1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
|
/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
* Copyright (C) 2019, Google Inc.
*
* camera_device.cpp - libcamera Android Camera Device
*/
#include "camera_device.h"
#include "camera_ops.h"
#include <tuple>
#include <vector>
#include <libcamera/controls.h>
#include <libcamera/formats.h>
#include <libcamera/property_ids.h>
#include "libcamera/internal/log.h"
#include "libcamera/internal/utils.h"
#include "camera_metadata.h"
#include "system/graphics.h"
using namespace libcamera;
namespace {
/*
* \var camera3Resolutions
* \brief The list of image resolutions defined as mandatory to be supported by
* the Android Camera3 specification
*/
const std::vector<Size> camera3Resolutions = {
{ 320, 240 },
{ 640, 480 },
{ 1280, 720 },
{ 1920, 1080 }
};
/*
* \struct Camera3Format
* \brief Data associated with an Android format identifier
* \var libcameraFormats List of libcamera pixel formats compatible with the
* Android format
* \var scalerFormat The format identifier to be reported to the android
* framework through the static format configuration map
* \var name The human-readable representation of the Android format code
*/
struct Camera3Format {
std::vector<PixelFormat> libcameraFormats;
camera_metadata_enum_android_scaler_available_formats_t scalerFormat;
const char *name;
};
/*
* \var camera3FormatsMap
* \brief Associate Android format code with ancillary data
*/
const std::map<int, const Camera3Format> camera3FormatsMap = {
{
HAL_PIXEL_FORMAT_BLOB, {
{ formats::MJPEG },
ANDROID_SCALER_AVAILABLE_FORMATS_BLOB,
"BLOB"
}
}, {
HAL_PIXEL_FORMAT_YCbCr_420_888, {
{ formats::NV12, formats::NV21 },
ANDROID_SCALER_AVAILABLE_FORMATS_YCbCr_420_888,
"YCbCr_420_888"
}
}, {
/*
* \todo Translate IMPLEMENTATION_DEFINED inspecting the gralloc
* usage flag. For now, copy the YCbCr_420 configuration.
*/
HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED, {
{ formats::NV12, formats::NV21 },
ANDROID_SCALER_AVAILABLE_FORMATS_IMPLEMENTATION_DEFINED,
"IMPLEMENTATION_DEFINED"
}
},
};
} /* namespace */
LOG_DECLARE_CATEGORY(HAL);
/*
* \struct Camera3RequestDescriptor
*
* A utility structure that groups information about a capture request to be
* later re-used at request complete time to notify the framework.
*/
CameraDevice::Camera3RequestDescriptor::Camera3RequestDescriptor(
unsigned int frameNumber, unsigned int numBuffers)
: frameNumber(frameNumber), numBuffers(numBuffers)
{
buffers = new camera3_stream_buffer_t[numBuffers];
}
CameraDevice::Camera3RequestDescriptor::~Camera3RequestDescriptor()
{
delete[] buffers;
}
/*
* \class CameraDevice
*
* The CameraDevice class wraps a libcamera::Camera instance, and implements
* the camera3_device_t interface, bridging calls received from the Android
* camera service to the CameraDevice.
*
* The class translates parameters and operations from the Camera HALv3 API to
* the libcamera API to provide static information for a Camera, create request
* templates for it, process capture requests and then deliver capture results
* back to the framework using the designated callbacks.
*/
CameraDevice::CameraDevice(unsigned int id, const std::shared_ptr<Camera> &camera)
: running_(false), camera_(camera), staticMetadata_(nullptr),
facing_(CAMERA_FACING_FRONT), orientation_(0)
{
camera_->requestCompleted.connect(this, &CameraDevice::requestComplete);
}
CameraDevice::~CameraDevice()
{
if (staticMetadata_)
delete staticMetadata_;
for (auto &it : requestTemplates_)
delete it.second;
}
/*
* Initialize the camera static information.
* This method is called before the camera device is opened.
*/
int CameraDevice::initialize()
{
/* Initialize orientation and facing side of the camera. */
const ControlList &properties = camera_->properties();
if (properties.contains(properties::Location)) {
int32_t location = properties.get(properties::Location);
switch (location) {
case properties::CameraLocationFront:
facing_ = CAMERA_FACING_FRONT;
break;
case properties::CameraLocationBack:
facing_ = CAMERA_FACING_BACK;
break;
case properties::CameraLocationExternal:
facing_ = CAMERA_FACING_EXTERNAL;
break;
}
}
/*
* The Android orientation metadata and libcamera rotation property are
* defined differently but have identical numerical values for Android
* devices such as phones and tablets.
*/
if (properties.contains(properties::Rotation))
orientation_ = properties.get(properties::Rotation);
int ret = camera_->acquire();
if (ret) {
LOG(HAL, Error) << "Failed to temporarily acquire the camera";
return ret;
}
ret = initializeStreamConfigurations();
camera_->release();
return ret;
}
/*
* Initialize the format conversion map to translate from Android format
* identifier to libcamera pixel formats and fill in the list of supported
* stream configurations to be reported to the Android camera framework through
* the static stream configuration metadata.
*/
int CameraDevice::initializeStreamConfigurations()
{
/*
* Get the maximum output resolutions
* \todo Get this from the camera properties once defined
*/
std::unique_ptr<CameraConfiguration> cameraConfig =
camera_->generateConfiguration({ StillCapture });
if (!cameraConfig) {
LOG(HAL, Error) << "Failed to get maximum resolution";
return -EINVAL;
}
StreamConfiguration &cfg = cameraConfig->at(0);
/*
* \todo JPEG - Adjust the maximum available resolution by taking the
* JPEG encoder requirements into account (alignment and aspect ratio).
*/
const Size maxRes = cfg.size;
LOG(HAL, Debug) << "Maximum supported resolution: " << maxRes.toString();
/*
* Build the list of supported image resolutions.
