summaryrefslogtreecommitdiff
path: root/src/libcamera/device_enumerator.cpp
blob: f2e055de6477544d74e8eb1478b74fdca2d122e2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
 * Copyright (C) 2018, Google Inc.
 *
 * device_enumerator.cpp - Enumeration and matching
 */

#include "libcamera/internal/device_enumerator.h"

#include <string.h>

#include <libcamera/base/log.h>

#include "libcamera/internal/device_enumerator_sysfs.h"
#include "libcamera/internal/device_enumerator_udev.h"
#include "libcamera/internal/media_device.h"

/**
 * \file device_enumerator.h
 * \brief Enumeration and matching of media devices
 *
 * The purpose of device enumeration and matching is to find media devices in
 * the system and map them to pipeline handlers.
 *
 * At the core of the enumeration is the DeviceEnumerator class, responsible
 * for enumerating all media devices in the system. It handles all interactions
 * with the operating system in a platform-specific way. For each media device
 * found an instance of MediaDevice is created to store information about the
 * device gathered from the kernel through the Media Controller API.
 *
 * The DeviceEnumerator can enumerate all or specific media devices in the
 * system. When a new media device is added the enumerator creates a
 * corresponding MediaDevice instance.
 *
 * The enumerator supports searching among enumerated devices based on criteria
 * expressed in a DeviceMatch object.
 */

namespace libcamera {

LOG_DEFINE_CATEGORY(DeviceEnumerator)

/**
 * \class DeviceMatch
 * \brief Description of a media device search pattern
 *
 * The DeviceMatch class describes a media device using properties from the
 * Media Controller struct media_device_info, entity names in the media graph
 * or other properties that can be used to identify a media device.
 *
 * The description is meant to be filled by pipeline managers and passed to a
 * device enumerator to find matching media devices.
 *
 * A DeviceMatch is created with a specific Linux device driver in mind,
 * therefore the name of the driver is a required property. One or more Entity
 * names can be added as match criteria.
 *
 * Pipeline handlers are recommended to add entities to DeviceMatch as
 * appropriare to ensure that the media device they need can be uniquely
 * identified. This is useful when the corresponding kernel driver can produce
 * different graphs, for instance as a result of different driver versions or
 * hardware configurations, and not all those graphs are suitable for a pipeline
 * handler.
 */

/**
 * \brief Construct a media device search pattern
 * \param[in] driver The Linux device driver name that created the media device
 */
DeviceMatch::DeviceMatch(const std::string &driver)
	: driver_(driver)
{
}

/**
 * \brief Add a media entity name to the search pattern
 * \param[in] entity The name of the entity in the media graph
 */
void DeviceMatch::add(const std::string &entity)
{
	entities_.push_back(entity);
}

/**
 * \brief Compare a search pattern with a media device
 * \param[in] device The media device
 *
 * Matching is performed on the Linux device driver name and entity names from
 * the media graph. A match is found if both the driver name matches and the
 * media device contains all the entities listed in the search pattern.
 *
 * \return true if the media device matches the search pattern, false otherwise
 */
bool DeviceMatch::match(const MediaDevice *device) const
{
	if (driver_ != device->driver())
		return false;

	for (const std::string &name : entities_) {
		bool found = false;

		for (const MediaEntity *entity : device->entities()) {
			if (name == entity->name()) {
				found = true;
				break;
			}
		}

		if (!found)
			return false;
	}

	return true;
}

/**
 * \class DeviceEnumerator
 * \brief Enumerate, store and search media devices
 *
 * The DeviceEnumerator class is responsible for all interactions with the
 * operating system related to media devices. It enumerates all media devices
 * in the system, and for each device found creates an instance of the
 * MediaDevice class and stores it internally. The list of media devices can
 * then be searched using DeviceMatch search patterns.
 *
 * The enumerator also associates media device entities with device node paths.
 */

/**
 * \brief Create a new device enumerator matching the systems capabilities
 *
 * Depending on how the operating system handles device detection, hot-plug
 * notification and device node lookup, different device enumerator
 * implementations may be needed. This function creates the best enumerator for
 * the operating system based on the available resources. Not all different
 * enumerator types are guaranteed to support all features.
 *
 * \return A pointer to the newly created device enumerator on success, or
 * nullptr if an error occurs
 */
std::unique_ptr<DeviceEnumerator> DeviceEnumerator::create()
{
	std::unique_ptr<DeviceEnumerator> enumerator;

#ifdef HAVE_LIBUDEV
	enumerator = std::make_unique<DeviceEnumeratorUdev>();
	if (!enumerator->init())
		return enumerator;
#endif

	/*
	 * Either udev is not available or udev initialization failed. Fall back
	 * on the sysfs enumerator.
	 */
	enumerator = std::make_unique<DeviceEnumeratorSysfs>();
	if (!enumerator->init())
		return enumerator;

	return nullptr;
}

DeviceEnumerator::~DeviceEnumerator()
{
	for (const std::shared_ptr<MediaDevice> &media : devices_) {
		if (media->busy())
			LOG(DeviceEnumerator, Error)
				<< "Removing media device " << media->deviceNode()
				<< " while still in use";
	}
}

/**
 * \fn DeviceEnumerator::init()
 * \brief Initialize the enumerator
 * \return 0 on success or a negative error code otherwise
 * \retval -EBUSY the enumerator has already been initialized
 * \retval -ENODEV the enumerator can't enumerate devices
 */

/**
 * \fn DeviceEnumerator::enumerate()
 * \brief Enumerate all media devices in the system
 *
 * This function finds and add all media devices in the system to the
 * enumerator. It shall be implemented by all subclasses of DeviceEnumerator
 * using system-specific methods.
 *
 * Individual media devices that can't be properly enumerated shall be skipped
 * with a warning message logged, without returning an error. Only errors that
 * prevent enumeration altogether shall be fatal.
 *
 * \context This function is \threadbound.
 *
 * \return 0 on success or a negative error code otherwise
 */

/**
 * \brief Create a media device instance
 * \param[in] deviceNode path to the media device to create
 *
 * Create a media device for the \a deviceNode, open it, and populate its
 * media graph. The device enumerator shall then populate the media device by
 * associating device nodes with entities using MediaEntity::setDeviceNode().
 * This process is specific to each device enumerator, and the device enumerator
 * shall ensure that device nodes are ready to be used (for instance, if
 * applicable, by waiting for device nodes to be created and access permissions
 * to be set by the system). Once done, it shall add the media device to the
 * system with addDevice().
 *
 * \return Created media device instance on success, or nullptr otherwise
 */
std::unique_ptr<MediaDevice> DeviceEnumerator::createDevice(const std::string &deviceNode)
{
	std::unique_ptr<MediaDevice> media = std::make_unique<MediaDevice>(deviceNode);

	int ret = media->populate();
	if (ret < 0) {
		LOG(DeviceEnumerator, Info)
			<< "Unable to populate media device " << deviceNode
			<< " (" << strerror(-ret) << "), skipping";
		return nullptr;
	}

	LOG(DeviceEnumerator, Debug)
		<< "New media device \"" << media->driver()
		<< "\" created from " << deviceNode;

	return media;
}

/**
* \var DeviceEnumerator::devicesAdded
* \brief Notify of new media devices being found
*
* This signal is emitted when the device enumerator finds new media devices in
* the system. It may be emitted for every newly detected device, or once for
* multiple devices, at the discretion of the device enumerator. Not all device
* enumerator types may support dynamic detection of new devices.
*/

/**
 * \brief Add a media device to the enumerator
 * \param[in] media media device instance to add
 *
 * Store the media device in the internal list for later matching with
 * pipeline handlers. \a media shall be created with createDevice() first.
 * This function shall be called after all members of the entities of the
 * media graph have been confirmed to be initialized.
 */
void DeviceEnumerator::addDevice(std::unique_ptr<MediaDevice> media)
{
	LOG(DeviceEnumerator, Debug)
		<< "Added device " << media->deviceNode() << ": " << media->driver();

	devices_.push_back(std::move(media));

	/* \todo To batch multiple additions, emit with a small delay here. */
	devicesAdded.emit();
}

/**
 * \brief Remove a media device from the enumerator
 * \param[in] deviceNode Path to the media device to remove
 *
 * Remove the media device identified by \a deviceNode previously added to the
 * enumerator with addDevice(). The media device's MediaDevice::disconnected
 * signal is emitted.
 */
void DeviceEnumerator::removeDevice(const std::string &deviceNode)
{
	std::shared_ptr<MediaDevice> media;

	for (auto iter = devices_.begin(); iter != devices_.end(); ++iter) {
		if ((*iter)->deviceNode() == deviceNode) {
			media = std::move(*iter);
			devices_.erase(iter);
			break;
		}
	}

	if (!media) {
		LOG(DeviceEnumerator, Warning)
			<< "Media device for node " << deviceNode
			<< " not found";
		return;
	}

