/* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Copyright (C) 2019, Google Inc. * * process_test.cpp - Process test */ #include <iostream> #include <unistd.h> #include <vector> #include <libcamera/event_dispatcher.h> #include <libcamera/timer.h> #include "libcamera/internal/process.h" #include "libcamera/internal/thread.h" #include "libcamera/internal/utils.h" #include "test.h" using namespace std; using namespace libcamera; class ProcessTestChild { public: int run(int status) { usleep(50000); return status; } }; class ProcessTest : public Test { public: ProcessTest() : exitStatus_(Process::NotExited), exitCode_(-1) { } protected: int run() { EventDispatcher *dispatcher = Thread::current()->eventDispatcher(); Timer timeout; int exitCode = 42; vector<std::string> args; args.push_back(to_string(exitCode)); proc_.finished.connect(this, &ProcessTest::procFinished); int ret = proc_.start("/proc/self/exe", args); if (ret) { cerr << "failed to start process" << endl; return TestFail; } timeout.start(2000); while (timeout.isRunning() && exitStatus_ == Process::NotExited) dispatcher->processEvents(); if (exitStatus_ != Process::NormalExit) { cerr << "process did not exit normally" << endl; return TestFail; } if (exitCode != exitCode_) { cerr << "exit code should be " << exitCode << ", actual is " << exitCode_ << endl; return TestFail; } return TestPass; } private: void procFinished(Process *proc, enum Process::ExitStatus exitStatus, int exitCode) { exitStatus_ = exitStatus; exitCode_ = exitCode; } Process proc_; enum Process::ExitStatus exitStatus_; int exitCode_; }; /* * Can't use TEST_REGISTER() as single binary needs to act as both * parent and child processes. */ int main(int argc, char **argv) { if (argc == 2) { int status = std::stoi(argv[1]); ProcessTestChild child; return child.run(status); } return ProcessTest().execute(); } ethod='get' action='/libcamera/libcamera.git/log/utils/raspberrypi/ctt/ctt_macbeth_locator.py'> <input type='hidden' name='h' value='v0.4.0'/><input type='hidden' name='id' value='2e47324860bcbcc7b317efa66673201877583b3e'/><select name='qt'> <option value='grep'>log msg</option> <option value='author'>author</option> <option value='committer'>committer</option> <option value='range'>range</option> </select> <input class='txt' type='search' size='10' name='q' value=''/> <input type='submit' value='search'/> </form> </td></tr></table> <div class='path'>path: <a href='/libcamera/libcamera.git/tree/?h=v0.4.0&id=2e47324860bcbcc7b317efa66673201877583b3e'>root</a>/<a href='/libcamera/libcamera.git/tree/utils?h=v0.4.0&id=2e47324860bcbcc7b317efa66673201877583b3e'>utils</a>/<a href='/libcamera/libcamera.git/tree/utils/raspberrypi?h=v0.4.0&id=2e47324860bcbcc7b317efa66673201877583b3e'>raspberrypi</a>/<a href='/libcamera/libcamera.git/tree/utils/raspberrypi/ctt?h=v0.4.0&id=2e47324860bcbcc7b317efa66673201877583b3e'>ctt</a>/<a href='/libcamera/libcamera.git/tree/utils/raspberrypi/ctt/ctt_macbeth_locator.py?h=v0.4.0&id=2e47324860bcbcc7b317efa66673201877583b3e'>ctt_macbeth_locator.py</a></div><div class='content'>blob: f22dbf319a347dc7ca2fa5ca11838ac38ee2ff0f (<a href='/libcamera/libcamera.git/plain/utils/raspberrypi/ctt/ctt_macbeth_locator.py?h=v0.4.0&id=2e47324860bcbcc7b317efa66673201877583b3e'>plain</a>) <table summary='blob content' class='blob'> <tr><td class='linenumbers'><pre><a id='n1' href='#n1'>1</a> <a id='n2' href='#n2'>2</a> <a id='n3' href='#n3'>3</a> <a id='n4' href='#n4'>4</a> <a id='n5' href='#n5'>5</a> <a id='n6' href='#n6'>6</a> <a id='n7' href='#n7'>7</a> <a id='n8' href='#n8'>8</a> <a id='n9' href='#n9'>9</a> <a id='n10' href='#n10'>10</a> <a id='n11' href='#n11'>11</a> <a id='n12' href='#n12'>12</a> <a id='n13' href='#n13'>13</a> <a id='n14' href='#n14'>14</a> <a id='n15' href='#n15'>15</a> <a id='n16' href='#n16'>16</a> <a id='n17' href='#n17'>17</a> <a id='n18' href='#n18'>18</a> <a id='n19' href='#n19'>19</a> <a id='n20' href='#n20'>20</a> <a id='n21' href='#n21'>21</a> <a id='n22' href='#n22'>22</a> <a id='n23' href='#n23'>23</a> <a id='n24' href='#n24'>24</a> <a id='n25' href='#n25'>25</a> <a id='n26' href='#n26'>26</a> <a id='n27' href='#n27'>27</a> <a id='n28' href='#n28'>28</a> <a id='n29' href='#n29'>29</a> <a id='n30' href='#n30'>30</a> <a id='n31' href='#n31'>31</a> <a id='n32' href='#n32'>32</a> <a id='n33' href='#n33'>33</a> <a id='n34' href='#n34'>34</a> <a id='n35' href='#n35'>35</a> <a id='n36' href='#n36'>36</a> <a id='n37' href='#n37'>37</a> <a id='n38' href='#n38'>38</a> <a id='n39' href='#n39'>39</a> <a id='n40' href='#n40'>40</a> <a id='n41' href='#n41'>41</a> <a id='n42' href='#n42'>42</a> <a id='n43' href='#n43'>43</a> <a id='n44' href='#n44'>44</a> <a id='n45' href='#n45'>45</a> <a id='n46' href='#n46'>46</a> <a id='n47' href='#n47'>47</a> <a id='n48' href='#n48'>48</a> <a id='n49' href='#n49'>49</a> <a id='n50' href='#n50'>50</a> <a id='n51' href='#n51'>51</a> <a id='n52' href='#n52'>52</a> <a id='n53' href='#n53'>53</a> <a id='n54' href='#n54'>54</a> <a id='n55' href='#n55'>55</a> <a id='n56' href='#n56'>56</a> <a id='n57' href='#n57'>57</a> <a id='n58' href='#n58'>58</a> <a id='n59' href='#n59'>59</a> <a id='n60' href='#n60'>60</a> <a id='n61' href='#n61'>61</a> <a id='n62' href='#n62'>62</a> <a id='n63' href='#n63'>63</a> <a id='n64' href='#n64'>64</a> <a id='n65' href='#n65'>65</a> <a id='n66' href='#n66'>66</a> <a id='n67' href='#n67'>67</a> <a id='n68' href='#n68'>68</a> <a id='n69' href='#n69'>69</a> <a id='n70' href='#n70'>70</a> <a id='n71' href='#n71'>71</a> <a id='n72' href='#n72'>72</a> <a id='n73' href='#n73'>73</a> <a id='n74' href='#n74'>74</a> <a id='n75' href='#n75'>75</a> <a id='n76' href='#n76'>76</a> <a id='n77' href='#n77'>77</a> <a id='n78' href='#n78'>78</a> <a id='n79' href='#n79'>79</a> <a id='n80' href='#n80'>80</a> <a id='n81' href='#n81'>81</a> <a id='n82' href='#n82'>82</a> <a id='n83' href='#n83'>83</a> <a id='n84' href='#n84'>84</a> <a id='n85' href='#n85'>85</a> <a id='n86' href='#n86'>86</a> <a id='n87' href='#n87'>87</a> <a id='n88' href='#n88'>88</a> <a id='n89' href='#n89'>89</a> <a id='n90' href='#n90'>90</a> <a id='n91' href='#n91'>91</a> <a id='n92' href='#n92'>92</a> <a id='n93' href='#n93'>93</a> <a id='n94' href='#n94'>94</a> <a id='n95' href='#n95'>95</a> <a id='n96' href='#n96'>96</a> <a id='n97' href='#n97'>97</a> <a id='n98' href='#n98'>98</a> <a id='n99' href='#n99'>99</a> <a id='n100' href='#n100'>100</a> <a id='n101' href='#n101'>101</a> <a id='n102' href='#n102'>102</a> <a id='n103' href='#n103'>103</a> <a id='n104' href='#n104'>104</a> <a id='n105' href='#n105'>105</a> <a id='n106' href='#n106'>106</a> <a id='n107' href='#n107'>107</a> <a id='n108' href='#n108'>108</a> <a id='n109' href='#n109'>109</a> <a id='n110' href='#n110'>110</a> <a id='n111' href='#n111'>111</a> <a id='n112' href='#n112'>112</a> <a id='n113' href='#n113'>113</a> <a id='n114' href='#n114'>114</a> <a id='n115' href='#n115'>115</a> <a id='n116' href='#n116'>116</a> <a id='n117' href='#n117'>117</a> <a id='n118' href='#n118'>118</a> <a id='n119' href='#n119'>119</a> <a id='n120' href='#n120'>120</a> <a id='n121' href='#n121'>121</a> <a id='n122' href='#n122'>122</a> <a id='n123' href='#n123'>123</a> <a id='n124' href='#n124'>124</a> <a id='n125' href='#n125'>125</a> <a id='n126' href='#n126'>126</a> <a id='n127' href='#n127'>127</a> <a id='n128' href='#n128'>128</a> <a id='n129' href='#n129'>129</a> <a id='n130' href='#n130'>130</a> <a id='n131' href='#n131'>131</a> <a id='n132' href='#n132'>132</a> <a id='n133' href='#n133'>133</a> <a id='n134' href='#n134'>134</a> <a id='n135' href='#n135'>135</a> <a id='n136' href='#n136'>136</a> <a id='n137' href='#n137'>137</a> <a id='n138' href='#n138'>138</a> <a id='n139' href='#n139'>139</a> <a id='n140' href='#n140'>140</a> <a id='n141' href='#n141'>141</a> <a id='n142' href='#n142'>142</a> <a id='n143' href='#n143'>143</a> <a id='n144' href='#n144'>144</a> <a id='n145' href='#n145'>145</a> <a id='n146' href='#n146'>146</a> <a id='n147' href='#n147'>147</a> <a id='n148' href='#n148'>148</a> <a id='n149' href='#n149'>149</a> <a id='n150' href='#n150'>150</a> <a id='n151' href='#n151'>151</a> <a id='n152' href='#n152'>152</a> <a id='n153' href='#n153'>153</a> <a id='n154' href='#n154'>154</a> <a id='n155' href='#n155'>155</a> <a id='n156' href='#n156'>156</a> <a id='n157' href='#n157'>157</a> <a id='n158' href='#n158'>158</a> <a id='n159' href='#n159'>159</a> <a id='n160' href='#n160'>160</a> <a id='n161' href='#n161'>161</a> <a id='n162' href='#n162'>162</a> <a id='n163' href='#n163'>163</a> <a id='n164' href='#n164'>164</a> <a id='n165' href='#n165'>165</a> <a id='n166' href='#n166'>166</a> <a id='n167' href='#n167'>167</a> <a id='n168' href='#n168'>168</a> <a id='n169' href='#n169'>169</a> <a id='n170' href='#n170'>170</a> <a id='n171' href='#n171'>171</a> <a id='n172' href='#n172'>172</a> <a id='n173' href='#n173'>173</a> <a id='n174' href='#n174'>174</a> <a id='n175' href='#n175'>175</a> <a id='n176' href='#n176'>176</a> <a id='n177' href='#n177'>177</a> <a id='n178' href='#n178'>178</a> <a id='n179' href='#n179'>179</a> <a id='n180' href='#n180'>180</a> <a id='n181' href='#n181'>181</a> <a id='n182' href='#n182'>182</a> <a id='n183' href='#n183'>183</a> <a id='n184' href='#n184'>184</a> <a id='n185' href='#n185'>185</a> <a id='n186' href='#n186'>186</a> <a id='n187' href='#n187'>187</a> <a id='n188' href='#n188'>188</a> <a id='n189' href='#n189'>189</a> <a id='n190' href='#n190'>190</a> <a id='n191' href='#n191'>191</a> <a id='n192' href='#n192'>192</a> <a id='n193' href='#n193'>193</a> <a id='n194' href='#n194'>194</a> <a id='n195' href='#n195'>195</a> <a id='n196' href='#n196'>196</a> <a id='n197' href='#n197'>197</a> <a id='n198' href='#n198'>198</a> <a id='n199' href='#n199'>199</a> <a id='n200' href='#n200'>200</a> <a id='n201' href='#n201'>201</a> <a id='n202' href='#n202'>202</a> <a id='n203' href='#n203'>203</a> <a id='n204' href='#n204'>204</a> <a id='n205' href='#n205'>205</a> <a id='n206' href='#n206'>206</a> <a id='n207' href='#n207'>207</a> <a id='n208' href='#n208'>208</a> <a id='n209' href='#n209'>209</a> <a id='n210' href='#n210'>210</a> <a id='n211' href='#n211'>211</a> <a id='n212' href='#n212'>212</a> <a id='n213' href='#n213'>213</a> <a id='n214' href='#n214'>214</a> <a id='n215' href='#n215'>215</a> <a