*
* The resolutions listed in camera3Resolution are mandatory to be
* supported, up to the camera maximum resolution.
*
* Augment the list by adding resolutions calculated from the camera
* maximum one.
*/
std::vector<Size> cameraResolutions;
std::copy_if(camera3Resolutions.begin(), camera3Resolutions.end(),
std::back_inserter(cameraResolutions),
[&](const Size &res) { return res < maxRes; });
/*
* The Camera3 specification suggests adding 1/2 and 1/4 of the maximum
* resolution.
*/
for (unsigned int divider = 2;; divider <<= 1) {
Size derivedSize{
maxRes.width / divider,
maxRes.height / divider,
};
if (derivedSize.width < 320 ||
derivedSize.height < 240)
break;
cameraResolutions.push_back(derivedSize);
}
cameraResolutions.push_back(maxRes);
/* Remove duplicated entries from the list of supported resolutions. */
std::sort(cameraResolutions.begin(), cameraResolutions.end());
auto last = std::unique(cameraResolutions.begin(), cameraResolutions.end());
cameraResolutions.erase(last, cameraResolutions.end());
/*
* Build the list of supported camera formats.
*
* To each Android format a list of compatible libcamera formats is
* associated. The first libcamera format that tests successful is added
* to the format translation map used when configuring the streams.
* It is then tested against the list of supported camera resolutions to
* build the stream configuration map reported through the camera static
* metadata.
*/
for (const auto &format : camera3FormatsMap) {
int androidFormat = format.first;
const Camera3Format &camera3Format = format.second;
const std::vector<PixelFormat> &libcameraFormats =
camera3Format.libcameraFormats;
/*
* Test the libcamera formats that can produce images
* compatible with the format defined by Android.
*/
PixelFormat mappedFormat;
for (const PixelFormat &pixelFormat : libcameraFormats) {
/* \todo Fixed mapping for JPEG. */
if (androidFormat == HAL_PIXEL_FORMAT_BLOB) {
mappedFormat = formats::MJPEG;
break;
}
/*
* The stream configuration size can be adjusted,
* not the pixel format.
*
* \todo This could be simplified once all pipeline
* handlers will report the StreamFormats list of
* supported formats.
*/
cfg.pixelFormat = pixelFormat;
CameraConfiguration::Status status = cameraConfig->validate();
if (status != CameraConfiguration::Invalid &&
cfg.pixelFormat == pixelFormat) {
mappedFormat = pixelFormat;
break;
}
}
if (!mappedFormat.isValid()) {
LOG(HAL, Error) << "Failed to map Android format "
<< camera3Format.name << " ("
<< utils::hex(androidFormat) << ")";
return -EINVAL;
}
/*
* Record the mapping and then proceed to generate the
* stream configurations map, by testing the image resolutions.
*/
formatsMap_[androidFormat] = mappedFormat;
for (const Size &res : cameraResolutions) {
cfg.pixelFormat = mappedFormat;
cfg.size = res;
CameraConfiguration::Status status = cameraConfig->validate();
/*
* Unconditionally report we can produce JPEG.
*
* \todo The JPEG stream will be implemented as an
* HAL-only stream, but some cameras can produce it
* directly. As of now, claim support for JPEG without
* inspecting where the JPEG stream is produced.
*/
if (androidFormat != HAL_PIXEL_FORMAT_BLOB &&
status != CameraConfiguration::Valid)
continue;
streamConfigurations_.push_back({ res, camera3Format.scalerFormat });
}
}
LOG(HAL, Debug) << "Collected stream configuration map: ";
for (const auto &entry : streamConfigurations_)
LOG(HAL, Debug) << "{ " << entry.resolution.toString() << " - "
<< utils::hex(entry.androidScalerCode) << " }";
return 0;
}
/*
* Open a camera device. The static information on the camera shall have been
* initialized with a call to CameraDevice::initialize().
*/
int CameraDevice::open(const hw_module_t *hardwareModule)
{
int ret = camera_->acquire();
if (ret) {
LOG(HAL, Error) << "Failed to acquire the camera";
return ret;
}
/* Initialize the hw_device_t in the instance camera3_module_t. */
camera3Device_.common.tag = HARDWARE_DEVICE_TAG;
camera3Device_.common.version = CAMERA_DEVICE_API_VERSION_3_3;
camera3Device_.common.module = (hw_module_t *)hardwareModule;
camera3Device_.common.close = hal_dev_close;
/*
* The camera device operations. These actually implement
* the Android Camera HALv3 interface.
*/
camera3Device_.ops = &hal_dev_ops;
camera3Device_.priv = this;
return 0;
}
void CameraDevice::close()
{
camera_->stop();
camera_->release();
running_ = false;
}
void CameraDevice::setCallbacks(const camera3_callback_ops_t *callbacks)
{
callbacks_ = callbacks;
}
std::tuple<uint32_t, uint32_t> CameraDevice::calculateStaticMetadataSize()
{
/*
* \todo Keep this in sync with the actual number of entries.
* Currently: 50 entries, 647 bytes of static metadata
*/
uint32_t numEntries = 50;
uint32_t byteSize = 647;
/*
* Calculate space occupation in bytes for dynamically built metadata
* entries.
*
* Each stream configuration entry requires 52 bytes:
* 4 32bits integers for ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS
* 1 32bits integer for ANDROID_SCALER_AVAILABLE_FORMATS
* 4 64bits integers for ANDROID_SCALER_AVAILABLE_MIN_FRAME_DURATIONS
*/
byteSize += streamConfigurations_.size() * 52;
return std::make_tuple(numEntries, byteSize);
}
/*
* Return static information for the camera.