	LOG(DeviceEnumerator, Debug)
		<< "Media device for node " << deviceNode << " removed.";

	media->disconnected.emit();
}

/**
 * \brief Search available media devices for a pattern match
 * \param[in] dm Search pattern
 *
 * Search in the enumerated media devices that are not already in use for a
 * match described in \a dm. If a match is found and the caller intends to use
 * it the caller is responsible for acquiring the MediaDevice object and
 * releasing it when done with it.
 *
 * \return pointer to the matching MediaDevice, or nullptr if no match is found
 */
std::shared_ptr<MediaDevice> DeviceEnumerator::search(const DeviceMatch &dm)
{
	for (std::shared_ptr<MediaDevice> &media : devices_) {
		if (media->busy())
			continue;

		if (dm.match(media.get())) {
			LOG(DeviceEnumerator, Debug)
				<< "Successful match for media device \""
				<< media->driver() << "\"";
			return media;
		}
	}

	return nullptr;
}

} /* namespace libcamera */
>1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
 * Copyright (C) 2021, Google Inc.
 *
 * camera_capabilities.cpp - Camera static properties manager
 */

#include "camera_capabilities.h"

#include <algorithm>
#include <array>
#include <cmath>
#include <map>
#include <type_traits>

#include <hardware/camera3.h>

#include <libcamera/base/log.h>

#include <libcamera/control_ids.h>
#include <libcamera/controls.h>
#include <libcamera/property_ids.h>

#include "libcamera/internal/formats.h"

using namespace libcamera;

LOG_DECLARE_CATEGORY(HAL)

namespace {

/*
 * \var camera3Resolutions
 * \brief The list of image resolutions defined as mandatory to be supported by
 * the Android Camera3 specification
 */
const std::vector<Size> camera3Resolutions = {
	{ 320, 240 },
	{ 640, 480 },
	{ 1280, 720 },
	{ 1920, 1080 }
};

/*
 * \struct Camera3Format
 * \brief Data associated with an Android format identifier
 * \var libcameraFormats List of libcamera pixel formats compatible with the
 * Android format
 * \var name The human-readable representation of the Android format code
 */
struct Camera3Format {
	std::vector<PixelFormat> libcameraFormats;
	bool mandatory;
	const char *name;
};

/*
 * \var camera3FormatsMap
 * \brief Associate Android format code with ancillary data
 */
const std::map<int, const Camera3Format> camera3FormatsMap = {
	{
		HAL_PIXEL_FORMAT_BLOB, {
			{ formats::MJPEG },
			true,
			"BLOB"
		}
	}, {
		HAL_PIXEL_FORMAT_YCbCr_420_888, {
			{ formats::NV12, formats::NV21 },
			true,
			"YCbCr_420_888"
		}
	}, {
		/*
		 * \todo Translate IMPLEMENTATION_DEFINED inspecting the gralloc
		 * usage flag. For now, copy the YCbCr_420 configuration.
		 */
		HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED, {
			{ formats::NV12, formats::NV21 },
			true,
			"IMPLEMENTATION_DEFINED"
		}
	}, {
		HAL_PIXEL_FORMAT_RAW10, {
			{
				formats::SBGGR10_CSI2P,
				formats::SGBRG10_CSI2P,
				formats::SGRBG10_CSI2P,
				formats::SRGGB10_CSI2P
			},
			false,
			"RAW10"
		}
	}, {
		HAL_PIXEL_FORMAT_RAW12, {
			{
				formats::SBGGR12_CSI2P,
				formats::SGBRG12_CSI2P,
				formats::SGRBG12_CSI2P,
				formats::SRGGB12_CSI2P
			},
			false,
			"RAW12"
		}
	}, {
		HAL_PIXEL_FORMAT_RAW16, {
			{
				formats::SBGGR16,
				formats::SGBRG16,
				formats::SGRBG16,
				formats::SRGGB16
			},
			false,
			"RAW16"
		}
	},
};

const std::map<camera_metadata_enum_android_info_supported_hardware_level, std::string>
hwLevelStrings = {
	{ ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL_LIMITED,  "LIMITED" },
	{ ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL_FULL,     "FULL" },
	{ ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL_LEGACY,   "LEGACY" },
	{ ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL_3,        "LEVEL_3" },
	{ ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL_EXTERNAL, "EXTERNAL" },
};

enum class ControlRange {
	Min,
	Def,
	Max,
};

/**
 * \brief Set Android metadata from libcamera ControlInfo or a default value
 * \tparam T Type of the control in libcamera
 * \tparam U Type of the metadata in Android
 * \param[in] metadata Android metadata pack to add the control value to
 * \param[in] tag Android metadata tag
 * \param[in] controlsInfo libcamera ControlInfoMap from which to find the control info
 * \param[in] control libcamera ControlId to find from \a controlsInfo
 * \param[in] controlRange Whether to use the min, def, or max value from the control info
 * \param[in] defaultValue The value to set in \a metadata if \a control is not found
 *
 * Set the Android metadata entry in \a metadata with tag \a tag based on the
 * control info found for the libcamera control \a control in the libcamera
 * ControlInfoMap \a controlsInfo. If no libcamera ControlInfo is found, then
 * the Android metadata entry is set to \a defaultValue.
 *
 * This function is for scalar values.
 */
template<typename T, typename U>
U setMetadata(CameraMetadata *metadata, uint32_t tag,
	      const ControlInfoMap &controlsInfo, const Control<T> &control,
	      enum ControlRange controlRange, const U defaultValue)
{
	U value = defaultValue;

	const auto &info = controlsInfo.find(&control);
	if (info != controlsInfo.end()) {
		switch (controlRange) {
		case ControlRange::Min:
			value = static_cast<U>(info->second.min().template get<T>());
			break;
		case ControlRange::Def:
			value = static_cast<U>(info->second.def().template get<T>());
			break;
		case ControlRange::Max:
			value = static_cast<U>(info->second.max().template get<T>());
			break;
		}
	}

	metadata->addEntry(tag, value);
	return value;
}

/**
 * \brief Set Android metadata from libcamera ControlInfo or a default value
 * \tparam T Type of the control in libcamera
 * \tparam U Type of the metadata in Android
 * \param[in] metadata Android metadata pack to add the control value to
 * \param[in] tag Android metadata tag
 * \param[in] controlsInfo libcamera ControlInfoMap from which to find the control info
 * \param[in] control libcamera ControlId to find from \a controlsInfo
 * \param[in] defaultVector The value to set in \a metadata if \a control is not found
 *
 * Set the Android metadata entry in \a metadata with tag \a tag based on the
 * control info found for the libcamera control \a control in the libcamera
 * ControlInfoMap \a controlsInfo. If no libcamera ControlInfo is found, then
 * the Android metadata entry is set to \a defaultVector.
 *
 * This function is for vector values.
 */
template<typename T, typename U>
std::vector<U> setMetadata(CameraMetadata *metadata, uint32_t tag,
			   const ControlInfoMap &controlsInfo,
			   const Control<T> &control,
			   const std::vector<U> &defaultVector)
{
	const auto &info = controlsInfo.find(&control);
	if (info == controlsInfo.end()) {
		metadata->addEntry(tag, defaultVector);
		return defaultVector;
	}

	std::vector<U> values(info->second.values().size());
	for (const auto &value : info->second.values())
		values.push_back(static_cast<U>(value.template get<T>()));
	metadata->addEntry(tag, values);

	return values;
}

} /* namespace */

bool CameraCapabilities::validateManualSensorCapability()
{
	const char *noMode = "Manual sensor capability unavailable: ";

	if (!staticMetadata_->entryContains<uint8_t>(ANDROID_CONTROL_AE_AVAILABLE_MODES,
						     ANDROID_CONTROL_AE_MODE_OFF)) {
		LOG(HAL, Info) << noMode << "missing AE mode off";
		return false;
	}

	if (!staticMetadata_->entryContains<uint8_t>(ANDROID_CONTROL_AE_LOCK_AVAILABLE,
						     ANDROID_CONTROL_AE_LOCK_AVAILABLE_TRUE)) {
		LOG(HAL, Info) << noMode << "missing AE lock";
		return false;
	}

	/*
	 * \todo Return true here after we satisfy all the requirements:
	 * https://developer.android.com/reference/android/hardware/camera2/CameraMetadata#REQUEST_AVAILABLE_CAPABILITIES_MANUAL_SENSOR
	 * Manual frame duration control
	 *     android.sensor.frameDuration
	 *     android.sensor.info.maxFrameDuration
	 * Manual exposure control
	 *     android.sensor.exposureTime
	 *     android.sensor.info.exposureTimeRange
	 * Manual sensitivity control
	 *     android.sensor.sensitivity
	 *     android.sensor.info.sensitivityRange
	 * Manual lens control (if the lens is adjustable)
	 *     android.lens.*
	 * Manual flash control (if a flash unit is present)
	 *     android.flash.*
	 * Manual black level locking
	 *     android.blackLevel.lock
	 * Auto exposure lock
	 *     android.control.aeLock
	 */
	return false;
}

bool CameraCapabilities::validateManualPostProcessingCapability()
{
	const char *noMode = "Manual post processing capability unavailable: ";

	if (!staticMetadata_->entryContains<uint8_t>(ANDROID_CONTROL_AWB_AVAILABLE_MODES,
						     ANDROID_CONTROL_AWB_MODE_OFF)) {
		LOG(HAL, Info) << noMode << "missing AWB mode off";
		return false;
	}

	if (!staticMetadata_->entryContains<uint8_t>(ANDROID_CONTROL_AWB_LOCK_AVAILABLE,
						     ANDROID_CONTROL_AWB_LOCK_AVAILABLE_TRUE)) {
		LOG(HAL, Info) << noMode << "missing AWB lock";
		return false;
	}

