# SPDX-License-Identifier: BSD-2-Clause # # Copyright (C) 2019, Raspberry Pi (Trading) Limited # # ctt_noise.py - camera tuning tool noise calibration from ctt_image_load import * import matplotlib.pyplot as plt """ Find noise standard deviation and fit to model: noise std = a + b*sqrt(pixel mean) """ def noise(Cam, Img, plot): Cam.log += '\nProcessing image: {}'.format(Img.name) stds = [] means = [] """ iterate through macbeth square patches """ for ch_patches in Img.patches: for patch in ch_patches: """ renormalise patch """ patch = np.array(patch) patch = (patch-Img.blacklevel_16)/Img.againQ8_norm std = np.std(patch) mean = np.mean(patch) stds.append(std) means.append(mean) """ clean data and ensure all means are above 0 """ stds = np.array(stds) means = np.array(means) means = np.clip(np.array(means), 0, None) sq_means = np.sqrt(means) """ least squares fit model """ fit = np.polyfit(sq_means, stds, 1) Cam.log += '\nBlack level = {}'.format(Img.blacklevel_16) Cam.log += '\nNoise profile: offset = {}'.format(int(fit[1])) Cam.log += ' slope = {:.3f}'.format(fit[0]) """ remove any values further than std from the fit anomalies most likely caused by: > ucharacteristically noisy white patch > saturation in the white patch """ fit_score = np.abs(stds - fit[0]*sq_means - fit[1]) fit_std = np.std(stds) fit_score_norm = fit_score - fit_std anom_ind = np.where(fit_score_norm > 1) fit_score_norm.sort() sq_means_clean = np.delete(sq_means, anom_ind) stds_clean = np.delete(stds, anom_ind) removed = len(stds) - len(stds_clean) if removed != 0: Cam.log += '\nIdentified and removed {} anomalies.'.format(removed) Cam.log += '\nRecalculating fit' """ recalculate fit with outliers removed """ fit = np.polyfit(sq_means_clean, stds_clean, 1) Cam.log += '\nNoise profile: offset = {}'.format(int(fit[1])) Cam.log += ' slope = {:.3f}'.format(fit[0]) """ if fit const is < 0 then force through 0 by dividing by sq_means and fitting poly order 0 """ corrected = 0 if fit[1] < 0: corrected = 1 ones = np.ones(len(means)) y_data = stds/sq_means fit2 = np.polyfit(ones, y_data, 0) Cam.log += '\nOffset below zero. Fit recalculated with zero offset' Cam.log += '\nNoise profile: offset = 0' Cam.log += ' slope = {:.3f}'.format(fit2[0]) # print('new fit') # print(fit2) """ plot fit for debug """ if plot: x = np.arange(sq_means.max()//0.88) fit_plot = x*fit[0] + fit[1] plt.scatter(sq_means, stds, label='data', color='blue') plt.scatter(sq_means[anom_ind], stds[anom_ind], color='orange', label='anomalies') plt.plot(x, fit_plot, label='fit', color='red', ls=':') if fit[1] < 0: fit_plot_2 = x*fit2[0] plt.plot(x, fit_plot_2, label='fit 0 intercept', color='green', ls='--') plt.plot(0, 0) plt.title('Noise Plot\nImg: {}'.format(Img.str)) plt.legend(loc='upper left') plt.xlabel('Sqrt Pixel Value') plt.ylabel('Noise Standard Deviation') plt.grid() plt.show() """ End of plotting code """ """ format output to include forced 0 constant """ Cam.log += '\n' if corrected: fit = [fit2[0], 0] return fit else: return fit > 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
# SPDX-License-Identifier: BSD-2-Clause
#
# Copyright (C) 2019, Raspberry Pi Ltd
# Copyright (C) 2022, Paul Elder <paul.elder@ideasonboard.com>
#
# Utilities for libtuning
import decimal
import math
import numpy as np
import os
from pathlib import Path
import re
import sys
import libtuning as lt
from libtuning.image import Image
from libtuning.macbeth import locate_macbeth
# Utility functions
def eprint(*args, **kwargs):
print(*args, file=sys.stderr, **kwargs)
def get_module_by_type_name(modules, name):
for module in modules:
if module.type == name:
return module
return None
# Private utility functions
def _list_image_files(directory):
d = Path(directory)
files = [d.joinpath(f) for f in os.listdir(d)
if re.search(r'\.(jp[e]g$)|(dng$)', f)]
files.sort()
return files
def _parse_image_filename(fn: Path):
result = re.search(r'^(alsc_)?(\d+)[kK]_(\d+)?[lLuU]?.\w{3,4}$', fn.name)
if result is None:
eprint(f'The file name of {fn.name} is incorrectly formatted')
return None, None, None
color = int(result.group(2))
lsc_only = result.group(1) is not None
lux = None if lsc_only else int(result.group(3))
return color, lux, lsc_only
# \todo Implement this from check_imgs() in ctt.py
def _validate_images(images):
return True
# Public utility functions
# @brief Load images into a single list of Image instances
# @param input_dir Directory from which to load image files
# @param config Configuration dictionary
# @param load_nonlsc Whether or not to load non-lsc images
# @param load_lsc Whether or not to load lsc-only images
# @return A list of Image instances
def load_images(input_dir: str, config: dict, load_nonlsc: bool, load_lsc: bool) -> list:
files = _list_image_files(input_dir)
if len(files) == 0:
eprint(f'No images found in {input_dir}')
return None
images = []
for f in files:
color, lux, lsc_only = _parse_image_filename(f)
if color is None:
continue
# Skip lsc image if we don't need it
if lsc_only and not load_lsc:
eprint(f'Skipping {f.name} as this tuner has no LSC module')
continue
# Skip non-lsc image if we don't need it
if not lsc_only and not load_nonlsc:
eprint(f'Skipping {f.name} as this tuner only has an LSC module')
continue
# Load image
try:
image = Image(f)
except Exception as e:
eprint(f'Failed to load image {f.name}: {e}')
continue
# Populate simple fields
image.lsc_only = lsc_only
image.color = color
image.lux = lux
# Black level comes from the TIFF tags, but they are overridable by the
# config file.
if 'blacklevel' in config['general']:
image.blacklevel_16 = config['general']['blacklevel']
if lsc_only:
images.append(image)
continue
# Handle macbeth
macbeth = locate_macbeth(config)
if macbeth is None:
continue
images.append(image)
if not _validate_images(images):
return None
return images