*/
const camera_metadata_t *CameraDevice::getStaticMetadata()
{
if (staticMetadata_)
return staticMetadata_->get();
/*
* The here reported metadata are enough to implement a basic capture
* example application, but a real camera implementation will require
* more.
*/
uint32_t numEntries;
uint32_t byteSize;
std::tie(numEntries, byteSize) = calculateStaticMetadataSize();
staticMetadata_ = new CameraMetadata(numEntries, byteSize);
if (!staticMetadata_->isValid()) {
LOG(HAL, Error) << "Failed to allocate static metadata";
delete staticMetadata_;
staticMetadata_ = nullptr;
return nullptr;
}
/* Color correction static metadata. */
std::vector<uint8_t> aberrationModes = {
ANDROID_COLOR_CORRECTION_ABERRATION_MODE_OFF,
};
staticMetadata_->addEntry(ANDROID_COLOR_CORRECTION_AVAILABLE_ABERRATION_MODES,
aberrationModes.data(),
aberrationModes.size());
/* Control static metadata. */
std::vector<uint8_t> aeAvailableAntiBandingModes = {
ANDROID_CONTROL_AE_ANTIBANDING_MODE_OFF,
ANDROID_CONTROL_AE_ANTIBANDING_MODE_50HZ,
ANDROID_CONTROL_AE_ANTIBANDING_MODE_60HZ,
ANDROID_CONTROL_AE_ANTIBANDING_MODE_AUTO,
};
staticMetadata_->addEntry(ANDROID_CONTROL_AE_AVAILABLE_ANTIBANDING_MODES,
aeAvailableAntiBandingModes.data(),
aeAvailableAntiBandingModes.size());
std::vector<uint8_t> aeAvailableModes = {
ANDROID_CONTROL_AE_MODE_ON,
};
staticMetadata_->addEntry(ANDROID_CONTROL_AE_AVAILABLE_MODES,
aeAvailableModes.data(),
aeAvailableModes.size());
std::vector<int32_t> availableAeFpsTarget = {
15, 30,
};
staticMetadata_->addEntry(ANDROID_CONTROL_AE_AVAILABLE_TARGET_FPS_RANGES,
availableAeFpsTarget.data(),
availableAeFpsTarget.size());
std::vector<int32_t> aeCompensationRange = {
0, 0,
};
staticMetadata_->addEntry(ANDROID_CONTROL_AE_COMPENSATION_RANGE,
aeCompensationRange.data(),
aeCompensationRange.size());
const camera_metadata_rational_t aeCompensationStep[] = {
{ 0, 1 }
};
staticMetadata_->addEntry(ANDROID_CONTROL_AE_COMPENSATION_STEP,
aeCompensationStep, 1);
std::vector<uint8_t> availableAfModes = {
ANDROID_CONTROL_AF_MODE_OFF,
};
staticMetadata_->addEntry(ANDROID_CONTROL_AF_AVAILABLE_MODES,
availableAfModes.data(),
availableAfModes.size());
std::vector<uint8_t> availableEffects = {
ANDROID_CONTROL_EFFECT_MODE_OFF,
};
staticMetadata_->addEntry(ANDROID_CONTROL_AVAILABLE_EFFECTS,
availableEffects.data(),
availableEffects.size());
std::vector<uint8_t> availableSceneModes = {
ANDROID_CONTROL_SCENE_MODE_DISABLED,
};
staticMetadata_->addEntry(ANDROID_CONTROL_AVAILABLE_SCENE_MODES,
availableSceneModes.data(),
availableSceneModes.size());
std::vector<uint8_t> availableStabilizationModes = {
ANDROID_CONTROL_VIDEO_STABILIZATION_MODE_OFF,
};
staticMetadata_->addEntry(ANDROID_CONTROL_AVAILABLE_VIDEO_STABILIZATION_MODES,
availableStabilizationModes.data(),
availableStabilizationModes.size());
std::vector<uint8_t> availableAwbModes = {
ANDROID_CONTROL_AWB_MODE_OFF,
};
staticMetadata_->addEntry(ANDROID_CONTROL_AWB_AVAILABLE_MODES,
availableAwbModes.data(),
availableAwbModes.size());
std::vector<int32_t> availableMaxRegions = {
0, 0, 0,
};
staticMetadata_->addEntry(ANDROID_CONTROL_MAX_REGIONS,
availableMaxRegions.data(),
availableMaxRegions.size());
std::vector<uint8_t> sceneModesOverride = {
ANDROID_CONTROL_AE_MODE_ON,
ANDROID_CONTROL_AWB_MODE_AUTO,
ANDROID_CONTROL_AF_MODE_AUTO,
};
staticMetadata_->addEntry(ANDROID_CONTROL_SCENE_MODE_OVERRIDES,
sceneModesOverride.data(),
sceneModesOverride.size());
uint8_t aeLockAvailable = ANDROID_CONTROL_AE_LOCK_AVAILABLE_FALSE;
staticMetadata_->addEntry(ANDROID_CONTROL_AE_LOCK_AVAILABLE,
&aeLockAvailable, 1);
uint8_t awbLockAvailable = ANDROID_CONTROL_AWB_LOCK_AVAILABLE_FALSE;
staticMetadata_->addEntry(ANDROID_CONTROL_AWB_LOCK_AVAILABLE,
&awbLockAvailable, 1);
char availableControlModes = ANDROID_CONTROL_MODE_AUTO;
staticMetadata_->addEntry(ANDROID_CONTROL_AVAILABLE_MODES,
&availableControlModes, 1);
/* JPEG static metadata. */
std::vector<int32_t> availableThumbnailSizes = {
0, 0,
};
staticMetadata_->addEntry(ANDROID_JPEG_AVAILABLE_THUMBNAIL_SIZES,
availableThumbnailSizes.data(),
availableThumbnailSizes.size());
/* Sensor static metadata. */
int32_t pixelArraySize[] = {
2592, 1944,
};
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_PIXEL_ARRAY_SIZE,
&pixelArraySize, 2);
int32_t sensorSizes[] = {
0, 0, 2560, 1920,
};