	/*
	 * \todo return true here after we satisfy all the requirements:
	 * https://developer.android.com/reference/android/hardware/camera2/CameraMetadata#REQUEST_AVAILABLE_CAPABILITIES_MANUAL_POST_PROCESSING
	 * Manual tonemap control
	 *     android.tonemap.curve
	 *     android.tonemap.mode
	 *     android.tonemap.maxCurvePoints
	 *     android.tonemap.gamma
	 *     android.tonemap.presetCurve
	 * Manual white balance control
	 *     android.colorCorrection.transform
	 *     android.colorCorrection.gains
	 * Manual lens shading map control
	 *     android.shading.mode
	 *     android.statistics.lensShadingMapMode
	 *     android.statistics.lensShadingMap
	 *     android.lens.info.shadingMapSize
	 * Manual aberration correction control (if aberration correction is supported)
	 *     android.colorCorrection.aberrationMode
	 *     android.colorCorrection.availableAberrationModes
	 * Auto white balance lock
	 *     android.control.awbLock
	 */
	return false;
}

bool CameraCapabilities::validateBurstCaptureCapability()
{
	camera_metadata_ro_entry_t entry;
	bool found;

	const char *noMode = "Burst capture capability unavailable: ";

	if (!staticMetadata_->entryContains<uint8_t>(ANDROID_CONTROL_AE_LOCK_AVAILABLE,
						     ANDROID_CONTROL_AE_LOCK_AVAILABLE_TRUE)) {
		LOG(HAL, Info) << noMode << "missing AE lock";
		return false;
	}

	if (!staticMetadata_->entryContains<uint8_t>(ANDROID_CONTROL_AWB_LOCK_AVAILABLE,
						     ANDROID_CONTROL_AWB_LOCK_AVAILABLE_TRUE)) {
		LOG(HAL, Info) << noMode << "missing AWB lock";
		return false;
	}

	found = staticMetadata_->getEntry(ANDROID_SYNC_MAX_LATENCY, &entry);
	if (!found || *entry.data.i32 < 0 || 4 < *entry.data.i32) {
		LOG(HAL, Info)
			<< noMode << "max sync latency is "
			<< (found ? std::to_string(*entry.data.i32) : "not present");
		return false;
	}

	/*
	 * \todo return true here after we satisfy all the requirements
	 * https://developer.android.com/reference/android/hardware/camera2/CameraMetadata#REQUEST_AVAILABLE_CAPABILITIES_BURST_CAPTURE
	 */
	return false;
}

std::set<camera_metadata_enum_android_request_available_capabilities>
CameraCapabilities::computeCapabilities()
{
	std::set<camera_metadata_enum_android_request_available_capabilities>
		capabilities;

	capabilities.insert(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_BACKWARD_COMPATIBLE);

	if (validateManualSensorCapability()) {
		capabilities.insert(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_MANUAL_SENSOR);
		/* The requirements for READ_SENSOR_SETTINGS are a subset of MANUAL_SENSOR */
		capabilities.insert(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_READ_SENSOR_SETTINGS);
	}

	if (validateManualPostProcessingCapability())
		capabilities.insert(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_MANUAL_POST_PROCESSING);

	if (validateBurstCaptureCapability())
		capabilities.insert(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_BURST_CAPTURE);

	if (rawStreamAvailable_)
		capabilities.insert(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_RAW);

	return capabilities;
}

void CameraCapabilities::computeHwLevel(
	const std::set<camera_metadata_enum_android_request_available_capabilities> &caps)
{
	const char *noFull = "Hardware level FULL unavailable: ";
	camera_metadata_ro_entry_t entry;
	bool found;

	camera_metadata_enum_android_info_supported_hardware_level
		hwLevel = ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL_FULL;

	if (!caps.count(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_MANUAL_SENSOR))
		hwLevel = ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL_LIMITED;

	if (!caps.count(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_MANUAL_POST_PROCESSING))
		hwLevel = ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL_LIMITED;

	if (!caps.count(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_BURST_CAPTURE))
		hwLevel = ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL_LIMITED;

	found = staticMetadata_->getEntry(ANDROID_SYNC_MAX_LATENCY, &entry);
	if (!found || *entry.data.i32 != 0) {
		LOG(HAL, Info) << noFull << "missing or invalid max sync latency";
		hwLevel = ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL_LIMITED;
	}

	hwLevel_ = hwLevel;
}

int CameraCapabilities::initialize(std::shared_ptr<Camera> camera,
				   int orientation, int facing)
{
	camera_ = camera;
	orientation_ = orientation;
	facing_ = facing;
	rawStreamAvailable_ = false;
	maxFrameDuration_ = 0;

	/* Acquire the camera and initialize available stream configurations. */
	int ret = camera_->acquire();
	if (ret) {
		LOG(HAL, Error) << "Failed to temporarily acquire the camera";
		return ret;
	}

	ret = initializeStreamConfigurations();
	if (ret) {
		camera_->release();
		return ret;
	}

	ret = initializeStaticMetadata();
	camera_->release();
	return ret;
}

std::vector<Size>
CameraCapabilities::initializeYUVResolutions(const PixelFormat &pixelFormat,
					     const std::vector<Size> &resolutions)
{
	std::vector<Size> supportedResolutions;
	std::unique_ptr<CameraConfiguration> cameraConfig =
		camera_->generateConfiguration({ StreamRole::Viewfinder });
	if (!cameraConfig) {
		LOG(HAL, Error) << "Failed to get supported YUV resolutions";
		return supportedResolutions;
	}

	StreamConfiguration &cfg = cameraConfig->at(0);

	for (const Size &res : resolutions) {
		cfg.pixelFormat = pixelFormat;
		cfg.size = res;

		CameraConfiguration::Status status = cameraConfig->validate();
		if (status != CameraConfiguration::Valid) {
			LOG(HAL, Debug) << cfg.toString() << " not supported";
			continue;
		}

		LOG(HAL, Debug) << cfg.toString() << " supported";

		supportedResolutions.push_back(res);
	}

	return supportedResolutions;
}

std::vector<Size>
CameraCapabilities::initializeRawResolutions(const PixelFormat &pixelFormat)
{
	std::vector<Size> supportedResolutions;
	std::unique_ptr<CameraConfiguration> cameraConfig =
		camera_->generateConfiguration({ StreamRole::Raw });
	if (!cameraConfig) {
		LOG(HAL, Error) << "Failed to get supported Raw resolutions";
		return supportedResolutions;
	}

	StreamConfiguration &cfg = cameraConfig->at(0);
	const StreamFormats &formats = cfg.formats();
	supportedResolutions = formats.sizes(pixelFormat);

	return supportedResolutions;
}

/*
 * Initialize the format conversion map to translate from Android format
 * identifier to libcamera pixel formats and fill in the list of supported
 * stream configurations to be reported to the Android camera framework through
 * the camera static metadata.
 */
int CameraCapabilities::initializeStreamConfigurations()
{
	/*
	 * Get the maximum output resolutions
	 * \todo Get this from the camera properties once defined
	 */
	std::unique_ptr<CameraConfiguration> cameraConfig =
		camera_->generateConfiguration({ StillCapture });
	if (!cameraConfig) {
		LOG(HAL, Error) << "Failed to get maximum resolution";
		return -EINVAL;
	}
	StreamConfiguration &cfg = cameraConfig->at(0);

	/*
	 * \todo JPEG - Adjust the maximum available resolution by taking the
	 * JPEG encoder requirements into account (alignment and aspect ratio).
	 */
	const Size maxRes = cfg.size;
	LOG(HAL, Debug) << "Maximum supported resolution: " << maxRes.toString();

	/*
	 * Build the list of supported image resolutions.
	 *
	 * The resolutions listed in camera3Resolution are mandatory to be
	 * supported, up to the camera maximum resolution.
	 *
	 * Augment the list by adding resolutions calculated from the camera
	 * maximum one.
	 */
	std::vector<Size> cameraResolutions;
	std::copy_if(camera3Resolutions.begin(), camera3Resolutions.end(),
		     std::back_inserter(cameraResolutions),
		     [&](const Size &res) { return res < maxRes; });

	/*
	 * The Camera3 specification suggests adding 1/2 and 1/4 of the maximum
	 * resolution.
	 */
	for (unsigned int divider = 2;; divider <<= 1) {
		Size derivedSize{
			maxRes.width / divider,
			maxRes.height / divider,
		};

		if (derivedSize.width < 320 ||
		    derivedSize.height < 240)
			break;

		cameraResolutions.push_back(derivedSize);
	}
	cameraResolutions.push_back(maxRes);

	/* Remove duplicated entries from the list of supported resolutions. */
	std::sort(cameraResolutions.begin(), cameraResolutions.end());
	auto last = std::unique(cameraResolutions.begin(), cameraResolutions.end());
	cameraResolutions.erase(last, cameraResolutions.end());

