/* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Copyright (C) 2019, Google Inc. * * libcamera V4L2 API tests * * Validate the function of exporting buffers from a V4L2VideoDevice and * the ability to import them to another V4L2VideoDevice instance. * Ensure that the Buffers can successfully be queued and dequeued * between both devices. */ #include #include #include "libcamera/internal/event_dispatcher.h" #include "libcamera/internal/thread.h" #include "libcamera/internal/timer.h" #include "v4l2_videodevice_test.h" class BufferSharingTest : public V4L2VideoDeviceTest { public: BufferSharingTest() : V4L2VideoDeviceTest("vivid", "vivid-000-vid-cap"), output_(nullptr), framesCaptured_(0), framesOutput_(0) {} protected: int init() { int ret = V4L2VideoDeviceTest::init(); if (ret) return ret; /* media_ already represents VIVID */ MediaEntity *entity = media_->getEntityByName("vivid-000-vid-out"); if (!entity) return TestSkip; output_ = new V4L2VideoDevice(entity); if (!output_) { std::cout << "Failed to create output device" << std::endl; return TestFail; } ret = output_->open(); if (ret) { std::cout << "Failed to open output device" << std::endl; return TestFail; } V4L2DeviceFormat format = {}; ret = capture_->getFormat(&format); if (ret) { std::cout << "Failed to get capture format" << std::endl; return TestFail; } format.size.width = 320; format.size.height = 180; ret = capture_->setFormat(&format); if (ret) { std::cout << "Failed to set capture format" << std::endl; return TestFail; } ret = output_->setFormat(&format); if (ret) { std::cout << "Failed to set output format" << std::endl; return TestFail; } ret = capture_->allocateBuffers(bufferCount, &buffers_); if (ret < 0) { std::cout << "Failed to allocate buffers" << std::endl; return TestFail; } ret = output_->importBuffers(bufferCount); if (ret < 0) { std::cout << "Failed to import buffers" << std::endl; return TestFail; } return 0; } void captureBufferReady(FrameBuffer *buffer) { const FrameMetadata &metadata = buffer->metadata(); std::cout << "Received capture buffer" << std::endl; if (metadata.status != FrameMetadata::FrameSuccess) return; output_->queueBuffer(buffer); framesCaptured_++; } void outputBufferReady(FrameBuffer *buffer) { const FrameMetadata &metadata = buffer->metadata(); std::cout << "Received output buffer" << std::endl; if (metadata.status != FrameMetadata::FrameSuccess) return; capture_->queueBuffer(buffer); framesOutput_++; } int run() { EventDispatcher *dispatcher = Thread::current()->eventDispatcher(); Timer timeout; int ret; capture_->bufferReady.connect(this, &BufferSharingTest::captureBufferReady); output_->bufferReady.connect(this, &BufferSharingTest::outputBufferReady); for (const std::unique_ptr &buffer : buffers_) { if (capture_->queueBuffer(buffer.get())) { std::cout << "Failed to queue buffer" << std::endl; return TestFail; } } ret = capture_->streamOn(); if (ret) { std::cout << "Failed to start streaming on the capture device" << std::endl; return TestFail; } ret = output_->streamOn(); if (ret) { std::cout << "Failed to start streaming on the output device" << std::endl; return TestFail; } timeout.start(10000); while (timeout.isRunning()) { dispatcher->processEvents(); if (framesCaptured_ > 30 && framesOutput_ > 30) break; } if ((framesCaptured_ < 1) || (framesOutput_ < 1)) { std::cout << "Failed to process any frames within timeout." << std::endl; return TestFail; } if ((framesCaptured_ < 30) || (framesOutput_ < 30)) { std::cout << "Failed to process 30 frames within timeout." << std::endl; return TestFail; } ret = capture_->streamOff(); if (ret) { std::cout << "Failed to stop streaming on the capture device" << std::endl; return TestFail; } ret = output_->streamOff(); if (ret) { std::cout << "Failed to stop streaming on the output device" << std::endl; return TestFail; } return TestPass; } void cleanup() { std::cout << "Captured " << framesCaptured_ << " frames and " << "output " << framesOutput_ << " frames" << std::endl; output_->streamOff(); output_->releaseBuffers(); output_->close(); delete output_; V4L2VideoDeviceTest::cleanup(); } private: const unsigned int bufferCount = 4; V4L2VideoDevice *output_; unsigned int framesCaptured_; unsigned int framesOutput_; }; TEST_REGISTER(BufferSharingTest) 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
 * Copyright (C) 2021-2022, Ideas On Board
 *
 * RkISP1 Defect Pixel Cluster Correction control
 */