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_ACTIVE_ARRAY_SIZE,
&sensorSizes, 4);
int32_t sensitivityRange[] = {
32, 2400,
};
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_SENSITIVITY_RANGE,
&sensitivityRange, 2);
uint16_t filterArr = ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT_GRBG;
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT,
&filterArr, 1);
int64_t exposureTimeRange[] = {
100000, 200000000,
};
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_EXPOSURE_TIME_RANGE,
&exposureTimeRange, 2);
staticMetadata_->addEntry(ANDROID_SENSOR_ORIENTATION, &orientation_, 1);
std::vector<int32_t> testPatterModes = {
ANDROID_SENSOR_TEST_PATTERN_MODE_OFF,
};
staticMetadata_->addEntry(ANDROID_SENSOR_AVAILABLE_TEST_PATTERN_MODES,
testPatterModes.data(),
testPatterModes.size());
std::vector<float> physicalSize = {
2592, 1944,
};
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_PHYSICAL_SIZE,
physicalSize.data(),
physicalSize.size());
uint8_t timestampSource = ANDROID_SENSOR_INFO_TIMESTAMP_SOURCE_UNKNOWN;
staticMetadata_->addEntry(ANDROID_SENSOR_INFO_TIMESTAMP_SOURCE,
×tampSource, 1);
/* Statistics static metadata. */
uint8_t faceDetectMode = ANDROID_STATISTICS_FACE_DETECT_MODE_OFF;
staticMetadata_->addEntry(ANDROID_STATISTICS_INFO_AVAILABLE_FACE_DETECT_MODES,
&faceDetectMode, 1);
int32_t maxFaceCount = 0;
staticMetadata_->addEntry(ANDROID_STATISTICS_INFO_MAX_FACE_COUNT,
&maxFaceCount, 1);
/* Sync static metadata. */
int32_t maxLatency = ANDROID_SYNC_MAX_LATENCY_UNKNOWN;
staticMetadata_->addEntry(ANDROID_SYNC_MAX_LATENCY, &maxLatency, 1);
/* Flash static metadata. */
char flashAvailable = ANDROID_FLASH_INFO_AVAILABLE_FALSE;
staticMetadata_->addEntry(ANDROID_FLASH_INFO_AVAILABLE,
&flashAvailable, 1);
/* Lens static metadata. */
std::vector<float> lensApertures = {
2.53 / 100,
};
staticMetadata_->addEntry(ANDROID_LENS_INFO_AVAILABLE_APERTURES,
lensApertures.data(),
lensApertures.size());
uint8_t lensFacing;
switch (facing_) {
default:
case CAMERA_FACING_FRONT:
lensFacing = ANDROID_LENS_FACING_FRONT;
break;
case CAMERA_FACING_BACK:
lensFacing = ANDROID_LENS_FACING_BACK;
break;
case CAMERA_FACING_EXTERNAL:
lensFacing = ANDROID_LENS_FACING_EXTERNAL;
break;
}
staticMetadata_->addEntry(ANDROID_LENS_FACING, &lensFacing, 1);
std::vector<float> lensFocalLenghts = {
1,
};
staticMetadata_->addEntry(ANDROID_LENS_INFO_AVAILABLE_FOCAL_LENGTHS,
lensFocalLenghts.data(),
lensFocalLenghts.size());
std::vector<uint8_t> opticalStabilizations = {
ANDROID_LENS_OPTICAL_STABILIZATION_MODE_OFF,
};
staticMetadata_->addEntry(ANDROID_LENS_INFO_AVAILABLE_OPTICAL_STABILIZATION,
opticalStabilizations.data(),
opticalStabilizations.size());
float hypeFocalDistance = 0;
staticMetadata_->addEntry(ANDROID_LENS_INFO_HYPERFOCAL_DISTANCE,
&hypeFocalDistance, 1);
float minFocusDistance = 0;
staticMetadata_->addEntry(ANDROID_LENS_INFO_MINIMUM_FOCUS_DISTANCE,
&minFocusDistance, 1);
/* Noise reduction modes. */
uint8_t noiseReductionModes = ANDROID_NOISE_REDUCTION_MODE_OFF;
staticMetadata_->addEntry(ANDROID_NOISE_REDUCTION_AVAILABLE_NOISE_REDUCTION_MODES,
&noiseReductionModes, 1);
/* Scaler static metadata. */
float maxDigitalZoom = 1;
staticMetadata_->addEntry(ANDROID_SCALER_AVAILABLE_MAX_DIGITAL_ZOOM,
&maxDigitalZoom, 1);
std::vector<uint32_t> availableStreamFormats;
availableStreamFormats.reserve(streamConfigurations_.size());
std::transform(streamConfigurations_.begin(), streamConfigurations_.end(),
std::back_inserter(availableStreamFormats),
[](const auto &entry) { return entry.androidScalerCode; });
staticMetadata_->addEntry(ANDROID_SCALER_AVAILABLE_FORMATS,
availableStreamFormats.data(),
availableStreamFormats.size());
std::vector<uint32_t> availableStreamConfigurations;
availableStreamConfigurations.reserve(streamConfigurations_.size() * 4);
for (const auto &entry : streamConfigurations_) {
availableStreamConfigurations.push_back(entry.androidScalerCode);
availableStreamConfigurations.push_back(entry.resolution.width);
availableStreamConfigurations.push_back(entry.resolution.height);
availableStreamConfigurations.push_back(
ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT);
}
staticMetadata_->addEntry(ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS,
availableStreamConfigurations.data(),
availableStreamConfigurations.size());