	/*
	 * Build the list of supported camera formats.
	 *
	 * To each Android format a list of compatible libcamera formats is
	 * associated. The first libcamera format that tests successful is added
	 * to the format translation map used when configuring the streams.
	 * It is then tested against the list of supported camera resolutions to
	 * build the stream configuration map reported through the camera static
	 * metadata.
	 */
	Size maxJpegSize;
	for (const auto &format : camera3FormatsMap) {
		int androidFormat = format.first;
		const Camera3Format &camera3Format = format.second;
		const std::vector<PixelFormat> &libcameraFormats =
			camera3Format.libcameraFormats;

		LOG(HAL, Debug) << "Trying to map Android format "
				<< camera3Format.name;

		/*
		 * JPEG is always supported, either produced directly by the
		 * camera, or encoded in the HAL.
		 */
		if (androidFormat == HAL_PIXEL_FORMAT_BLOB) {
			formatsMap_[androidFormat] = formats::MJPEG;
			LOG(HAL, Debug) << "Mapped Android format "
					<< camera3Format.name << " to "
					<< formats::MJPEG.toString()
					<< " (fixed mapping)";
			continue;
		}

		/*
		 * Test the libcamera formats that can produce images
		 * compatible with the format defined by Android.
		 */
		PixelFormat mappedFormat;
		for (const PixelFormat &pixelFormat : libcameraFormats) {

			LOG(HAL, Debug) << "Testing " << pixelFormat.toString();

			/*
			 * The stream configuration size can be adjusted,
			 * not the pixel format.
			 *
			 * \todo This could be simplified once all pipeline
			 * handlers will report the StreamFormats list of
			 * supported formats.
			 */
			cfg.pixelFormat = pixelFormat;

			CameraConfiguration::Status status = cameraConfig->validate();
			if (status != CameraConfiguration::Invalid &&
			    cfg.pixelFormat == pixelFormat) {
				mappedFormat = pixelFormat;
				break;
			}
		}

		if (!mappedFormat.isValid()) {
			/* If the format is not mandatory, skip it. */
			if (!camera3Format.mandatory)
				continue;

			LOG(HAL, Error)
				<< "Failed to map mandatory Android format "
				<< camera3Format.name << " ("
				<< utils::hex(androidFormat) << "): aborting";
			return -EINVAL;
		}

		/*
		 * Record the mapping and then proceed to generate the
		 * stream configurations map, by testing the image resolutions.
		 */
		formatsMap_[androidFormat] = mappedFormat;
		LOG(HAL, Debug) << "Mapped Android format "
				<< camera3Format.name << " to "
				<< mappedFormat.toString();

		std::vector<Size> resolutions;
		const PixelFormatInfo &info = PixelFormatInfo::info(mappedFormat);
		switch (info.colourEncoding) {
		case PixelFormatInfo::ColourEncodingRAW:
			if (info.bitsPerPixel != 16)
				continue;

			rawStreamAvailable_ = true;
			resolutions = initializeRawResolutions(mappedFormat);
			break;

		case PixelFormatInfo::ColourEncodingYUV:
		case PixelFormatInfo::ColourEncodingRGB:
			/*
			 * We support enumerating RGB streams here to allow
			 * mapping IMPLEMENTATION_DEFINED format to RGB.
			 */
			resolutions = initializeYUVResolutions(mappedFormat,
							       cameraResolutions);
			break;
		}

		for (const Size &res : resolutions) {
			/*
			 * Configure the Camera with the collected format and
			 * resolution to get an updated list of controls.
			 *
			 * \todo Avoid the need to configure the camera when
			 * redesigning the configuration API.
			 */
			cfg.size = res;
			int ret = camera_->configure(cameraConfig.get());
			if (ret)
				return ret;

			const ControlInfoMap &controls = camera_->controls();
			const auto frameDurations = controls.find(
				&controls::FrameDurationLimits);
			if (frameDurations == controls.end()) {
				LOG(HAL, Error)
					<< "Camera does not report frame durations";
				return -EINVAL;
			}

			int64_t minFrameDuration = frameDurations->second.min().get<int64_t>() * 1000;
			int64_t maxFrameDuration = frameDurations->second.max().get<int64_t>() * 1000;

			/*
			 * Cap min frame duration to 30 FPS with 1% tolerance.
			 *
			 * 30 frames per second has been validated as the most
			 * opportune frame rate for quality tuning, and power
			 * vs performances budget on Intel IPU3-based
			 * Chromebooks.
			 *
			 * \todo This is a platform-specific decision that needs
			 * to be abstracted and delegated to the configuration
			 * file.
			 *
			 * \todo libcamera only allows to control frame duration
			 * through the per-request controls::FrameDuration
			 * control. If we cap the durations here, we should be
			 * capable of configuring the camera to operate at such
			 * duration without requiring to have the FrameDuration
			 * control to be specified for each Request. Defer this
			 * to the in-development configuration API rework.
			 */
			int64_t minFrameDurationCap = 1e9 / 30.0;
			if (minFrameDuration < minFrameDurationCap) {
				float tolerance =
					(minFrameDurationCap - minFrameDuration) * 100.0 / minFrameDurationCap;

				/*
				 * If the tolerance is less than 1%, do not cap
				 * the frame duration.
				 */
				if (tolerance > 1.0)
					minFrameDuration = minFrameDurationCap;
			}

			streamConfigurations_.push_back({
				res, androidFormat, minFrameDuration, maxFrameDuration,
			});

			/*
			 * If the format is HAL_PIXEL_FORMAT_YCbCr_420_888
			 * from which JPEG is produced, add an entry for
			 * the JPEG stream.
			 *
			 * \todo Wire the JPEG encoder to query the supported
			 * sizes provided a list of formats it can encode.
			 *
			 * \todo Support JPEG streams produced by the camera
			 * natively.
			 *
			 * \todo HAL_PIXEL_FORMAT_BLOB is a 'stalling' format,
			 * its duration should take into account the time
			 * required for the YUV to JPEG encoding. For now
			 * use the same frame durations as collected for
			 * the YUV/RGB streams.
			 */
			if (androidFormat == HAL_PIXEL_FORMAT_YCbCr_420_888) {
				streamConfigurations_.push_back({
					res, HAL_PIXEL_FORMAT_BLOB,
					minFrameDuration, maxFrameDuration,
				});
				maxJpegSize = std::max(maxJpegSize, res);
			}

			maxFrameDuration_ = std::max(maxFrameDuration_,
						     maxFrameDuration);
		}

		/*
		 * \todo Calculate the maximum JPEG buffer size by asking the
		 * encoder giving the maximum frame size required.
		 */
		maxJpegBufferSize_ = maxJpegSize.width * maxJpegSize.height * 1.5;
	}

	LOG(HAL, Debug) << "Collected stream configuration map: ";
	for (const auto &entry : streamConfigurations_)
		LOG(HAL, Debug) << "{ " << entry.resolution.toString() << " - "
				<< utils::hex(entry.androidFormat) << " }";

	return 0;
}

int CameraCapabilities::initializeStaticMetadata()
{
	staticMetadata_ = std::make_unique<CameraMetadata>(64, 1024);
	if (!staticMetadata_->isValid()) {
		LOG(HAL, Error) << "Failed to allocate static metadata";
		staticMetadata_.reset();
		return -EINVAL;
	}

	/*
	 * Generate and apply a new configuration for the Viewfinder role to
	 * collect control limits and properties from a known state.
	 */
	std::unique_ptr<CameraConfiguration> cameraConfig =
		camera_->generateConfiguration({ StreamRole::Viewfinder });
	if (!cameraConfig) {
		LOG(HAL, Error) << "Failed to generate camera configuration";
		staticMetadata_.reset();
		return -ENODEV;
	}

	int ret = camera_->configure(cameraConfig.get());
	if (ret) {
		LOG(HAL, Error) << "Failed to initialize the camera state";
		staticMetadata_.reset();
		return ret;
	}

	const ControlInfoMap &controlsInfo = camera_->controls();
	const ControlList &properties = camera_->properties();