id='n216' href='#n216'>216</a> <a id='n217' href='#n217'>217</a> <a id='n218' href='#n218'>218</a> <a id='n219' href='#n219'>219</a> <a id='n220' href='#n220'>220</a> <a id='n221' href='#n221'>221</a> <a id='n222' href='#n222'>222</a> <a id='n223' href='#n223'>223</a> <a id='n224' href='#n224'>224</a> <a id='n225' href='#n225'>225</a> <a id='n226' href='#n226'>226</a> <a id='n227' href='#n227'>227</a> <a id='n228' href='#n228'>228</a> <a id='n229' href='#n229'>229</a> <a id='n230' href='#n230'>230</a> <a id='n231' href='#n231'>231</a> <a id='n232' href='#n232'>232</a> <a id='n233' href='#n233'>233</a> <a id='n234' href='#n234'>234</a> <a id='n235' href='#n235'>235</a> <a id='n236' href='#n236'>236</a> <a id='n237' href='#n237'>237</a> <a id='n238' href='#n238'>238</a> <a id='n239' href='#n239'>239</a> <a id='n240' href='#n240'>240</a> <a id='n241' href='#n241'>241</a> <a id='n242' href='#n242'>242</a> <a id='n243' href='#n243'>243</a> <a id='n244' href='#n244'>244</a> <a id='n245' href='#n245'>245</a> <a id='n246' href='#n246'>246</a> <a id='n247' href='#n247'>247</a> <a id='n248' href='#n248'>248</a> <a id='n249' href='#n249'>249</a> <a id='n250' href='#n250'>250</a> <a id='n251' href='#n251'>251</a> <a id='n252' href='#n252'>252</a> <a id='n253' href='#n253'>253</a> <a id='n254' href='#n254'>254</a> <a id='n255' href='#n255'>255</a> <a id='n256' href='#n256'>256</a> <a id='n257' href='#n257'>257</a> <a id='n258' href='#n258'>258</a> <a id='n259' href='#n259'>259</a> <a id='n260' href='#n260'>260</a> <a id='n261' href='#n261'>261</a> <a id='n262' href='#n262'>262</a> <a id='n263' href='#n263'>263</a> <a id='n264' href='#n264'>264</a> <a id='n265' href='#n265'>265</a> <a id='n266' href='#n266'>266</a> <a id='n267' href='#n267'>267</a> <a id='n268' href='#n268'>268</a> <a id='n269' href='#n269'>269</a> <a id='n270' href='#n270'>270</a> <a id='n271' href='#n271'>271</a> <a id='n272' href='#n272'>272</a> <a id='n273' href='#n273'>273</a> <a id='n274' href='#n274'>274</a> <a id='n275' href='#n275'>275</a> <a id='n276' href='#n276'>276</a> <a id='n277' href='#n277'>277</a> <a id='n278' href='#n278'>278</a> <a id='n279' href='#n279'>279</a> <a id='n280' href='#n280'>280</a> <a id='n281' href='#n281'>281</a> <a id='n282' href='#n282'>282</a> <a id='n283' href='#n283'>283</a> <a id='n284' href='#n284'>284</a> <a id='n285' href='#n285'>285</a> <a id='n286' href='#n286'>286</a> <a id='n287' href='#n287'>287</a> <a id='n288' href='#n288'>288</a> <a id='n289' href='#n289'>289</a> <a id='n290' href='#n290'>290</a> <a id='n291' href='#n291'>291</a> <a id='n292' href='#n292'>292</a> <a id='n293' href='#n293'>293</a> <a id='n294' href='#n294'>294</a> <a id='n295' href='#n295'>295</a> <a id='n296' href='#n296'>296</a> <a id='n297' href='#n297'>297</a> <a id='n298' href='#n298'>298</a> <a id='n299' href='#n299'>299</a> <a id='n300' href='#n300'>300</a> <a id='n301' href='#n301'>301</a> <a id='n302' href='#n302'>302</a> <a id='n303' href='#n303'>303</a> <a id='n304' href='#n304'>304</a> <a id='n305' href='#n305'>305</a> <a id='n306' href='#n306'>306</a> <a id='n307' href='#n307'>307</a> <a id='n308' href='#n308'>308</a> <a id='n309' href='#n309'>309</a> <a id='n310' href='#n310'>310</a> <a id='n311' href='#n311'>311</a> <a id='n312' href='#n312'>312</a> <a id='n313' href='#n313'>313</a> <a id='n314' href='#n314'>314</a> <a id='n315' href='#n315'>315</a> <a id='n316' href='#n316'>316</a> <a id='n317' href='#n317'>317</a> <a id='n318' href='#n318'>318</a> <a id='n319' href='#n319'>319</a> <a id='n320' href='#n320'>320</a> <a id='n321' href='#n321'>321</a> <a id='n322' href='#n322'>322</a> <a id='n323' href='#n323'>323</a> <a id='n324' href='#n324'>324</a> <a id='n325' href='#n325'>325</a> <a id='n326' href='#n326'>326</a> <a id='n327' href='#n327'>327</a> <a id='n328' href='#n328'>328</a> <a id='n329' href='#n329'>329</a> <a id='n330' href='#n330'>330</a> <a id='n331' href='#n331'>331</a> <a id='n332' href='#n332'>332</a> <a id='n333' href='#n333'>333</a> <a id='n334' href='#n334'>334</a> <a id='n335' href='#n335'>335</a> <a id='n336' href='#n336'>336</a> <a id='n337' href='#n337'>337</a> <a id='n338' href='#n338'>338</a> <a id='n339' href='#n339'>339</a> <a id='n340' href='#n340'>340</a> <a id='n341' href='#n341'>341</a> <a id='n342' href='#n342'>342</a> <a id='n343' href='#n343'>343</a> <a id='n344' href='#n344'>344</a> <a id='n345' href='#n345'>345</a> <a id='n346' href='#n346'>346</a> <a id='n347' href='#n347'>347</a> <a id='n348' href='#n348'>348</a> <a id='n349' href='#n349'>349</a> <a id='n350' href='#n350'>350</a> <a id='n351' href='#n351'>351</a> <a id='n352' href='#n352'>352</a> <a id='n353' href='#n353'>353</a> <a id='n354' href='#n354'>354</a> <a id='n355' href='#n355'>355</a> <a id='n356' href='#n356'>356</a> <a id='n357' href='#n357'>357</a> <a id='n358' href='#n358'>358</a> <a id='n359' href='#n359'>359</a> <a id='n360' href='#n360'>360</a> <a id='n361' href='#n361'>361</a> <a id='n362' href='#n362'>362</a> <a id='n363' href='#n363'>363</a> <a id='n364' href='#n364'>364</a> <a id='n365' href='#n365'>365</a> <a id='n366' href='#n366'>366</a> <a id='n367' href='#n367'>367</a> <a id='n368' href='#n368'>368</a> <a id='n369' href='#n369'>369</a> <a id='n370' href='#n370'>370</a> <a id='n371' href='#n371'>371</a> <a id='n372' href='#n372'>372</a> <a id='n373' href='#n373'>373</a> <a id='n374' href='#n374'>374</a> <a id='n375' href='#n375'>375</a> <a id='n376' href='#n376'>376</a> <a id='n377' href='#n377'>377</a> <a id='n378' href='#n378'>378</a> <a id='n379' href='#n379'>379</a> <a id='n380' href='#n380'>380</a> <a id='n381' href='#n381'>381</a> <a id='n382' href='#n382'>382</a> <a id='n383' href='#n383'>383</a> <a id='n384' href='#n384'>384</a> <a id='n385' href='#n385'>385</a> <a id='n386' href='#n386'>386</a> <a id='n387' href='#n387'>387</a> <a id='n388' href='#n388'>388</a> <a id='n389' href='#n389'>389</a> <a id='n390' href='#n390'>390</a> <a id='n391' href='#n391'>391</a> <a id='n392' href='#n392'>392</a> <a id='n393' href='#n393'>393</a> <a id='n394' href='#n394'>394</a> <a id='n395' href='#n395'>395</a> <a id='n396' href='#n396'>396</a> <a id='n397' href='#n397'>397</a> <a id='n398' href='#n398'>398</a> <a id='n399' href='#n399'>399</a> <a id='n400' href='#n400'>400</a> <a id='n401' href='#n401'>401</a> <a id='n402' href='#n402'>402</a> <a id='n403' href='#n403'>403</a> <a id='n404' href='#n404'>404</a> <a id='n405' href='#n405'>405</a> <a id='n406' href='#n406'>406</a> <a id='n407' href='#n407'>407</a> <a id='n408' href='#n408'>408</a> <a id='n409' href='#n409'>409</a> <a id='n410' href='#n410'>410</a> <a id='n411' href='#n411'>411</a> <a id='n412' href='#n412'>412</a> <a id='n413' href='#n413'>413</a> <a id='n414' href='#n414'>414</a> <a id='n415' href='#n415'>415</a> <a id='n416' href='#n416'>416</a> <a id='n417' href='#n417'>417</a> <a id='n418' href='#n418'>418</a> <a id='n419' href='#n419'>419</a> <a id='n420' href='#n420'>420</a> <a id='n421' href='#n421'>421</a> <a id='n422' href='#n422'>422</a> <a id='n423' href='#n423'>423</a> <a id='n424' href='#n424'>424</a> <a id='n425' href='#n425'>425</a> <a id='n426' href='#n426'>426</a> <a id='n427' href='#n427'>427</a> <a id='n428' href='#n428'>428</a> <a id='n429' href='#n429'>429</a> <a id='n430' href='#n430'>430</a> <a id='n431' href='#n431'>431</a> <a id='n432' href='#n432'>432</a> <a id='n433' href='#n433'>433</a> <a id='n434' href='#n434'>434</a> <a id='n435' href='#n435'>435</a> <a id='n436' href='#n436'>436</a> <a id='n437' href='#n437'>437</a> <a id='n438' href='#n438'>438</a> <a id='n439' href='#n439'>439</a> <a id='n440' href='#n440'>440</a> <a id='n441' href='#n441'>441</a> <a id='n442' href='#n442'>442</a> <a id='n443' href='#n443'>443</a> <a id='n444' href='#n444'>444</a> <a id='n445' href='#n445'>445</a> <a id='n446' href='#n446'>446</a> <a id='n447' href='#n447'>447</a> <a id='n448' href='#n448'>448</a> <a id='n449' href='#n449'>449</a> <a id='n450' href='#n450'>450</a> <a id='n451' href='#n451'>451</a> <a id='n452' href='#n452'>452</a> <a id='n453' href='#n453'>453</a> <a id='n454' href='#n454'>454</a> <a id='n455' href='#n455'>455</a> <a id='n456' href='#n456'>456</a> <a id='n457' href='#n457'>457</a> <a id='n458' href='#n458'>458</a> <a id='n459' href='#n459'>459</a> <a id='n460' href='#n460'>460</a> <a id='n461' href='#n461'>461</a> <a id='n462' href='#n462'>462</a> <a id='n463' href='#n463'>463</a> <a id='n464' href='#n464'>464</a> <a id='n465' href='#n465'>465</a> <a id='n466' href='#n466'>466</a> <a id='n467' href='#n467'>467</a> <a id='n468' href='#n468'>468</a> <a id='n469' href='#n469'>469</a> <a id='n470' href='#n470'>470</a> <a id='n471' href='#n471'>471</a> <a id='n472' href='#n472'>472</a> <a id='n473' href='#n473'>473</a> <a id='n474' href='#n474'>474</a> <a id='n475' href='#n475'>475</a> <a id='n476' href='#n476'>476</a> <a id='n477' href='#n477'>477</a> <a id='n478' href='#n478'>478</a> <a id='n479' href='#n479'>479</a> <a id='n480' href='#n480'>480</a> <a id='n481' href='#n481'>481</a> <a id='n482' href='#n482'>482</a> <a id='n483' href='#n483'>483</a> <a id='n484' href='#n484'>484</a> <a id='n485' href='#n485'>485</a> <a id='n486' href='#n486'>486</a> <a id='n487' href='#n487'>487</a> <a id='n488' href='#n488'>488</a> <a id='n489' href='#n489'>489</a> <a id='n490' href='#n490'>490</a> <a id='n491' href='#n491'>491</a> <a id='n492' href='#n492'>492</a> <a id='n493' href='#n493'>493</a> <a id='n494' href='#n494'>494</a> <a id='n495' href='#n495'>495</a> <a id='n496' href='#n496'>496</a> <a id='n497' href='#n497'>497</a> <a id='n498' href='#n498'>498</a> <a id='n499' href='#n499'>499</a> <a id='n500' href='#n500'>500</a> <a id='n501' href='#n501'>501</a> <a id='n502' href='#n502'>502</a> <a id='n503' href='#n503'>503</a> <a id='n504' href='#n504'>504</a> <a id='n505' href='#n505'>505</a> <a id='n506' href='#n506'>506</a> <a id='n507' href='#n507'>507</a> <a id='n508' href='#n508'>508</a> <a id='n509' href='#n509'>509</a> <a id='n510' href='#n510'>510</a> <a id='n511' href='#n511'>511</a> <a id='n512' href='#n512'>512</a> <a id='n513' href='#n513'>513</a> <a id='n514' href='#n514'>514</a> <a id='n515' href='#n515'>515</a> <a id='n516' href='#n516'>516</a> <a id='n517' href='#n517'>517</a> <a id='n518' href='#n518'>518</a> <a id='n519' href='#n519'>519</a> <a