERA3_BUFFER_STATUS_OK;
std::unique_ptr<CameraMetadata> resultMetadata;
Camera3RequestDescriptor *descriptor =
reinterpret_cast<Camera3RequestDescriptor *>(request->cookie());
if (request->status() != Request::RequestComplete) {
LOG(HAL, Error) << "Request not successfully completed: "
<< request->status();
status = CAMERA3_BUFFER_STATUS_ERROR;
}
/*
* \todo The timestamp used for the metadata is currently always taken
* from the first buffer (which may be the first stream) in the Request.
* It might be appropriate to return a 'correct' (as determined by
* pipeline handlers) timestamp in the Request itself.
*/
uint64_t timestamp = buffers.begin()->second->metadata().timestamp;
resultMetadata = getResultMetadata(descriptor, timestamp);
/* Handle any JPEG compression. */
for (unsigned int i = 0; i < descriptor->numBuffers_; ++i) {
CameraStream *cameraStream =
static_cast<CameraStream *>(descriptor->buffers_[i].stream->priv);
if (cameraStream->camera3Stream().format != HAL_PIXEL_FORMAT_BLOB)
continue;
FrameBuffer *buffer = request->findBuffer(cameraStream->stream());
if (!buffer) {
LOG(HAL, Error) << "Failed to find a source stream buffer";
continue;
}
/*
* \todo Buffer mapping and compression should be moved to a
* separate thread.
*/
MappedCamera3Buffer mapped(*descriptor->buffers_[i].buffer,
PROT_READ | PROT_WRITE);
if (!mapped.isValid()) {
LOG(HAL, Error) << "Failed to mmap android blob buffer";
continue;
}
int ret = cameraStream->process(*buffer, &mapped,
resultMetadata.get());
if (ret) {
status = CAMERA3_BUFFER_STATUS_ERROR;
continue;
}
/*
* Return the FrameBuffer to the CameraStream now that we're
* done processing it.
*/
if (cameraStream->type() == CameraStream::Type::Internal)
cameraStream->putBuffer(buffer);
}
/* Prepare to call back the Android camera stack. */
camera3_capture_result_t captureResult = {};
captureResult.frame_number = descriptor->frameNumber_;
captureResult.num_output_buffers = descriptor->numBuffers_;
for (unsigned int i = 0; i < descriptor->numBuffers_; ++i) {
descriptor->buffers_[i].acquire_fence = -1;
descriptor->buffers_[i].release_fence = -1;
descriptor->buffers_[i].status = status;
}
captureResult.output_buffers =
const_cast<const camera3_stream_buffer_t *>(descriptor->buffers_);
if (status == CAMERA3_BUFFER_STATUS_OK) {
notifyShutter(descriptor->frameNumber_, timestamp);
captureResult.partial_result = 1;
captureResult.result = resultMetadata->get();
}
if (status == CAMERA3_BUFFER_STATUS_ERROR || !captureResult.result) {
/* \todo Improve error handling. In case we notify an error
* because the metadata generation fails, a shutter event has
* already been notified for this frame number before the error
* is here signalled. Make sure the error path plays well with
* the camera stack state machine.
*/
notifyError(descriptor->frameNumber_,
descriptor->buffers_[0].stream);
}
callbacks_->process_capture_result(callbacks_, &captureResult);
delete descriptor;
}
std::string CameraDevice::logPrefix() const
{
return "'" + camera_->id() + "'";
}
void CameraDevice::notifyShutter(uint32_t frameNumber, uint64_t timestamp)
{
camera3_notify_msg_t notify = {};
notify.type = CAMERA3_MSG_SHUTTER;
notify.message.shutter.frame_number = frameNumber;
notify.message.shutter.timestamp = timestamp;
callbacks_->notify(callbacks_, ¬ify);
}
void CameraDevice::notifyError(uint32_t frameNumber, camera3_stream_t *stream)
{
camera3_notify_msg_t notify = {};
/*
* \todo Report and identify the stream number or configuration to
* clarify the stream that failed.