	availableCharacteristicsKeys_ = {
		ANDROID_COLOR_CORRECTION_AVAILABLE_ABERRATION_MODES,
		ANDROID_CONTROL_AE_AVAILABLE_ANTIBANDING_MODES,
		ANDROID_CONTROL_AE_AVAILABLE_MODES,
		ANDROID_CONTROL_AE_AVAILABLE_TARGET_FPS_RANGES,
		ANDROID_CONTROL_AE_COMPENSATION_RANGE,
		ANDROID_CONTROL_AE_COMPENSATION_STEP,
		ANDROID_CONTROL_AE_LOCK_AVAILABLE,
		ANDROID_CONTROL_AF_AVAILABLE_MODES,
		ANDROID_CONTROL_AVAILABLE_EFFECTS,
		ANDROID_CONTROL_AVAILABLE_MODES,
		ANDROID_CONTROL_AVAILABLE_SCENE_MODES,
		ANDROID_CONTROL_AVAILABLE_VIDEO_STABILIZATION_MODES,
		ANDROID_CONTROL_AWB_AVAILABLE_MODES,
		ANDROID_CONTROL_AWB_LOCK_AVAILABLE,
		ANDROID_CONTROL_MAX_REGIONS,
		ANDROID_CONTROL_SCENE_MODE_OVERRIDES,
		ANDROID_FLASH_INFO_AVAILABLE,
		ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL,
		ANDROID_JPEG_AVAILABLE_THUMBNAIL_SIZES,
		ANDROID_JPEG_MAX_SIZE,
		ANDROID_LENS_FACING,
		ANDROID_LENS_INFO_AVAILABLE_APERTURES,
		ANDROID_LENS_INFO_AVAILABLE_FOCAL_LENGTHS,
		ANDROID_LENS_INFO_AVAILABLE_OPTICAL_STABILIZATION,
		ANDROID_LENS_INFO_HYPERFOCAL_DISTANCE,
		ANDROID_LENS_INFO_MINIMUM_FOCUS_DISTANCE,
		ANDROID_NOISE_REDUCTION_AVAILABLE_NOISE_REDUCTION_MODES,
		ANDROID_REQUEST_AVAILABLE_CAPABILITIES,
		ANDROID_REQUEST_MAX_NUM_INPUT_STREAMS,
		ANDROID_REQUEST_MAX_NUM_OUTPUT_STREAMS,
		ANDROID_REQUEST_PARTIAL_RESULT_COUNT,
		ANDROID_REQUEST_PIPELINE_MAX_DEPTH,
		ANDROID_SCALER_AVAILABLE_MAX_DIGITAL_ZOOM,
		ANDROID_SCALER_AVAILABLE_MIN_FRAME_DURATIONS,
		ANDROID_SCALER_AVAILABLE_STALL_DURATIONS,
		ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS,
		ANDROID_SCALER_CROPPING_TYPE,
		ANDROID_SENSOR_AVAILABLE_TEST_PATTERN_MODES,
		ANDROID_SENSOR_INFO_ACTIVE_ARRAY_SIZE,
		ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT,
		ANDROID_SENSOR_INFO_EXPOSURE_TIME_RANGE,
		ANDROID_SENSOR_INFO_MAX_FRAME_DURATION,
		ANDROID_SENSOR_INFO_PHYSICAL_SIZE,
		ANDROID_SENSOR_INFO_PIXEL_ARRAY_SIZE,
		ANDROID_SENSOR_INFO_SENSITIVITY_RANGE,
		ANDROID_SENSOR_INFO_TIMESTAMP_SOURCE,
		ANDROID_SENSOR_ORIENTATION,
		ANDROID_STATISTICS_INFO_AVAILABLE_FACE_DETECT_MODES,
		ANDROID_STATISTICS_INFO_MAX_FACE_COUNT,
		ANDROID_SYNC_MAX_LATENCY,
	};

	availableRequestKeys_ = {
		ANDROID_COLOR_CORRECTION_ABERRATION_MODE,
		ANDROID_CONTROL_AE_ANTIBANDING_MODE,
		ANDROID_CONTROL_AE_EXPOSURE_COMPENSATION,
		ANDROID_CONTROL_AE_LOCK,
		ANDROID_CONTROL_AE_MODE,
		ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER,
		ANDROID_CONTROL_AE_TARGET_FPS_RANGE,
		ANDROID_CONTROL_AF_MODE,
		ANDROID_CONTROL_AF_TRIGGER,
		ANDROID_CONTROL_AWB_LOCK,
		ANDROID_CONTROL_AWB_MODE,
		ANDROID_CONTROL_CAPTURE_INTENT,
		ANDROID_CONTROL_EFFECT_MODE,
		ANDROID_CONTROL_MODE,
		ANDROID_CONTROL_SCENE_MODE,
		ANDROID_CONTROL_VIDEO_STABILIZATION_MODE,
		ANDROID_FLASH_MODE,
		ANDROID_JPEG_ORIENTATION,
		ANDROID_JPEG_QUALITY,
		ANDROID_JPEG_THUMBNAIL_QUALITY,
		ANDROID_JPEG_THUMBNAIL_SIZE,
		ANDROID_LENS_APERTURE,
		ANDROID_LENS_OPTICAL_STABILIZATION_MODE,
		ANDROID_NOISE_REDUCTION_MODE,
		ANDROID_SCALER_CROP_REGION,
		ANDROID_STATISTICS_FACE_DETECT_MODE
	};

	availableResultKeys_ = {
		ANDROID_COLOR_CORRECTION_ABERRATION_MODE,
		ANDROID_CONTROL_AE_ANTIBANDING_MODE,
		ANDROID_CONTROL_AE_EXPOSURE_COMPENSATION,
		ANDROID_CONTROL_AE_LOCK,
		ANDROID_CONTROL_AE_MODE,
		ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER,
		ANDROID_CONTROL_AE_STATE,
		ANDROID_CONTROL_AE_TARGET_FPS_RANGE,
		ANDROID_CONTROL_AF_MODE,
		ANDROID_CONTROL_AF_STATE,
		ANDROID_CONTROL_AF_TRIGGER,
		ANDROID_CONTROL_AWB_LOCK,
		ANDROID_CONTROL_AWB_MODE,
		ANDROID_CONTROL_AWB_STATE,
		ANDROID_CONTROL_CAPTURE_INTENT,
		ANDROID_CONTROL_EFFECT_MODE,
		ANDROID_CONTROL_MODE,
		ANDROID_CONTROL_SCENE_MODE,
		ANDROID_CONTROL_VIDEO_STABILIZATION_MODE,
		ANDROID_FLASH_MODE,
		ANDROID_FLASH_STATE,
		ANDROID_JPEG_GPS_COORDINATES,
		ANDROID_JPEG_GPS_PROCESSING_METHOD,
		ANDROID_JPEG_GPS_TIMESTAMP,
		ANDROID_JPEG_ORIENTATION,
		ANDROID_JPEG_QUALITY,
		ANDROID_JPEG_SIZE,
		ANDROID_JPEG_THUMBNAIL_QUALITY,
		ANDROID_JPEG_THUMBNAIL_SIZE,
		ANDROID_LENS_APERTURE,
		ANDROID_LENS_FOCAL_LENGTH,
		ANDROID_LENS_OPTICAL_STABILIZATION_MODE,
		ANDROID_LENS_STATE,
		ANDROID_NOISE_REDUCTION_MODE,
		ANDROID_REQUEST_PIPELINE_DEPTH,
		ANDROID_SCALER_CROP_REGION,
		ANDROID_SENSOR_EXPOSURE_TIME,
		ANDROID_SENSOR_FRAME_DURATION,
		ANDROID_SENSOR_ROLLING_SHUTTER_SKEW,
		ANDROID_SENSOR_TEST_PATTERN_MODE,
		ANDROID_SENSOR_TIMESTAMP,
		ANDROID_STATISTICS_FACE_DETECT_MODE,
		ANDROID_STATISTICS_LENS_SHADING_MAP_MODE,
		ANDROID_STATISTICS_HOT_PIXEL_MAP_MODE,
		ANDROID_STATISTICS_SCENE_FLICKER,
	};

	/* Color correction static metadata. */
	{
		std::vector<uint8_t> data;
		data.reserve(3);
		const auto &infoMap = controlsInfo.find(&controls::draft::ColorCorrectionAberrationMode);
		if (infoMap != controlsInfo.end()) {
			for (const auto &value : infoMap->second.values())
				data.push_back(value.get<int32_t>());
		} else {
			data.push_back(ANDROID_COLOR_CORRECTION_ABERRATION_MODE_OFF);
		}
		staticMetadata_->addEntry(ANDROID_COLOR_CORRECTION_AVAILABLE_ABERRATION_MODES,
					  data);
	}

	/* Control static metadata. */
	std::vector<uint8_t> aeAvailableAntiBandingModes = {
		ANDROID_CONTROL_AE_ANTIBANDING_MODE_OFF,
		ANDROID_CONTROL_AE_ANTIBANDING_MODE_50HZ,
		ANDROID_CONTROL_AE_ANTIBANDING_MODE_60HZ,
		ANDROID_CONTROL_AE_ANTIBANDING_MODE_AUTO,
	};
	staticMetadata_->addEntry(ANDROID_CONTROL_AE_AVAILABLE_ANTIBANDING_MODES,
				  aeAvailableAntiBandingModes);

	std::vector<uint8_t> aeAvailableModes = {
		ANDROID_CONTROL_AE_MODE_ON,
	};
	staticMetadata_->addEntry(ANDROID_CONTROL_AE_AVAILABLE_MODES,
				  aeAvailableModes);

	std::vector<int32_t> aeCompensationRange = {
		0, 0,
	};
	staticMetadata_->addEntry(ANDROID_CONTROL_AE_COMPENSATION_RANGE,
				  aeCompensationRange);

	const camera_metadata_rational_t aeCompensationStep[] = {
		{ 0, 1 }
	};
	staticMetadata_->addEntry(ANDROID_CONTROL_AE_COMPENSATION_STEP,
				  aeCompensationStep);

	std::vector<uint8_t> availableAfModes = {
		ANDROID_CONTROL_AF_MODE_OFF,
	};
	staticMetadata_->addEntry(ANDROID_CONTROL_AF_AVAILABLE_MODES,
				  availableAfModes);

	std::vector<uint8_t> availableEffects = {
		ANDROID_CONTROL_EFFECT_MODE_OFF,
	};
	staticMetadata_->addEntry(ANDROID_CONTROL_AVAILABLE_EFFECTS,
				  availableEffects);

	std::vector<uint8_t> availableSceneModes = {
		ANDROID_CONTROL_SCENE_MODE_DISABLED,
	};
	staticMetadata_->addEntry(ANDROID_CONTROL_AVAILABLE_SCENE_MODES,
				  availableSceneModes);

	std::vector<uint8_t> availableStabilizationModes = {
		ANDROID_CONTROL_VIDEO_STABILIZATION_MODE_OFF,
	};
	staticMetadata_->addEntry(ANDROID_CONTROL_AVAILABLE_VIDEO_STABILIZATION_MODES,
				  availableStabilizationModes);