id='n520' href='#n520'>520</a> <a id='n521' href='#n521'>521</a> <a id='n522' href='#n522'>522</a> <a id='n523' href='#n523'>523</a> <a id='n524' href='#n524'>524</a> <a id='n525' href='#n525'>525</a> <a id='n526' href='#n526'>526</a> <a id='n527' href='#n527'>527</a> <a id='n528' href='#n528'>528</a> <a id='n529' href='#n529'>529</a> <a id='n530' href='#n530'>530</a> <a id='n531' href='#n531'>531</a> <a id='n532' href='#n532'>532</a> <a id='n533' href='#n533'>533</a> <a id='n534' href='#n534'>534</a> <a id='n535' href='#n535'>535</a> <a id='n536' href='#n536'>536</a> <a id='n537' href='#n537'>537</a> <a id='n538' href='#n538'>538</a> <a id='n539' href='#n539'>539</a> <a id='n540' href='#n540'>540</a> <a id='n541' href='#n541'>541</a> <a id='n542' href='#n542'>542</a> <a id='n543' href='#n543'>543</a> <a id='n544' href='#n544'>544</a> <a id='n545' href='#n545'>545</a> <a id='n546' href='#n546'>546</a> <a id='n547' href='#n547'>547</a> <a id='n548' href='#n548'>548</a> <a id='n549' href='#n549'>549</a> <a id='n550' href='#n550'>550</a> <a id='n551' href='#n551'>551</a> <a id='n552' href='#n552'>552</a> <a id='n553' href='#n553'>553</a> <a id='n554' href='#n554'>554</a> <a id='n555' href='#n555'>555</a> <a id='n556' href='#n556'>556</a> <a id='n557' href='#n557'>557</a> <a id='n558' href='#n558'>558</a> <a id='n559' href='#n559'>559</a> <a id='n560' href='#n560'>560</a> <a id='n561' href='#n561'>561</a> <a id='n562' href='#n562'>562</a> <a id='n563' href='#n563'>563</a> <a id='n564' href='#n564'>564</a> <a id='n565' href='#n565'>565</a> <a id='n566' href='#n566'>566</a> <a id='n567' href='#n567'>567</a> <a id='n568' href='#n568'>568</a> <a id='n569' href='#n569'>569</a> <a id='n570' href='#n570'>570</a> <a id='n571' href='#n571'>571</a> <a id='n572' href='#n572'>572</a> <a id='n573' href='#n573'>573</a> <a id='n574' href='#n574'>574</a> <a id='n575' href='#n575'>575</a> <a id='n576' href='#n576'>576</a> <a id='n577' href='#n577'>577</a> <a id='n578' href='#n578'>578</a> <a id='n579' href='#n579'>579</a> <a id='n580' href='#n580'>580</a> <a id='n581' href='#n581'>581</a> <a id='n582' href='#n582'>582</a> <a id='n583' href='#n583'>583</a> <a id='n584' href='#n584'>584</a> <a id='n585' href='#n585'>585</a> <a id='n586' href='#n586'>586</a> <a id='n587' href='#n587'>587</a> <a id='n588' href='#n588'>588</a> <a id='n589' href='#n589'>589</a> <a id='n590' href='#n590'>590</a> <a id='n591' href='#n591'>591</a> <a id='n592' href='#n592'>592</a> <a id='n593' href='#n593'>593</a> <a id='n594' href='#n594'>594</a> <a id='n595' href='#n595'>595</a> <a id='n596' href='#n596'>596</a> <a id='n597' href='#n597'>597</a> <a id='n598' href='#n598'>598</a> <a id='n599' href='#n599'>599</a> <a id='n600' href='#n600'>600</a> <a id='n601' href='#n601'>601</a> <a id='n602' href='#n602'>602</a> <a id='n603' href='#n603'>603</a> <a id='n604' href='#n604'>604</a> <a id='n605' href='#n605'>605</a> <a id='n606' href='#n606'>606</a> <a id='n607' href='#n607'>607</a> <a id='n608' href='#n608'>608</a> <a id='n609' href='#n609'>609</a> <a id='n610' href='#n610'>610</a> <a id='n611' href='#n611'>611</a> <a id='n612' href='#n612'>612</a> <a id='n613' href='#n613'>613</a> <a id='n614' href='#n614'>614</a> <a id='n615' href='#n615'>615</a> <a id='n616' href='#n616'>616</a> <a id='n617' href='#n617'>617</a> <a id='n618' href='#n618'>618</a> <a id='n619' href='#n619'>619</a> <a id='n620' href='#n620'>620</a> <a id='n621' href='#n621'>621</a> <a id='n622' href='#n622'>622</a> <a id='n623' href='#n623'>623</a> <a id='n624' href='#n624'>624</a> <a id='n625' href='#n625'>625</a> <a id='n626' href='#n626'>626</a> <a id='n627' href='#n627'>627</a> <a id='n628' href='#n628'>628</a> <a id='n629' href='#n629'>629</a> <a id='n630' href='#n630'>630</a> <a id='n631' href='#n631'>631</a> <a id='n632' href='#n632'>632</a> <a id='n633' href='#n633'>633</a> <a id='n634' href='#n634'>634</a> <a id='n635' href='#n635'>635</a> <a id='n636' href='#n636'>636</a> <a id='n637' href='#n637'>637</a> <a id='n638' href='#n638'>638</a> <a id='n639' href='#n639'>639</a> <a id='n640' href='#n640'>640</a> <a id='n641' href='#n641'>641</a> <a id='n642' href='#n642'>642</a> <a id='n643' href='#n643'>643</a> <a id='n644' href='#n644'>644</a> <a id='n645' href='#n645'>645</a> <a id='n646' href='#n646'>646</a> <a id='n647' href='#n647'>647</a> <a id='n648' href='#n648'>648</a> <a id='n649' href='#n649'>649</a> <a id='n650' href='#n650'>650</a> <a id='n651' href='#n651'>651</a> <a id='n652' href='#n652'>652</a> <a id='n653' href='#n653'>653</a> <a id='n654' href='#n654'>654</a> <a id='n655' href='#n655'>655</a> <a id='n656' href='#n656'>656</a> <a id='n657' href='#n657'>657</a> <a id='n658' href='#n658'>658</a> <a id='n659' href='#n659'>659</a> <a id='n660' href='#n660'>660</a> <a id='n661' href='#n661'>661</a> <a id='n662' href='#n662'>662</a> <a id='n663' href='#n663'>663</a> <a id='n664' href='#n664'>664</a> <a id='n665' href='#n665'>665</a> <a id='n666' href='#n666'>666</a> <a id='n667' href='#n667'>667</a> <a id='n668' href='#n668'>668</a> <a id='n669' href='#n669'>669</a> <a id='n670' href='#n670'>670</a> <a id='n671' href='#n671'>671</a> <a id='n672' href='#n672'>672</a> <a id='n673' href='#n673'>673</a> <a id='n674' href='#n674'>674</a> <a id='n675' href='#n675'>675</a> <a id='n676' href='#n676'>676</a> <a id='n677' href='#n677'>677</a> <a id='n678' href='#n678'>678</a> <a id='n679' href='#n679'>679</a> <a id='n680' href='#n680'>680</a> <a id='n681' href='#n681'>681</a> <a id='n682' href='#n682'>682</a> <a id='n683' href='#n683'>683</a> <a id='n684' href='#n684'>684</a> <a id='n685' href='#n685'>685</a> <a id='n686' href='#n686'>686</a> <a id='n687' href='#n687'>687</a> <a id='n688' href='#n688'>688</a> <a id='n689' href='#n689'>689</a> <a id='n690' href='#n690'>690</a> <a id='n691' href='#n691'>691</a> <a id='n692' href='#n692'>692</a> <a id='n693' href='#n693'>693</a> <a id='n694' href='#n694'>694</a> <a id='n695' href='#n695'>695</a> <a id='n696' href='#n696'>696</a> <a id='n697' href='#n697'>697</a> <a id='n698' href='#n698'>698</a> <a id='n699' href='#n699'>699</a> <a id='n700' href='#n700'>700</a> <a id='n701' href='#n701'>701</a> <a id='n702' href='#n702'>702</a> <a id='n703' href='#n703'>703</a> <a id='n704' href='#n704'>704</a> <a id='n705' href='#n705'>705</a> <a id='n706' href='#n706'>706</a> <a id='n707' href='#n707'>707</a> <a id='n708' href='#n708'>708</a> <a id='n709' href='#n709'>709</a> <a id='n710' href='#n710'>710</a> <a id='n711' href='#n711'>711</a> <a id='n712' href='#n712'>712</a> <a id='n713' href='#n713'>713</a> <a id='n714' href='#n714'>714</a> <a id='n715' href='#n715'>715</a> <a id='n716' href='#n716'>716</a> <a id='n717' href='#n717'>717</a> <a id='n718' href='#n718'>718</a> <a id='n719' href='#n719'>719</a> <a id='n720' href='#n720'>720</a> <a id='n721' href='#n721'>721</a> <a id='n722' href='#n722'>722</a> <a id='n723' href='#n723'>723</a> <a id='n724' href='#n724'>724</a> <a id='n725' href='#n725'>725</a> <a id='n726' href='#n726'>726</a> <a id='n727' href='#n727'>727</a> <a id='n728' href='#n728'>728</a> <a id='n729' href='#n729'>729</a> <a id='n730' href='#n730'>730</a> <a id='n731' href='#n731'>731</a> <a id='n732' href='#n732'>732</a> <a id='n733' href='#n733'>733</a> <a id='n734' href='#n734'>734</a> <a id='n735' href='#n735'>735</a> <a id='n736' href='#n736'>736</a> <a id='n737' href='#n737'>737</a> <a id='n738' href='#n738'>738</a> <a id='n739' href='#n739'>739</a> <a id='n740' href='#n740'>740</a> <a id='n741' href='#n741'>741</a> <a id='n742' href='#n742'>742</a> <a id='n743' href='#n743'>743</a> <a id='n744' href='#n744'>744</a> <a id='n745' href='#n745'>745</a> <a id='n746' href='#n746'>746</a> <a id='n747' href='#n747'>747</a> <a id='n748' href='#n748'>748</a> <a id='n749' href='#n749'>749</a> <a id='n750' href='#n750'>750</a> <a id='n751' href='#n751'>751</a> <a id='n752' href='#n752'>752</a> <a id='n753' href='#n753'>753</a> <a id='n754' href='#n754'>754</a> <a id='n755' href='#n755'>755</a> <a id='n756' href='#n756'>756</a> <a id='n757' href='#n757'>757</a> </pre></td> <td class='lines'><pre><code><span class="hl slc"># SPDX-License-Identifier: BSD-2-Clause</span> <span class="hl slc">#</span> <span class="hl slc"># Copyright (C) 2019, Raspberry Pi Ltd</span> <span class="hl slc">#</span> <span class="hl slc"># camera tuning tool Macbeth chart locator</span> <span class="hl kwa">from</span> ctt_ransac <span class="hl kwa">import</span> <span class="hl opt">*</span> <span class="hl kwa">from</span> ctt_tools <span class="hl kwa">import</span> <span class="hl opt">*</span> <span class="hl kwa">import</span> warnings <span class="hl str">"""</span> <span class="hl str">NOTE: some custom functions have been used here to make the code more readable.</span> <span class="hl str">These are defined in tools.py if they are needed for reference.</span> <span class="hl str">"""</span> <span class="hl str">"""</span> <span class="hl str">Some inconsistencies between packages cause runtime warnings when running</span> <span class="hl str">the clustering algorithm. This catches these warnings so they don't flood the</span> <span class="hl str">output to the console</span> <span class="hl str">"""</span> <span class="hl kwa">def</span> <span class="hl kwd">fxn</span><span class="hl opt">():</span> warnings<span class="hl opt">.</span><span class="hl kwd">warn</span><span class="hl opt">(</span><span class="hl str">"runtime"</span><span class="hl opt">,</span> <span class="hl kwc">RuntimeWarning</span><span class="hl opt">)</span> <span class="hl str">"""</span> <span class="hl str">Define the success message</span> <span class="hl str">"""</span> success_msg <span class="hl opt">=</span> <span class="hl str">'Macbeth chart located successfully'</span> <span class="hl kwa">def</span> <span class="hl kwd">find_macbeth</span><span class="hl opt">(</span>Cam<span class="hl opt">,</span> img<span class="hl opt">,</span> mac_config<span class="hl opt">=(</span><span class="hl num">0</span><span class="hl opt">,</span> <span class="hl num">0</span><span class="hl opt">)):</span> small_chart<span class="hl opt">,</span> show <span class="hl opt">=</span> mac_config <span class="hl kwa">print</span><span class="hl opt">(</span><span class="hl str">'Locating macbeth chart'</span><span class="hl opt">)</span> Cam<span class="hl opt">.