std::vector<int64_t> availableStallDurations = {
ANDROID_SCALER_AVAILABLE_FORMATS_BLOB, 2560, 1920, 33333333,
};
staticMetadata_->addEntry(ANDROID_SCALER_AVAILABLE_STALL_DURATIONS,
availableStallDurations.data(),
availableStallDurations.size());
/* \todo Collect the minimum frame duration from the camera. */
std::vector<int64_t> minFrameDurations;
minFrameDurations.reserve(streamConfigurations_.size() * 4);
for (const auto &entry : streamConfigurations_) {
minFrameDurations.push_back(entry.androidScalerCode);
minFrameDurations.push_back(entry.resolution.width);
minFrameDurations.push_back(entry.resolution.height);
minFrameDurations.push_back(33333333);
}
staticMetadata_->addEntry(ANDROID_SCALER_AVAILABLE_MIN_FRAME_DURATIONS,
minFrameDurations.data(),
minFrameDurations.size());
uint8_t croppingType = ANDROID_SCALER_CROPPING_TYPE_CENTER_ONLY;
staticMetadata_->addEntry(ANDROID_SCALER_CROPPING_TYPE, &croppingType, 1);
/* Info static metadata. */
uint8_t supportedHWLevel = ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL_LIMITED;
staticMetadata_->addEntry(ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL,
&supportedHWLevel, 1);
/* Request static metadata. */
int32_t partialResultCount = 1;
staticMetadata_->addEntry(ANDROID_REQUEST_PARTIAL_RESULT_COUNT,
&partialResultCount, 1);
uint8_t maxPipelineDepth = 2;
staticMetadata_->addEntry(ANDROID_REQUEST_PIPELINE_MAX_DEPTH,
&maxPipelineDepth, 1);
std::vector<uint8_t> availableCapabilities = {
ANDROID_REQUEST_AVAILABLE_CAPABILITIES_BACKWARD_COMPATIBLE,
};
staticMetadata_->addEntry(ANDROID_REQUEST_AVAILABLE_CAPABILITIES,
availableCapabilities.data(),
availableCapabilities.size());
std::vector<int32_t> availableCharacteristicsKeys = {
ANDROID_COLOR_CORRECTION_AVAILABLE_ABERRATION_MODES,
ANDROID_CONTROL_AE_AVAILABLE_ANTIBANDING_MODES,
ANDROID_CONTROL_AE_AVAILABLE_MODES,
ANDROID_CONTROL_AE_AVAILABLE_TARGET_FPS_RANGES,
ANDROID_CONTROL_AE_COMPENSATION_RANGE,
ANDROID_CONTROL_AE_COMPENSATION_STEP,
ANDROID_CONTROL_AF_AVAILABLE_MODES,
ANDROID_CONTROL_AVAILABLE_EFFECTS,
ANDROID_CONTROL_AVAILABLE_SCENE_MODES,
ANDROID_CONTROL_AVAILABLE_VIDEO_STABILIZATION_MODES,
ANDROID_CONTROL_AWB_AVAILABLE_MODES,
ANDROID_CONTROL_MAX_REGIONS,
ANDROID_CONTROL_SCENE_MODE_OVERRIDES,
ANDROID_CONTROL_AE_LOCK_AVAILABLE,
ANDROID_CONTROL_AWB_LOCK_AVAILABLE,
ANDROID_CONTROL_AVAILABLE_MODES,
ANDROID_JPEG_AVAILABLE_THUMBNAIL_SIZES,
ANDROID_SENSOR_INFO_PIXEL_ARRAY_SIZE,
ANDROID_SENSOR_INFO_ACTIVE_ARRAY_SIZE,
ANDROID_SENSOR_INFO_SENSITIVITY_RANGE,
ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT,
ANDROID_SENSOR_INFO_EXPOSURE_TIME_RANGE,
ANDROID_SENSOR_ORIENTATION,
ANDROID_SENSOR_AVAILABLE_TEST_PATTERN_MODES,
ANDROID_SENSOR_INFO_PHYSICAL_SIZE,
ANDROID_SENSOR_INFO_TIMESTAMP_SOURCE,
ANDROID_STATISTICS_INFO_AVAILABLE_FACE_DETECT_MODES,
ANDROID_STATISTICS_INFO_MAX_FACE_COUNT,
ANDROID_SYNC_MAX_LATENCY,
ANDROID_FLASH_INFO_AVAILABLE,
ANDROID_LENS_INFO_AVAILABLE_APERTURES,
ANDROID_LENS_FACING,
ANDROID_LENS_INFO_AVAILABLE_FOCAL_LENGTHS,
ANDROID_LENS_INFO_AVAILABLE_OPTICAL_STABILIZATION,
ANDROID_LENS_INFO_HYPERFOCAL_DISTANCE,
ANDROID_LENS_INFO_MINIMUM_FOCUS_DISTANCE,
ANDROID_NOISE_REDUCTION_AVAILABLE_NOISE_REDUCTION_MODES,
ANDROID_SCALER_AVAILABLE_MAX_DIGITAL_ZOOM,
ANDROID_SCALER_AVAILABLE_FORMATS,
ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS,
ANDROID_SCALER_AVAILABLE_STALL_DURATIONS,
ANDROID_SCALER_AVAILABLE_MIN_FRAME_DURATIONS,
ANDROID_SCALER_CROPPING_TYPE,
ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL,
ANDROID_REQUEST_PARTIAL_RESULT_COUNT,
ANDROID_REQUEST_PIPELINE_MAX_DEPTH,
ANDROID_REQUEST_AVAILABLE_CAPABILITIES,
};
staticMetadata_->addEntry(ANDROID_REQUEST_AVAILABLE_CHARACTERISTICS_KEYS,
availableCharacteristicsKeys.data(),
availableCharacteristicsKeys.size());
std::vector<int32_t> availableRequestKeys = {
ANDROID_CONTROL_AE_MODE,
ANDROID_CONTROL_AE_EXPOSURE_COMPENSATION,
ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER,
ANDROID_CONTROL_AE_LOCK,
ANDROID_CONTROL_AF_TRIGGER,
ANDROID_CONTROL_AWB_MODE,
ANDROID_CONTROL_AWB_LOCK,
ANDROID_FLASH_MODE,
ANDROID_STATISTICS_FACE_DETECT_MODE,
ANDROID_NOISE_REDUCTION_MODE,
ANDROID_COLOR_CORRECTION_ABERRATION_MODE,
ANDROID_CONTROL_CAPTURE_INTENT,
};
staticMetadata_->addEntry(ANDROID_REQUEST_AVAILABLE_REQUEST_KEYS,
availableRequestKeys.data(),
availableRequestKeys.size());