	/*
	 * \todo Inspect the camera capabilities to report the available
	 * AWB modes. Default to AUTO as CTS tests require it.
	 */
	std::vector<uint8_t> availableAwbModes = {
		ANDROID_CONTROL_AWB_MODE_AUTO,
	};
	staticMetadata_->addEntry(ANDROID_CONTROL_AWB_AVAILABLE_MODES,
				  availableAwbModes);

	std::vector<int32_t> availableMaxRegions = {
		0, 0, 0,
	};
	staticMetadata_->addEntry(ANDROID_CONTROL_MAX_REGIONS,
				  availableMaxRegions);

	std::vector<uint8_t> sceneModesOverride = {
		ANDROID_CONTROL_AE_MODE_ON,
		ANDROID_CONTROL_AWB_MODE_AUTO,
		ANDROID_CONTROL_AF_MODE_OFF,
	};
	staticMetadata_->addEntry(ANDROID_CONTROL_SCENE_MODE_OVERRIDES,
				  sceneModesOverride);

	uint8_t aeLockAvailable = ANDROID_CONTROL_AE_LOCK_AVAILABLE_FALSE;
	staticMetadata_->addEntry(ANDROID_CONTROL_AE_LOCK_AVAILABLE,
				  aeLockAvailable);

	uint8_t awbLockAvailable = ANDROID_CONTROL_AWB_LOCK_AVAILABLE_FALSE;
	staticMetadata_->addEntry(ANDROID_CONTROL_AWB_LOCK_AVAILABLE,
				  awbLockAvailable);

	char availableControlModes = ANDROID_CONTROL_MODE_AUTO;
	staticMetadata_->addEntry(ANDROID_CONTROL_AVAILABLE_MODES,
				  availableControlModes);

	/* JPEG static metadata. */

	/*
	 * Create the list of supported thumbnail sizes by inspecting the
	 * available JPEG resolutions collected in streamConfigurations_ and
	 * generate one entry for each aspect ratio.
	 *
	 * The JPEG thumbnailer can freely scale, so pick an arbitrary
	 * (160, 160) size as the bounding rectangle, which is then cropped to
	 * the different supported aspect ratios.
	 */
	constexpr Size maxJpegThumbnail(160, 160);
	std::vector<Size> thumbnailSizes;
	thumbnailSizes.push_back({ 0, 0 });
	for (const auto &entry : streamConfigurations_) {
		if (entry.androidFormat != HAL_PIXEL_FORMAT_BLOB)
			continue;

		Size thumbnailSize = maxJpegThumbnail
				     .boundedToAspectRatio({ entry.resolution.width,
							     entry.resolution.height });
		thumbnailSizes.push_back(thumbnailSize);
	}

	std::sort(thumbnailSizes.begin(), thumbnailSizes.end());
	auto last = std::unique(thumbnailSizes.begin(), thumbnailSizes.end());
	thumbnailSizes.erase(last, thumbnailSizes.end());

	/* Transform sizes in to a list of integers that can be consumed. */
	std::vector<int32_t> thumbnailEntries;
	thumbnailEntries.reserve(thumbnailSizes.size() * 2);
	for (const auto &size : thumbnailSizes) {
		thumbnailEntries.push_back(size.width);
		thumbnailEntries.push_back(size.height);
	}
	staticMetadata_->addEntry(ANDROID_JPEG_AVAILABLE_THUMBNAIL_SIZES,
				  thumbnailEntries);

	staticMetadata_->addEntry(ANDROID_JPEG_MAX_SIZE, maxJpegBufferSize_);

	/* Sensor static metadata. */
	std::array<int32_t, 2> pixelArraySize;
	{
		const Size &size = properties.get(properties::PixelArraySize);
		pixelArraySize[0] = size.width;
		pixelArraySize[1] = size.height;
		staticMetadata_->addEntry(ANDROID_SENSOR_INFO_PIXEL_ARRAY_SIZE,
					  pixelArraySize);
	}

	if (properties.contains(properties::UnitCellSize)) {
		const Size &cellSize = properties.get<Size>(properties::UnitCellSize);
		std::array<float, 2> physicalSize{
			cellSize.width * pixelArraySize[0] / 1e6f,
			cellSize.height * pixelArraySize[1] / 1e6f
		};
		staticMetadata_->addEntry(ANDROID_SENSOR_INFO_PHYSICAL_SIZE,
					  physicalSize);
	}

	{
		const Span<const Rectangle> &rects =
			properties.get(properties::PixelArrayActiveAreas);
		std::vector<int32_t> data{
			static_cast<int32_t>(rects[0].x),
			static_cast<int32_t>(rects[0].y),
			static_cast<int32_t>(rects[0].width),
			static_cast<int32_t>(rects[0].height),
		};
		staticMetadata_->addEntry(ANDROID_SENSOR_INFO_ACTIVE_ARRAY_SIZE,
					  data);
	}

	int32_t sensitivityRange[] = {
		32, 2400,
	};
	staticMetadata_->addEntry(ANDROID_SENSOR_INFO_SENSITIVITY_RANGE,
				  sensitivityRange);

	/* Report the color filter arrangement if the camera reports it. */
	if (properties.contains(properties::draft::ColorFilterArrangement)) {
		uint8_t filterArr = properties.get(properties::draft::ColorFilterArrangement);
		staticMetadata_->addEntry(ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT,
					  filterArr);
	}

	const auto &exposureInfo = controlsInfo.find(&controls::ExposureTime);
	if (exposureInfo != controlsInfo.end()) {
		int64_t exposureTimeRange[2] = {
			exposureInfo->second.min().get<int32_t>() * 1000LL,
			exposureInfo->second.max().get<int32_t>() * 1000LL,
		};
		staticMetadata_->addEntry(ANDROID_SENSOR_INFO_EXPOSURE_TIME_RANGE,
					  exposureTimeRange, 2);
	}

	staticMetadata_->addEntry(ANDROID_SENSOR_ORIENTATION, orientation_);

	std::vector<int32_t> testPatternModes = {
		ANDROID_SENSOR_TEST_PATTERN_MODE_OFF
	};
	const auto &testPatternsInfo =
		controlsInfo.find(&controls::draft::TestPatternMode);
	if (testPatternsInfo != controlsInfo.end()) {
		const auto &values = testPatternsInfo->second.values();
		ASSERT(!values.empty());
		for (const auto &value : values) {
			switch (value.get<int32_t>()) {
			case controls::draft::TestPatternModeOff:
				/*
				 * ANDROID_SENSOR_TEST_PATTERN_MODE_OFF is
				 * already in testPatternModes.
				 */
				break;

			case controls::draft::TestPatternModeSolidColor:
				testPatternModes.push_back(
					ANDROID_SENSOR_TEST_PATTERN_MODE_SOLID_COLOR);
				break;

			case controls::draft::TestPatternModeColorBars:
				testPatternModes.push_back(
					ANDROID_SENSOR_TEST_PATTERN_MODE_COLOR_BARS);
				break;

			case controls::draft::TestPatternModeColorBarsFadeToGray:
				testPatternModes.push_back(
					ANDROID_SENSOR_TEST_PATTERN_MODE_COLOR_BARS_FADE_TO_GRAY);
				break;

			case controls::draft::TestPatternModePn9:
				testPatternModes.push_back(
					ANDROID_SENSOR_TEST_PATTERN_MODE_PN9);
				break;

			case controls::draft::TestPatternModeCustom1:
				/* We don't support this yet. */
				break;

			default:
				LOG(HAL, Error) << "Unknown test pattern mode: "
						<< value.get<int32_t>();
				continue;
			}
		}
	}
	staticMetadata_->addEntry(ANDROID_SENSOR_AVAILABLE_TEST_PATTERN_MODES,
				  testPatternModes);

	uint8_t timestampSource = ANDROID_SENSOR_INFO_TIMESTAMP_SOURCE_UNKNOWN;
	staticMetadata_->addEntry(ANDROID_SENSOR_INFO_TIMESTAMP_SOURCE,
				  timestampSource);

	staticMetadata_->addEntry(ANDROID_SENSOR_INFO_MAX_FRAME_DURATION,
				  maxFrameDuration_);

	/* Statistics static metadata. */
	uint8_t faceDetectMode = ANDROID_STATISTICS_FACE_DETECT_MODE_OFF;
	staticMetadata_->addEntry(ANDROID_STATISTICS_INFO_AVAILABLE_FACE_DETECT_MODES,
				  faceDetectMode);

	int32_t maxFaceCount = 0;
	staticMetadata_->addEntry(ANDROID_STATISTICS_INFO_MAX_FACE_COUNT,
				  maxFaceCount);