</span>log <span class="hl opt">+=</span> <span class="hl str">'</span><span class="hl esc">\n</span><span class="hl str">Locating macbeth chart'</span> <span class="hl str">"""</span> <span class="hl str"> catch the warnings</span> <span class="hl str"> """</span> warnings<span class="hl opt">.</span><span class="hl kwd">simplefilter</span><span class="hl opt">(</span><span class="hl str">"ignore"</span><span class="hl opt">)</span> <span class="hl kwd">fxn</span><span class="hl opt">()</span> <span class="hl str">"""</span> <span class="hl str"> Reference macbeth chart is created that will be correlated with the located</span> <span class="hl str"> macbeth chart guess to produce a confidence value for the match.</span> <span class="hl str"> """</span> ref <span class="hl opt">=</span> cv2<span class="hl opt">.</span><span class="hl kwd">imread</span><span class="hl opt">(</span>Cam<span class="hl opt">.</span>path <span class="hl opt">+</span> <span class="hl str">'ctt_ref.pgm'</span><span class="hl opt">,</span> flags<span class="hl opt">=</span>cv2<span class="hl opt">.</span>IMREAD_GRAYSCALE<span class="hl opt">)</span> ref_w <span class="hl opt">=</span> <span class="hl num">120</span> ref_h <span class="hl opt">=</span> <span class="hl num">80</span> rc1 <span class="hl opt">= (</span><span class="hl num">0</span><span class="hl opt">,</span> <span class="hl num">0</span><span class="hl opt">)</span> rc2 <span class="hl opt">= (</span><span class="hl num">0</span><span class="hl opt">,</span> ref_h<span class="hl opt">)</span> rc3 <span class="hl opt">= (</span>ref_w<span class="hl opt">,</span> ref_h<span class="hl opt">)</span> rc4 <span class="hl opt">= (</span>ref_w<span class="hl opt">,</span> <span class="hl num">0</span><span class="hl opt">)</span> ref_corns <span class="hl opt">=</span> np<span class="hl opt">.</span><span class="hl kwd">array</span><span class="hl opt">((</span>rc1<span class="hl opt">,</span> rc2<span class="hl opt">,</span> rc3<span class="hl opt">,</span> rc4<span class="hl opt">),</span> np<span class="hl opt">.</span>float32<span class="hl opt">)</span> ref_data <span class="hl opt">= (</span>ref<span class="hl opt">,</span> ref_w<span class="hl opt">,</span> ref_h<span class="hl opt">,</span> ref_corns<span class="hl opt">)</span> <span class="hl str">"""</span> <span class="hl str"> locate macbeth chart</span> <span class="hl str"> """</span> cor<span class="hl opt">,</span> mac<span class="hl opt">,</span> coords<span class="hl opt">,</span> msg <span class="hl opt">=</span> <span class="hl kwd">get_macbeth_chart</span><span class="hl opt">(</span>img<span class="hl opt">,</span> ref_data<span class="hl opt">)</span> <span class="hl slc"># Keep a list that will include this and any brightened up versions of</span> <span class="hl slc"># the image for reuse.</span> all_images <span class="hl opt">= [</span>img<span class="hl opt">]</span> <span class="hl str">"""</span> <span class="hl str"> following bits of code tries to fix common problems with simple</span> <span class="hl str"> techniques.</span> <span class="hl str"> If now or at any point the best correlation is of above 0.75, then</span> <span class="hl str"> nothing more is tried as this is a high enough confidence to ensure</span> <span class="hl str"> reliable macbeth square centre placement.</span> <span class="hl str"> """</span> <span class="hl str">"""</span> <span class="hl str"> brighten image 2x</span> <span class="hl str"> """</span> <span class="hl kwa">if</span> cor <span class="hl opt"><</span> <span class="hl num">0.75</span><span class="hl opt">:</span> a <span class="hl opt">=</span> <span class="hl num">2</span> img_br <span class="hl opt">=</span> cv2<span class="hl opt">.</span><span class="hl kwd">convertScaleAbs</span><span class="hl opt">(</span>img<span class="hl opt">,</span> alpha<span class="hl opt">=</span>a<span class="hl opt">,</span> beta<span class="hl opt">=</span><span class="hl num">0</span><span class="hl opt">)</span> all_images<span class="hl opt">.</span><span class="hl kwd">append</span><span class="hl opt">(</span>img_br<span class="hl opt">)</span> cor_b<span class="hl opt">,</span> mac_b<span class="hl opt">,</span> coords_b<span class="hl opt">,</span> msg_b <span class="hl opt">=</span> <span class="hl kwd">get_macbeth_chart</span><span class="hl opt">(</span>img_br<span class="hl opt">,</span> ref_data<span class="hl opt">)</span> <span class="hl kwa">if</span> cor_b <span class="hl opt">></span> cor<span class="hl opt">:</span> cor<span class="hl opt">,</span> mac<span class="hl opt">,</span> coords<span class="hl opt">,</span> msg <span class="hl opt">=</span> cor_b<span class="hl opt">,</span> mac_b<span class="hl opt">,</span> coords_b<span class="hl opt">,</span> msg_b <span class="hl str">"""</span> <span class="hl str"> brighten image 4x</span> <span class="hl str"> """</span> <span class="hl kwa">if</span> cor <span class="hl opt"><</span> <span class="hl num">0.75</span><span class="hl opt">:</span> a <span class="hl opt">=</span> <span class="hl num">4</span> img_br <span class="hl opt">=</span> cv2<span class="hl opt">.</span><span class="hl kwd">convertScaleAbs</span><span class="hl opt">(</span>img<span class="hl opt">,</span> alpha<span class="hl opt">=</span>a<span class="hl opt">,</span> beta<span class="hl opt">=</span><span class="hl num">0</span><span class="hl opt">)</span> all_images<span class="hl opt">.</span><span class="hl kwd">append</span><span class="hl opt">(</span>img_br<span class="hl opt">)</span> cor_b<span class="hl opt">,</span> mac_b<span class="hl opt">,</span> coords_b<span class="hl opt">,</span> msg_b <span class="hl opt">=</span> <span class="hl kwd">get_macbeth_chart</span><span class="hl opt">(</span>img_br<span class="hl opt">,</span> ref_data<span class="hl opt">)</span> <span class="hl kwa">if</span> cor_b <span class="hl opt">></span> cor<span class="hl opt">:</span> cor<span class="hl opt">,</span> mac<span class="hl opt">,</span> coords<span class="hl opt">,</span> msg <span class="hl opt">=</span> cor_b<span class="hl opt">,</span> mac_b<span class="hl opt">,</span> coords_b<span class="hl opt">,</span> msg_b <span class="hl str">"""</span> <span class="hl str"> In case macbeth chart is too small, take a selection of the image and</span> <span class="hl str"> attempt to locate macbeth chart within that. The scale increment is</span> <span class="hl str"> root 2</span> <span class="hl str"> """</span> <span class="hl str">"""</span> <span class="hl str"> These variables will be used to transform the found coordinates at smaller</span> <span class="hl str"> scales back into the original. If ii is still -1 after this section that</span> <span class="hl str"> means it was not successful</span> <span class="hl str"> """</span> ii <span class="hl opt">= -</span><span class="hl num">1</span> w_best <span class="hl opt">=</span> <span class="hl num">0</span> h_best <span class="hl opt">=</span> <span class="hl num">0</span> d_best <span class="hl opt">=</span> <span class="hl num">100</span> <span class="hl str">"""</span> <span class="hl str"> d_best records the scale of the best match. Macbeth charts are only looked</span> <span class="hl str"> for at one scale increment smaller than the current best match in order to avoid</span> <span class="hl str"> unecessarily searching for macbeth charts at small scales.</span> <span class="hl str"> If a macbeth chart ha already been found then set d_best to 0</span> <span class="hl str"> """</span> <span class="hl kwa">if</span> cor <span class="hl opt">!=</span> <span class="hl num">0</span><span class="hl opt">:</span> d_best <span class="hl opt">=</span> <span class="hl num">0</span> <span class="hl str">"""</span> <span class="hl str"> scale 3/2 (approx root2)</span> <span class="hl str"> """</span> <span class="hl kwa">if</span> cor <span class="hl opt"><</span> <span class="hl num">0.75</span><span class="hl opt">:</span> imgs <span class="hl opt">= []</span> <span class="hl str">"""</span> <span class="hl str"> get size of image</span> <span class="hl str"> """</span> shape <span class="hl opt">=</span> <span class="hl kwb">list</span><span class="hl opt">(</span>img<span class="hl opt">.</span>shape<span class="hl opt">[:</span><span class="hl num">2</span><span class="hl opt">])</span> w<span class="hl opt">,</span> h <span class="hl opt">=</span> shape <span class="hl str">"""</span> <span class="hl str"> set dimensions of the subselection and the step along each axis between</span> <span class="hl str"> selections</span> <span class="hl str"> """</span> w_sel <span class="hl opt">=</span> <span class="hl kwb">int</span><span class="hl opt">(</span><span class="hl num">2</span><span class="hl opt">*</span>w<span class="hl opt">/</span><span class="hl num">3</span><span class="hl opt">)</span> h_sel <span class="hl opt">=</span> <span class="hl kwb">int</span><span class="hl opt">(</span><span class="hl num">2</span><span class="hl opt">*</span>h<span class="hl opt">/</span><span class="hl num">3</span><span class="hl opt">)</span> w_inc <span class="hl opt">=</span> <span class="hl kwb">int</span><span class="hl opt">(</span>w<span class="hl opt">/</span><span class="hl num">6</span><span class="hl opt">)</span> h_inc <span class="hl opt">=</span> <span class="hl kwb">int</span><span class="hl opt">(</span>h<span class="hl opt">/</span><span class="hl num">6</span><span class="hl opt">)</span> <span class="hl str">"""</span> <span class="hl str"> for each subselection, look for a macbeth chart</span> <span class="hl str"> loop over this and any brightened up images that we made to increase the</span> <span class="hl str"> likelihood of success</span> <span class="hl str"> """</span> <span class="hl kwa">for</span> img_br <span class="hl kwa">in</span> all_images<span class="hl opt">:</span> <span class="hl kwa">for</span> i <span class="hl kwa">in</span> <span class="hl kwb">range</span><span class="hl opt">(</span><span class="hl num">3</span><span class="hl opt">):</span> <span class="hl kwa">for</span> j <span class="hl kwa">in</span> <span class="hl kwb">range</span><span class="hl opt">(</span><span class="hl num">3</span><span class="hl opt">):</span> w_s<span class="hl opt">,</span> h_s <span class="hl opt">=</span> i<span class="hl opt">*</span>w_inc<span class="hl opt">,</span> j<span class="hl opt">*</span>h_inc img_sel <span class="hl opt">=</span> img_br<span class="hl opt">[</span>w_s<span class="hl opt">:</span>w_s<span class="hl opt">+</span>w_sel<span class="hl opt">,</span> h_s<span class="hl opt">:</span>h_s<span class="hl opt">+</span>h_sel<span class="hl opt">]</span> cor_ij<span class="hl opt">,</span> mac_ij<span class="hl opt">,</span> coords_ij<span class="hl opt">,</span> msg_ij <span class="hl opt">=</span> <span class="hl kwd">get_macbeth_chart</span><span class="hl opt">(</span>img_sel<span class="hl opt">,</span> ref_data<span class="hl opt">)</span> <span class="hl str">"""</span> <span class="hl str"> if the correlation is better than the best then record the</span> <span class="hl str"> scale and current subselection at which macbeth chart was</span> <span class="hl str"> found. Also record the coordinates, macbeth chart and message.