*/
LOG(HAL, Error) << "Error occurred on frame " << frameNumber << " ("
<< toPixelFormat(stream->format).toString() << ")";
notify.type = CAMERA3_MSG_ERROR;
notify.message.error.error_stream = stream;
notify.message.error.frame_number = frameNumber;
notify.message.error.error_code = CAMERA3_MSG_ERROR_REQUEST;
callbacks_->notify(callbacks_, ¬ify);
}
/*
* Produce a set of fixed result metadata.
*/
std::unique_ptr<CameraMetadata>
CameraDevice::getResultMetadata(Camera3RequestDescriptor *descriptor,
int64_t timestamp)
{
const ControlList &metadata = descriptor->request_->metadata();
/*
* \todo Keep this in sync with the actual number of entries.
* Currently: 18 entries, 62 bytes
*/
std::unique_ptr<CameraMetadata> resultMetadata =
std::make_unique<CameraMetadata>(19, 63);
if (!resultMetadata->isValid()) {
LOG(HAL, Error) << "Failed to allocate static metadata";
return nullptr;
}
const uint8_t ae_state = ANDROID_CONTROL_AE_STATE_CONVERGED;
resultMetadata->addEntry(ANDROID_CONTROL_AE_STATE, &ae_state, 1);
const uint8_t ae_lock = ANDROID_CONTROL_AE_LOCK_OFF;
resultMetadata->addEntry(ANDROID_CONTROL_AE_LOCK, &ae_lock, 1);
uint8_t af_state = ANDROID_CONTROL_AF_STATE_INACTIVE;
resultMetadata->addEntry(ANDROID_CONTROL_AF_STATE, &af_state, 1);
const uint8_t awb_state = ANDROID_CONTROL_AWB_STATE_CONVERGED;
resultMetadata->addEntry(ANDROID_CONTROL_AWB_STATE, &awb_state, 1);
const uint8_t awb_lock = ANDROID_CONTROL_AWB_LOCK_OFF;
resultMetadata->addEntry(ANDROID_CONTROL_AWB_LOCK, &awb_lock, 1);
const uint8_t lens_state = ANDROID_LENS_STATE_STATIONARY;
resultMetadata->addEntry(ANDROID_LENS_STATE, &lens_state, 1);
resultMetadata->addEntry(ANDROID_SENSOR_TIMESTAMP, ×tamp, 1);
/* 33.3 msec */
const int64_t rolling_shutter_skew = 33300000;
resultMetadata->addEntry(ANDROID_SENSOR_ROLLING_SHUTTER_SKEW,
&rolling_shutter_skew, 1);
const uint8_t lens_shading_map_mode =
ANDROID_STATISTICS_LENS_SHADING_MAP_MODE_OFF;
resultMetadata->addEntry(ANDROID_STATISTICS_LENS_SHADING_MAP_MODE,
&lens_shading_map_mode, 1);
const uint8_t scene_flicker = ANDROID_STATISTICS_SCENE_FLICKER_NONE;
resultMetadata->addEntry(ANDROID_STATISTICS_SCENE_FLICKER,
&scene_flicker, 1);
/* Add metadata tags reported by libcamera. */
if (metadata.contains(controls::draft::PipelineDepth)) {
uint8_t pipeline_depth =
metadata.get<int32_t>(controls::draft::PipelineDepth);
resultMetadata->addEntry(ANDROID_REQUEST_PIPELINE_DEPTH,
&pipeline_depth, 1);
}
if (metadata.contains(controls::ExposureTime)) {
int32_t exposure = metadata.get(controls::ExposureTime);
resultMetadata->addEntry(ANDROID_SENSOR_EXPOSURE_TIME,
&exposure, 1);
}
if (metadata.contains(controls::ScalerCrop)) {
Rectangle crop = metadata.get(controls::ScalerCrop);
int32_t cropRect[] = {
crop.x, crop.y, static_cast<int32_t>(crop.width),
static_cast<int32_t>(crop.height),
};
resultMetadata->addEntry(ANDROID_SCALER_CROP_REGION, cropRect, 4);
}
/*
* Return the result metadata pack even is not valid: get() will return
* nullptr.
*/
if (!resultMetadata->isValid()) {
LOG(HAL, Error) << "Failed to construct result metadata";
}
return resultMetadata;
}
|