std::vector<int32_t> availableResultKeys = {
ANDROID_CONTROL_AE_STATE,
ANDROID_CONTROL_AE_LOCK,
ANDROID_CONTROL_AF_STATE,
ANDROID_CONTROL_AWB_STATE,
ANDROID_CONTROL_AWB_LOCK,
ANDROID_LENS_STATE,
ANDROID_SCALER_CROP_REGION,
ANDROID_SENSOR_TIMESTAMP,
ANDROID_SENSOR_ROLLING_SHUTTER_SKEW,
ANDROID_SENSOR_EXPOSURE_TIME,
ANDROID_STATISTICS_LENS_SHADING_MAP_MODE,
ANDROID_STATISTICS_SCENE_FLICKER,
};
staticMetadata_->addEntry(ANDROID_REQUEST_AVAILABLE_RESULT_KEYS,
availableResultKeys.data(),
availableResultKeys.size());
if (!staticMetadata_->isValid()) {
LOG(HAL, Error) << "Failed to construct static metadata";
delete staticMetadata_;
staticMetadata_ = nullptr;
return nullptr;
}
return staticMetadata_->get();
}
/*
* Produce a metadata pack to be used as template for a capture request.
*/
const camera_metadata_t *CameraDevice::constructDefaultRequestSettings(int type)
{
auto it = requestTemplates_.find(type);
if (it != requestTemplates_.end())
return it->second->get();
/* Use the capture intent matching the requested template type. */
uint8_t captureIntent;
switch (type) {
case CAMERA3_TEMPLATE_PREVIEW:
captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_PREVIEW;
break;
case CAMERA3_TEMPLATE_STILL_CAPTURE:
captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_STILL_CAPTURE;
break;
case CAMERA3_TEMPLATE_VIDEO_RECORD:
captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_VIDEO_RECORD;
break;
case CAMERA3_TEMPLATE_VIDEO_SNAPSHOT:
captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_VIDEO_SNAPSHOT;
break;
case CAMERA3_TEMPLATE_ZERO_SHUTTER_LAG:
captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_ZERO_SHUTTER_LAG;
break;
case CAMERA3_TEMPLATE_MANUAL:
captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_MANUAL;
break;
default:
LOG(HAL, Error) << "Invalid template request type: " << type;
return nullptr;
}
/*
* \todo Keep this in sync with the actual number of entries.
* Currently: 12 entries, 15 bytes
*/
CameraMetadata *requestTemplate = new CameraMetadata(15, 20);
if (!requestTemplate->isValid()) {
LOG(HAL, Error) << "Failed to allocate template metadata";
delete requestTemplate;
return nullptr;
}
uint8_t aeMode = ANDROID_CONTROL_AE_MODE_ON;
requestTemplate->addEntry(ANDROID_CONTROL_AE_MODE,
&aeMode, 1);
int32_t aeExposureCompensation = 0;
requestTemplate->addEntry(ANDROID_CONTROL_AE_EXPOSURE_COMPENSATION,
&aeExposureCompensation, 1);
uint8_t aePrecaptureTrigger = ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER_IDLE;
requestTemplate->addEntry(ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER,
&aePrecaptureTrigger, 1);
uint8_t aeLock = ANDROID_CONTROL_AE_LOCK_OFF;
requestTemplate->addEntry(ANDROID_CONTROL_AE_LOCK,
&aeLock, 1);
uint8_t afTrigger = ANDROID_CONTROL_AF_TRIGGER_IDLE;
requestTemplate->addEntry(ANDROID_CONTROL_AF_TRIGGER,
&afTrigger, 1);
uint8_t awbMode = ANDROID_CONTROL_AWB_MODE_AUTO;
requestTemplate->addEntry(ANDROID_CONTROL_AWB_MODE,
&awbMode, 1);
uint8_t awbLock = ANDROID_CONTROL_AWB_LOCK_OFF;
requestTemplate->addEntry(ANDROID_CONTROL_AWB_LOCK,
&awbLock, 1);
uint8_t flashMode = ANDROID_FLASH_MODE_OFF;
requestTemplate->addEntry(ANDROID_FLASH_MODE,
&flashMode, 1);
uint8_t faceDetectMode = ANDROID_STATISTICS_FACE_DETECT_MODE_OFF;
requestTemplate->addEntry(ANDROID_STATISTICS_FACE_DETECT_MODE,
&faceDetectMode, 1);
uint8_t noiseReduction = ANDROID_NOISE_REDUCTION_MODE_OFF;
requestTemplate->addEntry(ANDROID_NOISE_REDUCTION_MODE,
&noiseReduction, 1);
uint8_t aberrationMode = ANDROID_COLOR_CORRECTION_ABERRATION_MODE_OFF;
requestTemplate->addEntry(ANDROID_COLOR_CORRECTION_ABERRATION_MODE,
&aberrationMode, 1);
requestTemplate->addEntry(ANDROID_CONTROL_CAPTURE_INTENT,
&captureIntent, 1);
if (!requestTemplate->isValid()) {
LOG(HAL, Error) << "Failed to construct request template";
delete requestTemplate;
return nullptr;
}
requestTemplates_[type] = requestTemplate;
return requestTemplate->get();
}
PixelFormat CameraDevice::toPixelFormat(int format)
{
/* Translate Android format code to libcamera pixel format. */
auto it = formatsMap_.find(format);
if (it == formatsMap_.end()) {
LOG(HAL, Error) << "Requested format " << utils::hex(format)
<< " not supported";
return PixelFormat();
}
return it->second;
}
/*
* Inspect the stream_list to produce a list of StreamConfiguration to
* be use to configure the Camera.