</span> <span class="hl str"> """</span> <span class="hl kwa">if</span> cor_ij <span class="hl opt">></span> cor<span class="hl opt">:</span> cor <span class="hl opt">=</span> cor_ij mac<span class="hl opt">,</span> coords<span class="hl opt">,</span> msg <span class="hl opt">=</span> mac_ij<span class="hl opt">,</span> coords_ij<span class="hl opt">,</span> msg_ij ii<span class="hl opt">,</span> jj <span class="hl opt">=</span> i<span class="hl opt">,</span> j w_best<span class="hl opt">,</span> h_best <span class="hl opt">=</span> w_inc<span class="hl opt">,</span> h_inc d_best <span class="hl opt">=</span> <span class="hl num">1</span> <span class="hl str">"""</span> <span class="hl str"> scale 2</span> <span class="hl str"> """</span> <span class="hl kwa">if</span> cor <span class="hl opt"><</span> <span class="hl num">0.75</span><span class="hl opt">:</span> imgs <span class="hl opt">= []</span> shape <span class="hl opt">=</span> <span class="hl kwb">list</span><span class="hl opt">(</span>img<span class="hl opt">.</span>shape<span class="hl opt">[:</span><span class="hl num">2</span><span class="hl opt">])</span> w<span class="hl opt">,</span> h <span class="hl opt">=</span> shape w_sel <span class="hl opt">=</span> <span class="hl kwb">int</span><span class="hl opt">(</span>w<span class="hl opt">/</span><span class="hl num">2</span><span class="hl opt">)</span> h_sel <span class="hl opt">=</span> <span class="hl kwb">int</span><span class="hl opt">(</span>h<span class="hl opt">/</span><span class="hl num">2</span><span class="hl opt">)</span> w_inc <span class="hl opt">=</span> <span class="hl kwb">int</span><span class="hl opt">(</span>w<span class="hl opt">/</span><span class="hl num">8</span><span class="hl opt">)</span> h_inc <span class="hl opt">=</span> <span class="hl kwb">int</span><span class="hl opt">(</span>h<span class="hl opt">/</span><span class="hl num">8</span><span class="hl opt">)</span> <span class="hl slc"># Again, loop over any brightened up images as well</span> <span class="hl kwa">for</span> img_br <span class="hl kwa">in</span> all_images<span class="hl opt">:</span> <span class="hl kwa">for</span> i <span class="hl kwa">in</span> <span class="hl kwb">range</span><span class="hl opt">(</span><span class="hl num">5</span><span class="hl opt">):</span> <span class="hl kwa">for</span> j <span class="hl kwa">in</span> <span class="hl kwb">range</span><span class="hl opt">(</span><span class="hl num">5</span><span class="hl opt">):</span> w_s<span class="hl opt">,</span> h_s <span class="hl opt">=</span> i<span class="hl opt">*</span>w_inc<span class="hl opt">,</span> j<span class="hl opt">*</span>h_inc img_sel <span class="hl opt">=</span> img_br<span class="hl opt">[</span>w_s<span class="hl opt">:</span>w_s<span class="hl opt">+</span>w_sel<span class="hl opt">,</span> h_s<span class="hl opt">:</span>h_s<span class="hl opt">+</span>h_sel<span class="hl opt">]</span> cor_ij<span class="hl opt">,</span> mac_ij<span class="hl opt">,</span> coords_ij<span class="hl opt">,</span> msg_ij <span class="hl opt">=</span> <span class="hl kwd">get_macbeth_chart</span><span class="hl opt">(</span>img_sel<span class="hl opt">,</span> ref_data<span class="hl opt">)</span> <span class="hl kwa">if</span> cor_ij <span class="hl opt">></span> cor<span class="hl opt">:</span> cor <span class="hl opt">=</span> cor_ij mac<span class="hl opt">,</span> coords<span class="hl opt">,</span> msg <span class="hl opt">=</span> mac_ij<span class="hl opt">,</span> coords_ij<span class="hl opt">,</span> msg_ij ii<span class="hl opt">,</span> jj <span class="hl opt">=</span> i<span class="hl opt">,</span> j w_best<span class="hl opt">,</span> h_best <span class="hl opt">=</span> w_inc<span class="hl opt">,</span> h_inc d_best <span class="hl opt">=</span> <span class="hl num">2</span> <span class="hl str">"""</span> <span class="hl str"> The following code checks for macbeth charts at even smaller scales. This</span> <span class="hl str"> slows the code down significantly and has therefore been omitted by default,</span> <span class="hl str"> however it is not unusably slow so might be useful if the macbeth chart</span> <span class="hl str"> is too small to be picked up to by the current subselections.</span> <span class="hl str"> Use this for macbeth charts with side lengths around 1/5 image dimensions</span> <span class="hl str"> (and smaller...?) it is, however, recommended that macbeth charts take up as</span> <span class="hl str"> large as possible a proportion of the image.</span> <span class="hl str"> """</span> <span class="hl kwa">if</span> small_chart<span class="hl opt">:</span> <span class="hl kwa">if</span> cor <span class="hl opt"><</span> <span class="hl num">0.75</span> <span class="hl kwa">and</span> d_best <span class="hl opt">></span> <span class="hl num">1</span><span class="hl opt">:</span> imgs <span class="hl opt">= []</span> shape <span class="hl opt">=</span> <span class="hl kwb">list</span><span class="hl opt">(</span>img<span class="hl opt">.</span>shape<span class="hl opt">[:</span><span class="hl num">2</span><span class="hl opt">])</span> w<span class="hl opt">,</span> h <span class="hl opt">=</span> shape w_sel <span class="hl opt">=</span> <span class="hl kwb">int</span><span class="hl opt">(</span>w<span class="hl opt">/</span><span class="hl num">3</span><span class="hl opt">)</span> h_sel <span class="hl opt">=</span> <span class="hl kwb">int</span><span class="hl opt">(</span>h<span class="hl opt">/</span><span class="hl num">3</span><span class="hl opt">)</span> w_inc <span class="hl opt">=</span> <span class="hl kwb">int</span><span class="hl opt">(</span>w<span class="hl opt">/</span><span class="hl num">12</span><span class="hl opt">)</span> h_inc <span class="hl opt">=</span> <span class="hl kwb">int</span><span class="hl opt">(</span>h<span class="hl opt">/</span><span class="hl num">12</span><span class="hl opt">)</span> <span class="hl kwa">for</span> i <span class="hl kwa">in</span> <span class="hl kwb">range</span><span class="hl opt">(</span><span class="hl num">9</span><span class="hl opt">):</span> <span class="hl kwa">for</span> j <span class="hl kwa">in</span> <span class="hl kwb">range</span><span class="hl opt">(</span><span class="hl num">9</span><span class="hl opt">):</span> w_s<span class="hl opt">,</span> h_s <span class="hl opt">=</span> i<span class="hl opt">*</span>w_inc<span class="hl opt">,</span> j<span class="hl opt">*</span>h_inc img_sel <span class="hl opt">=</span> img<span class="hl opt">[</span>w_s<span class="hl opt">:</span>w_s<span class="hl opt">+</span>w_sel<span class="hl opt">,</span> h_s<span class="hl opt">:</span>h_s<span class="hl opt">+</span>h_sel<span class="hl opt">]</span> cor_ij<span class="hl opt">,</span> mac_ij<span class="hl opt">,</span> coords_ij<span class="hl opt">,</span> msg_ij <span class="hl opt">=</span> <span class="hl kwd">get_macbeth_chart</span><span class="hl opt">(</span>img_sel<span class="hl opt">,</span> ref_data<span class="hl opt">)</span> <span class="hl kwa">if</span> cor_ij <span class="hl opt">></span> cor<span class="hl opt">:</span> cor <span class="hl opt">=</span> cor_ij mac<span class="hl opt">,</span> coords<span class="hl opt">,</span> msg <span class="hl opt">=</span> mac_ij<span class="hl opt">,</span> coords_ij<span class="hl opt">,</span> msg_ij ii<span class="hl opt">,</span> jj <span class="hl opt">=</span> i<span class="hl opt">,</span> j w_best<span class="hl opt">,</span> h_best <span class="hl opt">=</span> w_inc<span class="hl opt">,</span> h_inc d_best <span class="hl opt">=</span> <span class="hl num">3</span> <span class="hl kwa">if</span> cor <span class="hl opt"><</span> <span class="hl num">0.75</span> <span class="hl kwa">and</span> d_best <span class="hl opt">></span> <span class="hl num">2</span><span class="hl opt">:</span> imgs <span class="hl opt">= []</span> shape <span class="hl opt">=</span> <span class="hl kwb">list</span><span class="hl opt">(</span>img<span class="hl opt">.