	{
		std::vector<uint8_t> data;
		data.reserve(2);
		const auto &infoMap = controlsInfo.find(&controls::draft::LensShadingMapMode);
		if (infoMap != controlsInfo.end()) {
			for (const auto &value : infoMap->second.values())
				data.push_back(value.get<int32_t>());
		} else {
			data.push_back(ANDROID_STATISTICS_LENS_SHADING_MAP_MODE_OFF);
		}
		staticMetadata_->addEntry(ANDROID_STATISTICS_INFO_AVAILABLE_LENS_SHADING_MAP_MODES,
					  data);
	}

	/* Sync static metadata. */
	setMetadata(staticMetadata_.get(), ANDROID_SYNC_MAX_LATENCY,
		    controlsInfo, controls::draft::MaxLatency,
		    ControlRange::Def,
		    ANDROID_SYNC_MAX_LATENCY_UNKNOWN);

	/* Flash static metadata. */
	char flashAvailable = ANDROID_FLASH_INFO_AVAILABLE_FALSE;
	staticMetadata_->addEntry(ANDROID_FLASH_INFO_AVAILABLE,
				  flashAvailable);

	/* Lens static metadata. */
	std::vector<float> lensApertures = {
		2.53 / 100,
	};
	staticMetadata_->addEntry(ANDROID_LENS_INFO_AVAILABLE_APERTURES,
				  lensApertures);

	uint8_t lensFacing;
	switch (facing_) {
	default:
	case CAMERA_FACING_FRONT:
		lensFacing = ANDROID_LENS_FACING_FRONT;
		break;
	case CAMERA_FACING_BACK:
		lensFacing = ANDROID_LENS_FACING_BACK;
		break;
	case CAMERA_FACING_EXTERNAL:
		lensFacing = ANDROID_LENS_FACING_EXTERNAL;
		break;
	}
	staticMetadata_->addEntry(ANDROID_LENS_FACING, lensFacing);

	std::vector<float> lensFocalLengths = {
		1,
	};
	staticMetadata_->addEntry(ANDROID_LENS_INFO_AVAILABLE_FOCAL_LENGTHS,
				  lensFocalLengths);

	std::vector<uint8_t> opticalStabilizations = {
		ANDROID_LENS_OPTICAL_STABILIZATION_MODE_OFF,
	};
	staticMetadata_->addEntry(ANDROID_LENS_INFO_AVAILABLE_OPTICAL_STABILIZATION,
				  opticalStabilizations);

	float hypeFocalDistance = 0;
	staticMetadata_->addEntry(ANDROID_LENS_INFO_HYPERFOCAL_DISTANCE,
				  hypeFocalDistance);

	float minFocusDistance = 0;
	staticMetadata_->addEntry(ANDROID_LENS_INFO_MINIMUM_FOCUS_DISTANCE,
				  minFocusDistance);

	/* Noise reduction modes. */
	{
		std::vector<uint8_t> data;
		data.reserve(5);
		const auto &infoMap = controlsInfo.find(&controls::draft::NoiseReductionMode);
		if (infoMap != controlsInfo.end()) {
			for (const auto &value : infoMap->second.values())
				data.push_back(value.get<int32_t>());
		} else {
			data.push_back(ANDROID_NOISE_REDUCTION_MODE_OFF);
		}
		staticMetadata_->addEntry(ANDROID_NOISE_REDUCTION_AVAILABLE_NOISE_REDUCTION_MODES,
					  data);
	}

	/* Scaler static metadata. */

	/*
	 * \todo The digital zoom factor is a property that depends on the
	 * desired output configuration and the sensor frame size input to the
	 * ISP. This information is not available to the Android HAL, not at
	 * initialization time at least.
	 *
	 * As a workaround rely on pipeline handlers initializing the
	 * ScalerCrop control with the camera default configuration and use the
	 * maximum and minimum crop rectangles to calculate the digital zoom
	 * factor.
	 */
	float maxZoom = 1.0f;
	const auto scalerCrop = controlsInfo.find(&controls::ScalerCrop);
	if (scalerCrop != controlsInfo.end()) {
		Rectangle min = scalerCrop->second.min().get<Rectangle>();
		Rectangle max = scalerCrop->second.max().get<Rectangle>();
		maxZoom = std::min(1.0f * max.width / min.width,
				   1.0f * max.height / min.height);
	}
	staticMetadata_->addEntry(ANDROID_SCALER_AVAILABLE_MAX_DIGITAL_ZOOM,
				  maxZoom);

	std::vector<uint32_t> availableStreamConfigurations;
	std::vector<int64_t> minFrameDurations;
	int maxYUVFps = 0;
	Size maxYUVSize;

	availableStreamConfigurations.reserve(streamConfigurations_.size() * 4);
	minFrameDurations.reserve(streamConfigurations_.size() * 4);

	for (const auto &entry : streamConfigurations_) {
		/*
		 * Filter out YUV streams not capable of running at 30 FPS.
		 *
		 * This requirement comes from CTS RecordingTest failures most
		 * probably related to a requirement of the camcoder video
		 * recording profile. Inspecting the Intel IPU3 HAL
		 * implementation confirms this but no reference has been found
		 * in the metadata documentation.
		 *
		 * Calculate FPS as CTS does: see
		 * Camera2SurfaceViewTestCase.java:getSuitableFpsRangeForDuration()
		 */
		unsigned int fps = static_cast<unsigned int>
				   (floor(1e9 / entry.minFrameDurationNsec + 0.05f));
		if (entry.androidFormat != HAL_PIXEL_FORMAT_BLOB && fps < 30)
			continue;

		/*
		 * Collect the FPS of the maximum YUV output size to populate
		 * AE_AVAILABLE_TARGET_FPS_RANGE
		 */
		if (entry.androidFormat == HAL_PIXEL_FORMAT_YCbCr_420_888 &&
		    entry.resolution > maxYUVSize) {
			maxYUVSize = entry.resolution;
			maxYUVFps = fps;
		}

		/* Stream configuration map. */
		availableStreamConfigurations.push_back(entry.androidFormat);
		availableStreamConfigurations.push_back(entry.resolution.width);
		availableStreamConfigurations.push_back(entry.resolution.height);
		availableStreamConfigurations.push_back(
			ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT);

		/* Per-stream durations. */
		minFrameDurations.push_back(entry.androidFormat);
		minFrameDurations.push_back(entry.resolution.width);
		minFrameDurations.push_back(entry.resolution.height);
		minFrameDurations.push_back(entry.minFrameDurationNsec);

		LOG(HAL, Debug)
			<< "Output Stream: " << utils::hex(entry.androidFormat)
			<< " (" << entry.resolution.toString() << ")["
			<< entry.minFrameDurationNsec << "]"
			<< "@" << fps;
	}
	staticMetadata_->addEntry(ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS,
				  availableStreamConfigurations);

	staticMetadata_->addEntry(ANDROID_SCALER_AVAILABLE_MIN_FRAME_DURATIONS,
				  minFrameDurations);

	/*
	 * Register to the camera service {min, max} and {max, max} with
	 * 'max' being the larger YUV stream maximum frame rate and 'min' being
	 * the globally minimum frame rate rounded to the next largest integer
	 * as the camera service expects the camera maximum frame duration to be
	 * smaller than 10^9 / minFps.
	 */
	int32_t minFps = std::ceil(1e9 / maxFrameDuration_);
	int32_t availableAeFpsTarget[] = {
		minFps, maxYUVFps, maxYUVFps, maxYUVFps,
	};
	staticMetadata_->addEntry(ANDROID_CONTROL_AE_AVAILABLE_TARGET_FPS_RANGES,
				  availableAeFpsTarget);

	std::vector<int64_t> availableStallDurations;
	for (const auto &entry : streamConfigurations_) {
		if (entry.androidFormat != HAL_PIXEL_FORMAT_BLOB)
			continue;

		availableStallDurations.push_back(entry.androidFormat);
		availableStallDurations.push_back(entry.resolution.width);
		availableStallDurations.push_back(entry.resolution.height);
		availableStallDurations.push_back(entry.minFrameDurationNsec);
	}
	staticMetadata_->addEntry(ANDROID_SCALER_AVAILABLE_STALL_DURATIONS,
				  availableStallDurations);

	uint8_t croppingType = ANDROID_SCALER_CROPPING_TYPE_CENTER_ONLY;
	staticMetadata_->addEntry(ANDROID_SCALER_CROPPING_TYPE, croppingType);

	/* Request static metadata. */
	int32_t partialResultCount = 1;
	staticMetadata_->addEntry(ANDROID_REQUEST_PARTIAL_RESULT_COUNT,
				  partialResultCount);

	{
		/* Default the value to 2 if not reported by the camera. */
		uint8_t maxPipelineDepth = 2;
		const auto &infoMap = controlsInfo.find(&controls::draft::PipelineDepth);
		if (infoMap != controlsInfo.end())
			maxPipelineDepth = infoMap->second.max().get<int32_t>();
		staticMetadata_->addEntry(ANDROID_REQUEST_PIPELINE_MAX_DEPTH,
					  maxPipelineDepth);
	}