*/
int CameraDevice::configureStreams(camera3_stream_configuration_t *stream_list)
{
/*
* Generate an empty configuration, and construct a StreamConfiguration
* for each camera3_stream to add to it.
*/
config_ = camera_->generateConfiguration();
if (!config_) {
LOG(HAL, Error) << "Failed to generate camera configuration";
return -EINVAL;
}
for (unsigned int i = 0; i < stream_list->num_streams; ++i) {
camera3_stream_t *stream = stream_list->streams[i];
PixelFormat format = toPixelFormat(stream->format);
LOG(HAL, Info) << "Stream #" << i
<< ", direction: " << stream->stream_type
<< ", width: " << stream->width
<< ", height: " << stream->height
<< ", format: " << utils::hex(stream->format)
<< " (" << format.toString() << ")";
if (!format.isValid())
return -EINVAL;
StreamConfiguration streamConfiguration;
streamConfiguration.size.width = stream->width;
streamConfiguration.size.height = stream->height;
streamConfiguration.pixelFormat = format;
config_->addConfiguration(streamConfiguration);
}
switch (config_->validate()) {
case CameraConfiguration::Valid:
break;
case CameraConfiguration::Adjusted:
LOG(HAL, Info) << "Camera configuration adjusted";
config_.reset();
return -EINVAL;
case CameraConfiguration::Invalid:
LOG(HAL, Info) << "Camera configuration invalid";
config_.reset();
return -EINVAL;
}
for (unsigned int i = 0; i < stream_list->num_streams; ++i) {
camera3_stream_t *stream = stream_list->streams[i];
StreamConfiguration &streamConfiguration = config_->at(i);
/* Use the bufferCount confirmed by the validation process. */
stream->max_buffers = streamConfiguration.bufferCount;
}
/*
* Once the CameraConfiguration has been adjusted/validated
* it can be applied to the camera.
*/
int ret = camera_->configure(config_.get());
if (ret) {
LOG(HAL, Error) << "Failed to configure camera '"
<< camera_->name() << "'";
return ret;
}
return 0;
}
FrameBuffer *CameraDevice::createFrameBuffer(const buffer_handle_t camera3buffer)
{
std::vector<FrameBuffer::Plane> planes;
for (unsigned int i = 0; i < 3; i++) {
FrameBuffer::Plane plane;
plane.fd = FileDescriptor(camera3buffer->data[i]);
/*
* Setting length to zero here is OK as the length is only used
* to map the memory of the plane. Libcamera do not need to poke
* at the memory content queued by the HAL.
*/
plane.length = 0;
planes.push_back(std::move(plane));
}
return new FrameBuffer(std::move(planes));
}
int CameraDevice::processCaptureRequest(camera3_capture_request_t *camera3Request)
{
StreamConfiguration *streamConfiguration = &config_->at(0);
Stream *stream = streamConfiguration->stream();
if (camera3Request->num_output_buffers != 1) {
LOG(HAL, Error) << "Invalid number of output buffers: "
<< camera3Request->num_output_buffers;
return -EINVAL;
}
/* Start the camera if that's the first request we handle. */
if (!running_) {
int ret = camera_->start();
if (ret) {
LOG(HAL, Error) << "Failed to start camera";
return ret;
}
running_ = true;
}
/*
* Queue a request for the Camera with the provided dmabuf file
* descriptors.
*/
const camera3_stream_buffer_t *camera3Buffers =
camera3Request->output_buffers;
/*
* Save the request descriptors for use at completion time.
* The descriptor and the associated memory reserved here are freed
* at request complete time.
*/
Camera3RequestDescriptor *descriptor =
new Camera3RequestDescriptor(camera3Request->frame_number,
camera3Request->num_output_buffers);
Request *request =
camera_->createRequest(reinterpret_cast<uint64_t>(descriptor));
for (unsigned int i = 0; i < descriptor->numBuffers; ++i) {
/*
* Keep track of which stream the request belongs to and store
* the native buffer handles.
*
* \todo Currently we only support one capture buffer. Copy
* all of them to be ready once we'll support more.
*/
descriptor->buffers[i].stream = camera3Buffers[i].stream;
descriptor->buffers[i].buffer = camera3Buffers[i].buffer;
}
/*
* Create a libcamera buffer using the dmabuf descriptors of the first
* and (currently) only supported request buffer.
*/
FrameBuffer *buffer = createFrameBuffer(*camera3Buffers[0].buffer);
if (!buffer) {
LOG(HAL, Error) << "Failed to create buffer";
delete request;
delete descriptor;
return -ENOMEM;
}
request->addBuffer(stream, buffer);
int ret = camera_->queueRequest(request);
if (ret) {
LOG(HAL, Error) << "Failed to queue request";
delete request;
delete descriptor;
return ret;
}
return 0;
}
void CameraDevice::requestComplete(Request *request)
{
const std::map<Stream *, FrameBuffer *> &buffers = request->buffers();
FrameBuffer *buffer = buffers.begin()->second;
camera3_buffer_status status = CAMERA3_BUFFER_STATUS_OK;
std::unique_ptr<CameraMetadata> resultMetadata;
if (request->status() != Request::RequestComplete) {
LOG(HAL, Error) << "Request not succesfully completed: "
<< request->status();
status = CAMERA3_BUFFER_STATUS_ERROR;
}
/* Prepare to call back the Android camera stack. */
Camera3RequestDescriptor *descriptor =
reinterpret_cast<Camera3RequestDescriptor *>(request->cookie());
camera3_capture_result_t captureResult = {};
captureResult.frame_number = descriptor->frameNumber;
captureResult.num_output_buffers = descriptor->numBuffers;
for (unsigned int i = 0; i < descriptor->numBuffers; ++i) {
/*
* \todo Currently we only support one capture buffer. Prepare
* all of them to be ready once we'll support more.