</span>shape<span class="hl opt">[:</span><span class="hl num">2</span><span class="hl opt">])</span> w<span class="hl opt">,</span> h <span class="hl opt">=</span> shape w_sel <span class="hl opt">=</span> <span class="hl kwb">int</span><span class="hl opt">(</span>w<span class="hl opt">/</span><span class="hl num">4</span><span class="hl opt">)</span> h_sel <span class="hl opt">=</span> <span class="hl kwb">int</span><span class="hl opt">(</span>h<span class="hl opt">/</span><span class="hl num">4</span><span class="hl opt">)</span> w_inc <span class="hl opt">=</span> <span class="hl kwb">int</span><span class="hl opt">(</span>w<span class="hl opt">/</span><span class="hl num">16</span><span class="hl opt">)</span> h_inc <span class="hl opt">=</span> <span class="hl kwb">int</span><span class="hl opt">(</span>h<span class="hl opt">/</span><span class="hl num">16</span><span class="hl opt">)</span> <span class="hl kwa">for</span> i <span class="hl kwa">in</span> <span class="hl kwb">range</span><span class="hl opt">(</span><span class="hl num">13</span><span class="hl opt">):</span> <span class="hl kwa">for</span> j <span class="hl kwa">in</span> <span class="hl kwb">range</span><span class="hl opt">(</span><span class="hl num">13</span><span class="hl opt">):</span> w_s<span class="hl opt">,</span> h_s <span class="hl opt">=</span> i<span class="hl opt">*</span>w_inc<span class="hl opt">,</span> j<span class="hl opt">*</span>h_inc img_sel <span class="hl opt">=</span> img<span class="hl opt">[</span>w_s<span class="hl opt">:</span>w_s<span class="hl opt">+</span>w_sel<span class="hl opt">,</span> h_s<span class="hl opt">:</span>h_s<span class="hl opt">+</span>h_sel<span class="hl opt">]</span> cor_ij<span class="hl opt">,</span> mac_ij<span class="hl opt">,</span> coords_ij<span class="hl opt">,</span> msg_ij <span class="hl opt">=</span> <span class="hl kwd">get_macbeth_chart</span><span class="hl opt">(</span>img_sel<span class="hl opt">,</span> ref_data<span class="hl opt">)</span> <span class="hl kwa">if</span> cor_ij <span class="hl opt">></span> cor<span class="hl opt">:</span> cor <span class="hl opt">=</span> cor_ij mac<span class="hl opt">,</span> coords<span class="hl opt">,</span> msg <span class="hl opt">=</span> mac_ij<span class="hl opt">,</span> coords_ij<span class="hl opt">,</span> msg_ij ii<span class="hl opt">,</span> jj <span class="hl opt">=</span> i<span class="hl opt">,</span> j w_best<span class="hl opt">,</span> h_best <span class="hl opt">=</span> w_inc<span class="hl opt">,</span> h_inc <span class="hl str">"""</span> <span class="hl str"> Transform coordinates from subselection to original image</span> <span class="hl str"> """</span> <span class="hl kwa">if</span> ii <span class="hl opt">!= -</span><span class="hl num">1</span><span class="hl opt">:</span> <span class="hl kwa">for</span> a <span class="hl kwa">in</span> <span class="hl kwb">range</span><span class="hl opt">(</span><span class="hl kwb">len</span><span class="hl opt">(</span>coords<span class="hl opt">)):</span> <span class="hl kwa">for</span> b <span class="hl kwa">in</span> <span class="hl kwb">range</span><span class="hl opt">(</span><span class="hl kwb">len</span><span class="hl opt">(</span>coords<span class="hl opt">[</span>a<span class="hl opt">][</span><span class="hl num">0</span><span class="hl opt">])):</span> coords<span class="hl opt">[</span>a<span class="hl opt">][</span><span class="hl num">0</span><span class="hl opt">][</span>b<span class="hl opt">][</span><span class="hl num">1</span><span class="hl opt">] +=</span> ii<span class="hl opt">*</span>w_best coords<span class="hl opt">[</span>a<span class="hl opt">][</span><span class="hl num">0</span><span class="hl opt">][</span>b<span class="hl opt">][</span><span class="hl num">0</span><span class="hl opt">] +=</span> jj<span class="hl opt">*</span>h_best <span class="hl str">"""</span> <span class="hl str"> initialise coords_fit variable</span> <span class="hl str"> """</span> coords_fit <span class="hl opt">=</span> <span class="hl kwa">None</span> <span class="hl slc"># print('correlation: {}'.format(cor))</span> <span class="hl str">"""</span> <span class="hl str"> print error or success message</span> <span class="hl str"> """</span> <span class="hl kwa">print</span><span class="hl opt">(</span>msg<span class="hl opt">)</span> Cam<span class="hl opt">.</span>log <span class="hl opt">+=</span> <span class="hl str">'</span><span class="hl esc">\n</span><span class="hl str">'</span> <span class="hl opt">+</span> <span class="hl kwb">str</span><span class="hl opt">(</span>msg<span class="hl opt">)</span> <span class="hl kwa">if</span> msg <span class="hl opt">==</span> success_msg<span class="hl opt">:</span> coords_fit <span class="hl opt">=</span> coords Cam<span class="hl opt">.</span>log <span class="hl opt">+=</span> <span class="hl str">'</span><span class="hl esc">\n</span><span class="hl str">Macbeth chart vertices:</span><span class="hl esc">\n</span><span class="hl str">'</span> Cam<span class="hl opt">.</span>log <span class="hl opt">+=</span> <span class="hl str">'{}'</span><span class="hl opt">.</span><span class="hl kwd">format</span><span class="hl opt">(</span><span class="hl num">2</span><span class="hl opt">*</span>np<span class="hl opt">.</span><span class="hl kwb">round</span><span class="hl opt">(</span>coords_fit<span class="hl opt">[</span><span class="hl num">0</span><span class="hl opt">][</span><span class="hl num">0</span><span class="hl opt">]),</span> <span class="hl num">0</span><span class="hl opt">)</span> <span class="hl str">"""</span> <span class="hl str"> if correlation is lower than 0.75 there may be a risk of macbeth chart</span> <span class="hl str"> corners not having been located properly. It might be worth running</span> <span class="hl str"> with show set to true to check where the macbeth chart centres have</span> <span class="hl str"> been located.</span> <span class="hl str"> """</span> <span class="hl kwa">print</span><span class="hl opt">(</span><span class="hl str">'Confidence: {:.3f}'</span><span class="hl opt">.</span><span class="hl kwd">format</span><span class="hl opt">(</span>cor<span class="hl opt">))</span> Cam<span class="hl opt">.</span>log <span class="hl opt">+=</span> <span class="hl str">'</span><span class="hl esc">\n</span><span class="hl str">Confidence: {:.3f}'</span><span class="hl opt">.</span><span class="hl kwd">format</span><span class="hl opt">(</span>cor<span class="hl opt">)</span> <span class="hl kwa">if</span> cor <span class="hl opt"><</span> <span class="hl num">0.75</span><span class="hl opt">:</span> <span class="hl kwa">print</span><span class="hl opt">(</span><span class="hl str">'Caution: Low confidence guess!'</span><span class="hl opt">)</span> Cam<span class="hl opt">.</span>log <span class="hl opt">+=</span> <span class="hl str">'WARNING: Low confidence guess!'</span> <span class="hl slc"># cv2.imshow('MacBeth', mac)</span> <span class="hl slc"># represent(mac, 'MacBeth chart')</span> <span class="hl str">"""</span> <span class="hl str"> extract data from coords_fit and plot on original image</span> <span class="hl str"> """</span> <span class="hl kwa">if</span> show <span class="hl kwa">and</span> coords_fit <span class="hl kwa">is not None</span><span class="hl opt">:</span> copy <span class="hl opt">=</span> img<span class="hl opt">.</span><span class="hl kwd">copy</span><span class="hl opt">()</span> verts <span class="hl opt">=</span> coords_fit<span class="hl opt">[</span><span class="hl num">0</span><span class="hl opt">][</span><span class="hl num">0</span><span class="hl opt">]</span> cents <span class="hl opt">=</span> coords_fit<span class="hl opt">[</span><span class="hl num">1</span><span class="hl opt">][</span><span class="hl num">0</span><span class="hl opt">]</span> <span class="hl str">"""</span> <span class="hl str"> draw circles at vertices of macbeth chart</span> <span class="hl str"> """</span> <span class="hl kwa">for</span> vert <span class="hl kwa">in</span> verts<span class="hl opt">:</span> p <span class="hl opt">=</span> <span class="hl kwb">tuple</span><span class="hl opt">(</span>np<span class="hl opt">.</span><span class="hl kwb">round</span><span class="hl opt">(</span>vert<span class="hl opt">).</span><span class="hl kwd">astype</span><span class="hl opt">(</span>np<span class="hl opt">.</span>int32<span class="hl opt">))</span> cv2<span class="hl opt">.</span><span class="hl kwd">circle</span><span class="hl opt">(</span>copy<span class="hl opt">,</span> p<span class="hl opt">,</span> <span class="hl num">10</span><span class="hl opt">,</span> <span class="hl num">1</span><span class="hl opt">, -</span><span class="hl num">1</span><span class="hl opt">)</span> <span class="hl str">"""</span> <span class="hl str"> draw circles at centres of squares</span> <span class="hl str"> """</span> <span class="hl kwa">for</span> i <span class="hl kwa">in</span> <span class="hl kwb">range</span><span class="hl opt">(</span><span class="hl kwb">len</span><span class="hl opt">(</span>cents<span class="hl opt">)):</span> cent <span class="hl opt">=</span> cents<span class="hl opt">[</span>i<span class="hl opt">]</span> p <span class="hl opt">=</span> <span class="hl kwb">tuple</span><span class="hl opt">(</span>np<span class="hl opt">.</span><span class="hl kwb">round</span><span class="hl opt">(</span>cent<span class="hl opt">).</span><span class="hl kwd">astype</span><span class="hl opt">(</span>np<span class="hl opt">.</span>int32<span class="hl opt">))</span> <span class="hl str">"""</span> <span class="hl str"> draw black circle on white square, white circle on black square an</span> <span class="hl str"> grey circle everywhere else.</span> <span class="hl str"> """</span> <span class="hl kwa">if</span> i <span class="hl opt">==</span> <span class="hl num">3</span><span class="hl opt">:</span> cv2<span class="hl opt">.</span><span class="hl kwd">circle</span><span class="hl opt">(</span>copy<span class="hl opt">,</span> p<span class="hl opt">,</span> <span class="hl num">8</span><span class="hl opt">,</span> <span class="hl num">0</span><span class="hl opt">, -</span><span class="hl num">1</span><span class="hl opt">)</span> <span class="hl kwa">elif</span> i <span class="hl opt">==</span> <span class="hl num">23</span><span class="hl opt">:</span> cv2<span class="hl opt">.</span><span class="hl kwd">circle</span><span class="hl opt">(</span>copy<span class="hl opt">,</span> p<span class="hl opt">,</span> <span class="hl num">8</span><span class="hl opt">,</span> <span class="hl num">1</span><span class="hl opt">, -</span><span class="hl num">1</span><span class="hl opt">)</span> <span class="hl kwa">else</span><span class="hl opt">:</span> cv2<span class="hl opt">.</span><span class="hl kwd">circle</span><span class="hl opt">(</span>copy<span class="hl opt">,</span> p<span class="hl opt">,</span> <span class="hl num">8</span><span class="hl opt">,</span> <span class="hl num">0.5</span><span class="hl opt">, -</span><span class="hl num">1</span><span class="hl opt">)</span> copy<span class="hl opt">,</span> _ <span class="hl opt">=</span> <span class="hl kwd">reshape</span><span class="hl opt">(</span>copy<span class="hl opt">,</span> <span class="hl num">400</span><span class="hl opt">)</span> <span class="hl kwd">represent</span><span class="hl opt">(</span>copy<span class="hl opt">)</span> <span class="hl kwa">return</span><span class="hl opt">(</span>coords_fit<span class="hl opt">)</span> <span class="hl kwa">def</span> <span class="hl kwd">get_macbeth_chart</span><span class="hl opt">(</span>img<span class="hl opt">,</span> ref_data<span class="hl opt">):</span> <span class="hl str">"""</span> <span class="hl str"> function returns coordinates of macbeth chart vertices and square centres,</span> <span class="hl str"> along with an error/success message for debugging purposes. Additionally,</span> <span class="hl str"> it scores the match with a confidence value.