	/* LIMITED does not support reprocessing. */
	uint32_t maxNumInputStreams = 0;
	staticMetadata_->addEntry(ANDROID_REQUEST_MAX_NUM_INPUT_STREAMS,
				  maxNumInputStreams);

	/* Number of { RAW, YUV, JPEG } supported output streams */
	int32_t numOutStreams[] = { rawStreamAvailable_, 2, 1 };
	staticMetadata_->addEntry(ANDROID_REQUEST_MAX_NUM_OUTPUT_STREAMS,
				  numOutStreams);

	/* Check capabilities */
	capabilities_ = computeCapabilities();
	/* This *must* be uint8_t. */
	std::vector<uint8_t> capsVec(capabilities_.begin(), capabilities_.end());
	staticMetadata_->addEntry(ANDROID_REQUEST_AVAILABLE_CAPABILITIES, capsVec);

	computeHwLevel(capabilities_);
	staticMetadata_->addEntry(ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL, hwLevel_);

	LOG(HAL, Info)
		<< "Hardware level: " << hwLevelStrings.find(hwLevel_)->second;

	staticMetadata_->addEntry(ANDROID_REQUEST_AVAILABLE_CHARACTERISTICS_KEYS,
				  std::vector<int32_t>(availableCharacteristicsKeys_.begin(),
						       availableCharacteristicsKeys_.end()));

	staticMetadata_->addEntry(ANDROID_REQUEST_AVAILABLE_REQUEST_KEYS,
				  std::vector<int32_t>(availableRequestKeys_.begin(),
						       availableRequestKeys_.end()));

	staticMetadata_->addEntry(ANDROID_REQUEST_AVAILABLE_RESULT_KEYS,
				  std::vector<int32_t>(availableResultKeys_.begin(),
						       availableResultKeys_.end()));

	if (!staticMetadata_->isValid()) {
		LOG(HAL, Error) << "Failed to construct static metadata";
		staticMetadata_.reset();
		return -EINVAL;
	}

	if (staticMetadata_->resized()) {
		auto [entryCount, dataCount] = staticMetadata_->usage();
		LOG(HAL, Info)
			<< "Static metadata resized: " << entryCount
			<< " entries and " << dataCount << " bytes used";
	}

	return 0;
}

/* Translate Android format code to libcamera pixel format. */
PixelFormat CameraCapabilities::toPixelFormat(int format) const
{
	auto it = formatsMap_.find(format);
	if (it == formatsMap_.end()) {
		LOG(HAL, Error) << "Requested format " << utils::hex(format)
				<< " not supported";
		return PixelFormat();
	}

	return it->second;
}

std::unique_ptr<CameraMetadata> CameraCapabilities::requestTemplateManual() const
{
	if (!capabilities_.count(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_MANUAL_SENSOR)) {
		LOG(HAL, Error) << "Manual template not supported";
		return nullptr;
	}

	std::unique_ptr<CameraMetadata> manualTemplate = requestTemplatePreview();
	if (!manualTemplate)
		return nullptr;

	return manualTemplate;
}

std::unique_ptr<CameraMetadata> CameraCapabilities::requestTemplatePreview() const
{
	/*
	 * Give initial hint of entries and number of bytes to be allocated.
	 * It is deliberate that the hint is slightly larger than required, to
	 * avoid resizing the container.
	 *
	 * CameraMetadata is capable of resizing the container on the fly, if
	 * adding a new entry will exceed its capacity.
	 */
	auto requestTemplate = std::make_unique<CameraMetadata>(22, 38);
	if (!requestTemplate->isValid()) {
		return nullptr;
	}

	/* Get the FPS range registered in the static metadata. */
	camera_metadata_ro_entry_t entry;
	bool found = staticMetadata_->getEntry(ANDROID_CONTROL_AE_AVAILABLE_TARGET_FPS_RANGES,
					       &entry);
	if (!found) {
		LOG(HAL, Error) << "Cannot create capture template without FPS range";
		return nullptr;
	}

	/*
	 * Assume the AE_AVAILABLE_TARGET_FPS_RANGE static metadata
	 * has been assembled as {{min, max} {max, max}}.
	 */
	requestTemplate->addEntry(ANDROID_CONTROL_AE_TARGET_FPS_RANGE,
				  entry.data.i32, 2);

	/*
	 * Get thumbnail sizes from static metadata and add the first non-zero
	 * size to the template.
	 */
	found = staticMetadata_->getEntry(ANDROID_JPEG_AVAILABLE_THUMBNAIL_SIZES,
					  &entry);
	ASSERT(found && entry.count >= 4);
	requestTemplate->addEntry(ANDROID_JPEG_THUMBNAIL_SIZE,
				  entry.data.i32 + 2, 2);

	uint8_t aeMode = ANDROID_CONTROL_AE_MODE_ON;
	requestTemplate->addEntry(ANDROID_CONTROL_AE_MODE, aeMode);

	int32_t aeExposureCompensation = 0;
	requestTemplate->addEntry(ANDROID_CONTROL_AE_EXPOSURE_COMPENSATION,
				  aeExposureCompensation);

	uint8_t aePrecaptureTrigger = ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER_IDLE;
	requestTemplate->addEntry(ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER,
				  aePrecaptureTrigger);

	uint8_t aeLock = ANDROID_CONTROL_AE_LOCK_OFF;
	requestTemplate->addEntry(ANDROID_CONTROL_AE_LOCK, aeLock);

	uint8_t aeAntibandingMode = ANDROID_CONTROL_AE_ANTIBANDING_MODE_AUTO;
	requestTemplate->addEntry(ANDROID_CONTROL_AE_ANTIBANDING_MODE,
				  aeAntibandingMode);

	uint8_t afMode = ANDROID_CONTROL_AF_MODE_OFF;
	requestTemplate->addEntry(ANDROID_CONTROL_AF_MODE, afMode);

	uint8_t afTrigger = ANDROID_CONTROL_AF_TRIGGER_IDLE;
	requestTemplate->addEntry(ANDROID_CONTROL_AF_TRIGGER, afTrigger);

	uint8_t awbMode = ANDROID_CONTROL_AWB_MODE_AUTO;
	requestTemplate->addEntry(ANDROID_CONTROL_AWB_MODE, awbMode);

	uint8_t awbLock = ANDROID_CONTROL_AWB_LOCK_OFF;
	requestTemplate->addEntry(ANDROID_CONTROL_AWB_LOCK, awbLock);

	uint8_t flashMode = ANDROID_FLASH_MODE_OFF;
	requestTemplate->addEntry(ANDROID_FLASH_MODE, flashMode);

	uint8_t faceDetectMode = ANDROID_STATISTICS_FACE_DETECT_MODE_OFF;
	requestTemplate->addEntry(ANDROID_STATISTICS_FACE_DETECT_MODE,
				  faceDetectMode);

	uint8_t noiseReduction = ANDROID_NOISE_REDUCTION_MODE_OFF;
	requestTemplate->addEntry(ANDROID_NOISE_REDUCTION_MODE,
				  noiseReduction);

	uint8_t aberrationMode = ANDROID_COLOR_CORRECTION_ABERRATION_MODE_OFF;
	requestTemplate->addEntry(ANDROID_COLOR_CORRECTION_ABERRATION_MODE,
				  aberrationMode);

	uint8_t controlMode = ANDROID_CONTROL_MODE_AUTO;
	requestTemplate->addEntry(ANDROID_CONTROL_MODE, controlMode);

	float lensAperture = 2.53 / 100;
	requestTemplate->addEntry(ANDROID_LENS_APERTURE, lensAperture);

	uint8_t opticalStabilization = ANDROID_LENS_OPTICAL_STABILIZATION_MODE_OFF;
	requestTemplate->addEntry(ANDROID_LENS_OPTICAL_STABILIZATION_MODE,
				  opticalStabilization);

	uint8_t captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_PREVIEW;
	requestTemplate->addEntry(ANDROID_CONTROL_CAPTURE_INTENT,
				  captureIntent);

	return requestTemplate;
}

std::unique_ptr<CameraMetadata> CameraCapabilities::requestTemplateStill() const
{
	std::unique_ptr<CameraMetadata> stillTemplate = requestTemplatePreview();
	if (!stillTemplate)
		return nullptr;

	return stillTemplate;
}

std::unique_ptr<CameraMetadata> CameraCapabilities::requestTemplateVideo() const
{
	std::unique_ptr<CameraMetadata> previewTemplate = requestTemplatePreview();
	if (!previewTemplate)
		return nullptr;

	/*
	 * The video template requires a fixed FPS range. Everything else
	 * stays the same as the preview template.
	 */
	camera_metadata_ro_entry_t entry;
	staticMetadata_->getEntry(ANDROID_CONTROL_AE_AVAILABLE_TARGET_FPS_RANGES,
				  &entry);

	/*
	 * Assume the AE_AVAILABLE_TARGET_FPS_RANGE static metadata
	 * has been assembled as {{min, max} {max, max}}.
	 */
	previewTemplate->updateEntry(ANDROID_CONTROL_AE_TARGET_FPS_RANGE,
				     entry.data.i32 + 2, 2);

	return previewTemplate;
}