*/
descriptor->buffers[i].acquire_fence = -1;
descriptor->buffers[i].release_fence = -1;
descriptor->buffers[i].status = status;
}
captureResult.output_buffers =
const_cast<const camera3_stream_buffer_t *>(descriptor->buffers);
if (status == CAMERA3_BUFFER_STATUS_OK) {
notifyShutter(descriptor->frameNumber,
buffer->metadata().timestamp);
captureResult.partial_result = 1;
resultMetadata = getResultMetadata(descriptor->frameNumber,
buffer->metadata().timestamp);
captureResult.result = resultMetadata->get();
}
if (status == CAMERA3_BUFFER_STATUS_ERROR || !captureResult.result) {
/* \todo Improve error handling. In case we notify an error
* because the metadata generation fails, a shutter event has
* already been notified for this frame number before the error
* is here signalled. Make sure the error path plays well with
* the camera stack state machine.
*/
notifyError(descriptor->frameNumber,
descriptor->buffers[0].stream);
}
callbacks_->process_capture_result(callbacks_, &captureResult);
delete descriptor;
delete buffer;
}
std::string CameraDevice::logPrefix() const
{
return "'" + camera_->name() + "'";
}
void CameraDevice::notifyShutter(uint32_t frameNumber, uint64_t timestamp)
{
camera3_notify_msg_t notify = {};
notify.type = CAMERA3_MSG_SHUTTER;
notify.message.shutter.frame_number = frameNumber;
notify.message.shutter.timestamp = timestamp;
callbacks_->notify(callbacks_, ¬ify);
}
void CameraDevice::notifyError(uint32_t frameNumber, camera3_stream_t *stream)
{
camera3_notify_msg_t notify = {};
notify.type = CAMERA3_MSG_ERROR;
notify.message.error.error_stream = stream;
notify.message.error.frame_number = frameNumber;
notify.message.error.error_code = CAMERA3_MSG_ERROR_REQUEST;
callbacks_->notify(callbacks_, ¬ify);
}
/*
* Produce a set of fixed result metadata.
*/
std::unique_ptr<CameraMetadata> CameraDevice::getResultMetadata(int frame_number,
int64_t timestamp)
{
/*
* \todo Keep this in sync with the actual number of entries.
* Currently: 12 entries, 36 bytes
*/
std::unique_ptr<CameraMetadata> resultMetadata =
std::make_unique<CameraMetadata>(15, 50);
if (!resultMetadata->isValid()) {
LOG(HAL, Error) << "Failed to allocate static metadata";
return nullptr;
}
const uint8_t ae_state = ANDROID_CONTROL_AE_STATE_CONVERGED;
resultMetadata->addEntry(ANDROID_CONTROL_AE_STATE, &ae_state, 1);
const uint8_t ae_lock = ANDROID_CONTROL_AE_LOCK_OFF;
resultMetadata->addEntry(ANDROID_CONTROL_AE_LOCK, &ae_lock, 1);
uint8_t af_state = ANDROID_CONTROL_AF_STATE_INACTIVE;
resultMetadata->addEntry(ANDROID_CONTROL_AF_STATE, &af_state, 1);
const uint8_t awb_state = ANDROID_CONTROL_AWB_STATE_CONVERGED;
resultMetadata->addEntry(ANDROID_CONTROL_AWB_STATE, &awb_state, 1);
const uint8_t awb_lock = ANDROID_CONTROL_AWB_LOCK_OFF;
resultMetadata->addEntry(ANDROID_CONTROL_AWB_LOCK, &awb_lock, 1);
const uint8_t lens_state = ANDROID_LENS_STATE_STATIONARY;
resultMetadata->addEntry(ANDROID_LENS_STATE, &lens_state, 1);
int32_t sensorSizes[] = {
0, 0, 2560, 1920,
};
resultMetadata->addEntry(ANDROID_SCALER_CROP_REGION, sensorSizes, 4);
resultMetadata->addEntry(ANDROID_SENSOR_TIMESTAMP, ×tamp, 1);
/* 33.3 msec */
const int64_t rolling_shutter_skew = 33300000;
resultMetadata->addEntry(ANDROID_SENSOR_ROLLING_SHUTTER_SKEW,
&rolling_shutter_skew, 1);
/* 16.6 msec */
const int64_t exposure_time = 16600000;
resultMetadata->addEntry(ANDROID_SENSOR_EXPOSURE_TIME,
&exposure_time, 1);
const uint8_t lens_shading_map_mode =
ANDROID_STATISTICS_LENS_SHADING_MAP_MODE_OFF;
resultMetadata->addEntry(ANDROID_STATISTICS_LENS_SHADING_MAP_MODE,
&lens_shading_map_mode, 1);
const uint8_t scene_flicker = ANDROID_STATISTICS_SCENE_FLICKER_NONE;
resultMetadata->addEntry(ANDROID_STATISTICS_SCENE_FLICKER,
&scene_flicker, 1);
/*
* Return the result metadata pack even is not valid: get() will return
* nullptr.
*/
if (!resultMetadata->isValid()) {
LOG(HAL, Error) << "Failed to construct result metadata";
}
return resultMetadata;
}
|