</span> <span class="hl str"></span> <span class="hl str"> Brief explanation of the macbeth chart locating algorithm:</span> <span class="hl str"> - Find rectangles within image</span> <span class="hl str"> - Take rectangles within percentage offset of median perimeter. The</span> <span class="hl str"> assumption is that these will be the macbeth squares</span> <span class="hl str"> - For each potential square, find the 24 possible macbeth centre locations</span> <span class="hl str"> that would produce a square in that location</span> <span class="hl str"> - Find clusters of potential macbeth chart centres to find the potential</span> <span class="hl str"> macbeth centres with the most votes, i.e. the most likely ones</span> <span class="hl str"> - For each potential macbeth centre, use the centres of the squares that</span> <span class="hl str"> voted for it to find macbeth chart corners</span> <span class="hl str"> - For each set of corners, transform the possible match into normalised</span> <span class="hl str"> space and correlate with a reference chart to evaluate the match</span> <span class="hl str"> - Select the highest correlation as the macbeth chart match, returning the</span> <span class="hl str"> correlation as the confidence score</span> <span class="hl str"> """</span> <span class="hl str">"""</span> <span class="hl str"> get reference macbeth chart data</span> <span class="hl str"> """</span> <span class="hl opt">(</span>ref<span class="hl opt">,</span> ref_w<span class="hl opt">,</span> ref_h<span class="hl opt">,</span> ref_corns<span class="hl opt">) =</span> ref_data <span class="hl str">"""</span> <span class="hl str"> the code will raise and catch a MacbethError in case of a problem, trying</span> <span class="hl str"> to give some likely reasons why the problem occred, hence the try/except</span> <span class="hl str"> """</span> <span class="hl kwa">try</span><span class="hl opt">:</span> <span class="hl str">"""</span> <span class="hl str"> obtain image, convert to grayscale and normalise</span> <span class="hl str"> """</span> src <span class="hl opt">=</span> img src<span class="hl opt">,</span> factor <span class="hl opt">=</span> <span class="hl kwd">reshape</span><span class="hl opt">(</span>src<span class="hl opt">,</span> <span class="hl num">200</span><span class="hl opt">)</span> original <span class="hl opt">=</span> src<span class="hl opt">.</span><span class="hl kwd">copy</span><span class="hl opt">()</span> a <span class="hl opt">=</span> <span class="hl num">125</span><span class="hl opt">/</span>np<span class="hl opt">.</span><span class="hl kwd">average</span><span class="hl opt">(</span>src<span class="hl opt">)</span> src_norm <span class="hl opt">=</span> cv2<span class="hl opt">.</span><span class="hl kwd">convertScaleAbs</span><span class="hl opt">(</span>src<span class="hl opt">,</span> alpha<span class="hl opt">=</span>a<span class="hl opt">,</span> beta<span class="hl opt">=</span><span class="hl num">0</span><span class="hl opt">)</span> <span class="hl str">"""</span> <span class="hl str"> This code checks if there are seperate colour channels. In the past the</span> <span class="hl str"> macbeth locator ran on jpgs and this makes it robust to different</span> <span class="hl str"> filetypes. Note that running it on a jpg has 4x the pixels of the</span> <span class="hl str"> average bayer channel so coordinates must be doubled.</span> <span class="hl str"></span> <span class="hl str"> This is best done in img_load.py in the get_patches method. The</span> <span class="hl str"> coordinates and image width, height must be divided by two if the</span> <span class="hl str"> macbeth locator has been run on a demosaicked image.</span> <span class="hl str"> """</span> <span class="hl kwa">if</span> <span class="hl kwb">len</span><span class="hl opt">(</span>src_norm<span class="hl opt">.</span>shape<span class="hl opt">) ==</span> <span class="hl num">3</span><span class="hl opt">:</span> src_bw <span class="hl opt">=</span> cv2<span class="hl opt">.</span><span class="hl kwd">cvtColor</span><span class="hl opt">(</span>src_norm<span class="hl opt">,</span> cv2<span class="hl opt">.</span>COLOR_BGR2GRAY<span class="hl opt">)</span> <span class="hl kwa">else</span><span class="hl opt">:</span> src_bw <span class="hl opt">=</span> src_norm original_bw <span class="hl opt">=</span> src_bw<span class="hl opt">.</span><span class="hl kwd">copy</span><span class="hl opt">()</span> <span class="hl str">"""</span> <span class="hl str"> obtain image edges</span> <span class="hl str"> """</span> sigma <span class="hl opt">=</span> <span class="hl num">2</span> src_bw <span class="hl opt">=</span> cv2<span class="hl opt">.</span><span class="hl kwd">GaussianBlur</span><span class="hl opt">(</span>src_bw<span class="hl opt">, (</span><span class="hl num">0</span><span class="hl opt">,</span> <span class="hl num">0</span><span class="hl opt">),</span> sigma<span class="hl opt">)</span> t1<span class="hl opt">,</span> t2 <span class="hl opt">=</span> <span class="hl num">50</span><span class="hl opt">,</span> <span class="hl num">100</span> edges <span class="hl opt">=</span> cv2<span class="hl opt">.</span><span class="hl kwd">Canny</span><span class="hl opt">(</span>src_bw<span class="hl opt">,</span> t1<span class="hl opt">,</span> t2<span class="hl opt">)</span> <span class="hl str">"""</span> <span class="hl str"> dilate edges to prevent self-intersections in contours</span> <span class="hl str"> """</span> k_size <span class="hl opt">=</span> <span class="hl num">2</span> kernel <span class="hl opt">=</span> np<span class="hl opt">.</span><span class="hl kwd">ones</span><span class="hl opt">((</span>k_size<span class="hl opt">,</span> k_size<span class="hl opt">))</span> its <span class="hl opt">=</span> <span class="hl num">1</span> edges <span class="hl opt">=</span> cv2<span class="hl opt">.</span><span class="hl kwd">dilate</span><span class="hl opt">(</span>edges<span class="hl opt">,</span> kernel<span class="hl opt">,</span> iterations<span class="hl opt">=</span>its<span class="hl opt">)</span> <span class="hl str">"""</span> <span class="hl str"> find Contours in image</span> <span class="hl str"> """</span> conts<span class="hl opt">,</span> _ <span class="hl opt">=</span> cv2<span class="hl opt">.</span><span class="hl kwd">findContours</span><span class="hl opt">(</span>edges<span class="hl opt">,</span> cv2<span class="hl opt">.</span>RETR_TREE<span class="hl opt">,</span> cv2<span class="hl opt">.</span>CHAIN_APPROX_NONE<span class="hl opt">)</span> <span class="hl kwa">if</span> <span class="hl kwb">len</span><span class="hl opt">(</span>conts<span class="hl opt">) ==</span> <span class="hl num">0</span><span class="hl opt">:</span> <span class="hl kwa">raise</span> <span class="hl kwd">MacbethError</span><span class="hl opt">(</span> <span class="hl str">'</span><span class="hl esc">\n</span><span class="hl str">WARNING: No macbeth chart found!'</span> <span class="hl str">'</span><span class="hl esc">\n</span><span class="hl str">No contours found in image</span><span class="hl esc">\n</span><span class="hl str">'</span> <span class="hl str">'Possible problems:</span><span class="hl esc">\n</span><span class="hl str">'</span> <span class="hl str">'- Macbeth chart is too dark or bright</span><span class="hl esc">\n</span><span class="hl str">'</span> <span class="hl str">'- Macbeth chart is occluded</span><span class="hl esc">\n</span><span class="hl str">'</span> <span class="hl opt">)</span> <span class="hl str">"""</span> <span class="hl str"> find quadrilateral contours</span> <span class="hl str"> """</span> epsilon <span class="hl opt">=</span> <span class="hl num">0.07</span> conts_per <span class="hl opt">= []</span> <span class="hl kwa">for</span> i <span class="hl kwa">in</span> <span class="hl kwb">range</span><span class="hl opt">(</span><span class="hl kwb">len</span><span class="hl opt">(</span>conts<span class="hl opt">)):</span> per <span class="hl opt">=</span> cv2<span class="hl opt">.</span><span class="hl kwd">arcLength</span><span class="hl opt">(</span>conts<span class="hl opt">[</span>i<span class="hl opt">],</span> <span class="hl kwa">True</span><span class="hl opt">)</span> poly <span class="hl opt">=</span> cv2<span class="hl opt">.</span><span class="hl kwd">approxPolyDP</span><span class="hl opt">(</span>conts<span class="hl opt">[</span>i<span class="hl opt">],</span> epsilon<span class="hl opt">*</span>per<span class="hl opt">,</span> <span class="hl kwa">True</span><span class="hl opt">)</span> <span class="hl kwa">if</span> <span class="hl kwb">len</span><span class="hl opt">(</span>poly<span class="hl opt">) ==</span> <span class="hl num">4</span> <span class="hl kwa">and</span> cv2<span class="hl opt">.</span><span class="hl kwd">isContourConvex</span><span class="hl opt">(</span>poly<span class="hl opt">):</span> conts_per<span class="hl opt">.</span><span class="hl kwd">append</span><span class="hl opt">((</span>poly<span class="hl opt">,</span> per<span class="hl opt">))</span> <span class="hl kwa">if</span> <span class="hl kwb">len</span><span class="hl opt">(</span>conts_per<span class="hl opt">) ==</span> <span class="hl num">0</span><span class="hl opt">:</span> <span class="hl kwa">raise</span> <span class="hl kwd">MacbethError</span><span class="hl opt">(</span> <span class="hl str">'</span><span class="hl esc">\n</span><span class="hl str">WARNING: No macbeth chart found!'