#include "dpcc.h"

#include <libcamera/base/log.h>

#include "libcamera/internal/yaml_parser.h"

#include "linux/rkisp1-config.h"

/**
 * \file dpcc.h
 */

namespace libcamera {

namespace ipa::rkisp1::algorithms {

/**
 * \class DefectPixelClusterCorrection
 * \brief RkISP1 Defect Pixel Cluster Correction control
 *
 * Depending of the sensor quality, some pixels can be defective and then
 * appear significantly brighter or darker than the other pixels.
 *
 * The Defect Pixel Cluster Correction algorithms is responsible to minimize
 * the impact of the pixels. This can be done with algorithms applied at run
 * time (on-the-fly method) or with a table of defective pixels. Only the first
 * method is supported for the moment.
 */

LOG_DEFINE_CATEGORY(RkISP1Dpcc)

DefectPixelClusterCorrection::DefectPixelClusterCorrection()
	: config_({})
{
}

/**
 * \copydoc libcamera::ipa::Algorithm::init
 */
int DefectPixelClusterCorrection::init([[maybe_unused]] IPAContext &context,
				       const YamlObject &tuningData)
{
	config_.mode = RKISP1_CIF_ISP_DPCC_MODE_STAGE1_ENABLE;
	config_.output_mode = RKISP1_CIF_ISP_DPCC_OUTPUT_MODE_STAGE1_INCL_G_CENTER
			    | RKISP1_CIF_ISP_DPCC_OUTPUT_MODE_STAGE1_INCL_RB_CENTER;

	config_.set_use = tuningData["fixed-set"].get<bool>(false)
			? RKISP1_CIF_ISP_DPCC_SET_USE_STAGE1_USE_FIX_SET : 0;

	/* Get all defined sets to apply (up to 3). */
	const YamlObject &setsObject = tuningData["sets"];
	if (!setsObject.isList()) {
		LOG(RkISP1Dpcc, Error)
			<< "'sets' parameter not found in tuning file";
		return -EINVAL;
	}

	if (setsObject.size() > RKISP1_CIF_ISP_DPCC_METHODS_MAX) {
		LOG(RkISP1Dpcc, Error)
			<< "'sets' size in tuning file (" << setsObject.size()
			<< ") exceeds the maximum hardware capacity (3)";
		return -EINVAL;
	}

	for (std::size_t i = 0; i < setsObject.size(); ++i) {
		struct rkisp1_cif_isp_dpcc_methods_config &method = config_.methods[i];
		const YamlObject &set = setsObject[i];
		uint16_t value;

		/* Enable set if described in YAML tuning file. */
		config_.set_use |= 1 << i;

		/* PG Method */
		const YamlObject &pgObject = set["pg-factor"];

		if (pgObject.contains("green")) {
			method.method |=
				RKISP1_CIF_ISP_DPCC_METHODS_SET_PG_GREEN_ENABLE;

			value = pgObject["green"].get<uint16_t>(0);
			method.pg_fac |= RKISP1_CIF_ISP_DPCC_PG_FAC_G(value);
		}

		if (pgObject.contains("red-blue")) {
			method.method |=
				RKISP1_CIF_ISP_DPCC_METHODS_SET_PG_RED_BLUE_ENABLE;

			value = pgObject["red-blue"].get<uint16_t>(0);
			method.pg_fac |= RKISP1_CIF_ISP_DPCC_PG_FAC_RB(value);
		}

		/* RO Method */
		const YamlObject &roObject = set["ro-limits"];

		if (roObject.contains("green")) {
			method.method |=
				RKISP1_CIF_ISP_DPCC_METHODS_SET_RO_GREEN_ENABLE;

			value = roObject["green"].get<uint16_t>(0);
			config_.ro_limits |=
				RKISP1_CIF_ISP_DPCC_RO_LIMITS_n_G(i, value);
		}