</span> <span class="hl str">'</span><span class="hl esc">\n</span><span class="hl str">No quadrilateral contours found'</span> <span class="hl str">'</span><span class="hl esc">\n</span><span class="hl str">Possible problems:</span><span class="hl esc">\n</span><span class="hl str">'</span> <span class="hl str">'- Macbeth chart is too dark or bright</span><span class="hl esc">\n</span><span class="hl str">'</span> <span class="hl str">'- Macbeth chart is occluded</span><span class="hl esc">\n</span><span class="hl str">'</span> <span class="hl str">'- Macbeth chart is out of camera plane</span><span class="hl esc">\n</span><span class="hl str">'</span> <span class="hl opt">)</span> <span class="hl str">"""</span> <span class="hl str"> sort contours by perimeter and get perimeters within percent of median</span> <span class="hl str"> """</span> conts_per <span class="hl opt">=</span> <span class="hl kwb">sorted</span><span class="hl opt">(</span>conts_per<span class="hl opt">,</span> key<span class="hl opt">=</span><span class="hl kwa">lambda</span> x<span class="hl opt">:</span> x<span class="hl opt">[</span><span class="hl num">1</span><span class="hl opt">])</span> med_per <span class="hl opt">=</span> conts_per<span class="hl opt">[</span><span class="hl kwb">int</span><span class="hl opt">(</span><span class="hl kwb">len</span><span class="hl opt">(</span>conts_per<span class="hl opt">)/</span><span class="hl num">2</span><span class="hl opt">)][</span><span class="hl num">1</span><span class="hl opt">]</span> side <span class="hl opt">=</span> med_per<span class="hl opt">/</span><span class="hl num">4</span> perc <span class="hl opt">=</span> <span class="hl num">0.1</span> med_low<span class="hl opt">,</span> med_high <span class="hl opt">=</span> med_per<span class="hl opt">*(</span><span class="hl num">1</span><span class="hl opt">-</span>perc<span class="hl opt">),</span> med_per<span class="hl opt">*(</span><span class="hl num">1</span><span class="hl opt">+</span>perc<span class="hl opt">)</span> squares <span class="hl opt">= []</span> <span class="hl kwa">for</span> i <span class="hl kwa">in</span> conts_per<span class="hl opt">:</span> <span class="hl kwa">if</span> med_low <span class="hl opt"><=</span> i<span class="hl opt">[</span><span class="hl num">1</span><span class="hl opt">]</span> <span class="hl kwa">and</span> med_high <span class="hl opt">>=</span> i<span class="hl opt">[</span><span class="hl num">1</span><span class="hl opt">]:</span> squares<span class="hl opt">.</span><span class="hl kwd">append</span><span class="hl opt">(</span>i<span class="hl opt">[</span><span class="hl num">0</span><span class="hl opt">])</span> <span class="hl str">"""</span> <span class="hl str"> obtain coordinates of nomralised macbeth and squares</span> <span class="hl str"> """</span> square_verts<span class="hl opt">,</span> mac_norm <span class="hl opt">=</span> <span class="hl kwd">get_square_verts</span><span class="hl opt">(</span><span class="hl num">0.06</span><span class="hl opt">)</span> <span class="hl str">"""</span> <span class="hl str"> for each square guess, find 24 possible macbeth chart centres</span> <span class="hl str"> """</span> mac_mids <span class="hl opt">= []</span> squares_raw <span class="hl opt">= []</span> <span class="hl kwa">for</span> i <span class="hl kwa">in</span> <span class="hl kwb">range</span><span class="hl opt">(</span><span class="hl kwb">len</span><span class="hl opt">(</span>squares<span class="hl opt">)):</span> square <span class="hl opt">=</span> squares<span class="hl opt">[</span>i<span class="hl opt">]</span> squares_raw<span class="hl opt">.</span><span class="hl kwd">append</span><span class="hl opt">(</span>square<span class="hl opt">)</span> <span class="hl str">"""</span> <span class="hl str"> convert quads to rotated rectangles. This is required as the</span> <span class="hl str"> 'squares' are usually quite irregular quadrilaterls, so performing</span> <span class="hl str"> a transform would result in exaggerated warping and inaccurate</span> <span class="hl str"> macbeth chart centre placement</span> <span class="hl str"> """</span> rect <span class="hl opt">=</span> cv2<span class="hl opt">.</span><span class="hl kwd">minAreaRect</span><span class="hl opt">(</span>square<span class="hl opt">)</span> square <span class="hl opt">=</span> cv2<span class="hl opt">.</span><span class="hl kwd">boxPoints</span><span class="hl opt">(</span>rect<span class="hl opt">).</span><span class="hl kwd">astype</span><span class="hl opt">(</span>np<span class="hl opt">.</span>float32<span class="hl opt">)</span> <span class="hl str">"""</span> <span class="hl str"> reorder vertices to prevent 'hourglass shape'</span> <span class="hl str"> """</span> square <span class="hl opt">=</span> <span class="hl kwb">sorted</span><span class="hl opt">(</span>square<span class="hl opt">,</span> key<span class="hl opt">=</span><span class="hl kwa">lambda</span> x<span class="hl opt">:</span> x<span class="hl opt">[</span><span class="hl num">0</span><span class="hl opt">])</span> square_1 <span class="hl opt">=</span> <span class="hl kwb">sorted</span><span class="hl opt">(</span>square<span class="hl opt">[:</span><span class="hl num">2</span><span class="hl opt">],</span> key<span class="hl opt">=</span><span class="hl kwa">lambda</span> x<span class="hl opt">:</span> x<span class="hl opt">[</span><span class="hl num">1</span><span class="hl opt">])</span> square_2 <span class="hl opt">=</span> <span class="hl kwb">sorted</span><span class="hl opt">(</span>square<span class="hl opt">[</span><span class="hl num">2</span><span class="hl opt">:],</span> key<span class="hl opt">=</span><span class="hl kwa">lambda</span> x<span class="hl opt">: -</span>x<span class="hl opt">[</span><span class="hl num">1</span><span class="hl opt">])</span> square <span class="hl opt">=</span> np<span class="hl opt">.</span><span class="hl kwd">array</span><span class="hl opt">(</span>np<span class="hl opt">.</span><span class="hl kwd">concatenate</span><span class="hl opt">((</span>square_1<span class="hl opt">,</span> square_2<span class="hl opt">)),</span> np<span class="hl opt">.</span>float32<span class="hl opt">)</span> square <span class="hl opt">=</span> np<span class="hl opt">.</span><span class="hl kwd">reshape</span><span class="hl opt">(</span>square<span class="hl opt">, (</span><span class="hl num">4</span><span class="hl opt">,</span> <span class="hl num">2</span><span class="hl opt">)).</span><span class="hl kwd">astype</span><span class="hl opt">(</span>np<span class="hl opt">.</span>float32<span class="hl opt">)</span> squares<span class="hl opt">[</span>i<span class="hl opt">] =</span> square <span class="hl str">"""</span> <span class="hl str"> find 24 possible macbeth chart centres by trasnforming normalised</span> <span class="hl str"> macbeth square vertices onto candidate square vertices found in image</span> <span class="hl str"> """</span> <span class="hl kwa">for</span> j <span class="hl kwa">in</span> <span class="hl kwb">range</span><span class="hl opt">(</span><span class="hl kwb">len</span><span class="hl opt">(</span>square_verts<span class="hl opt">)):</span> verts <span class="hl opt">=</span> square_verts<span class="hl opt">[</span>j<span class="hl opt">]</span> p_mat <span class="hl opt">=</span> cv2<span class="hl opt">.</span><span class="hl kwd">getPerspectiveTransform</span><span class="hl opt">(</span>verts<span class="hl opt">,</span> square<span class="hl opt">)</span> mac_guess <span class="hl opt">=</span> cv2<span class="hl opt">.</span><span class="hl kwd">perspectiveTransform</span><span class="hl opt">(</span>mac_norm<span class="hl opt">,</span> p_mat<span class="hl opt">)</span> mac_guess <span class="hl opt">=</span> np<span class="hl opt">.</span><span class="hl kwb">round</span><span class="hl opt">(</span>mac_guess<span class="hl opt">).</span><span class="hl kwd">astype</span><span class="hl opt">(</span>np<span class="hl opt">.</span>int32<span class="hl opt">)</span> <span class="hl str">"""</span> <span class="hl str"> keep only if candidate macbeth is within image border</span> <span class="hl str"> (deprecated)</span> <span class="hl str"> """</span> in_border <span class="hl opt">=</span> <span class="hl kwa">True</span> <span class="hl slc"># for p in mac_guess[0]:</span> <span class="hl slc"># pptest = cv2.pointPolygonTest(</span> <span class="hl slc"># img_con,</span> <span class="hl slc"># tuple(p),</span> <span class="hl slc"># False</span> <span class="hl slc"># )</span> <span class="hl slc"># if pptest == -1:</span> <span class="hl slc"># in_border = False</span> <span class="hl slc"># break</span> <span class="hl kwa">if</span> in_border<span class="hl opt">:</span> mac_mid <span class="hl opt">=</span> np<span class="hl opt">.</span><span class="hl kwd">mean</span><span class="hl opt">(</span>mac_guess<span class="hl opt">,</span> axis<span class="hl opt">=</span><span class="hl num">1</span><span class="hl opt">)</span> mac_mids<span class="hl opt">.</span><span class="hl kwd">append</span><span class="hl opt">([</span>mac_mid<span class="hl opt">, (</span>i<span class="hl opt">,</span> j<span class="hl opt">)])</span> <span class="hl kwa">if</span> <span class="hl kwb">len</span><span class="hl opt">(</span>mac_mids<span class="hl opt">) ==</span> <span class="hl num">0</span><span class="hl opt">:</span> <span class="hl kwa">raise</span> <span class="hl kwd">MacbethError</span><span class="hl opt">(</span> <span class="hl str">'</span><span class="hl esc">\n</span><span class="hl str">WARNING: No macbeth chart found!'</span> <span class="hl str">'</span><span class="hl esc">\n</span><span class="hl str">No possible macbeth charts found within image'</span> <span class="hl str">'</span><span class="hl esc">\n</span><span class="hl str">Possible problems:</span><span class="hl esc">\n</span><span class="hl str">'</span> <span class="hl str">'- Part of the macbeth chart is outside the image</span><span class="hl esc">\n</span><span class="hl str">'</span> <span class="hl str">'- Quadrilaterals in image background</span><span class="hl esc">\n</span><span class="hl str">'</span> <span class="hl opt">)</span> <span class="hl str">"""</span> <span class="hl str"> reshape data</span> <span class="hl str"> """</span> <span class="hl kwa">for</span> i <span class="hl kwa">in</span> <span class="hl kwb">range</span><span class="hl opt">(</span><span class="hl kwb">len</span><span class="hl opt">(</span>mac_mids<span class="hl opt">)):</span> mac_mids<span class="hl opt">[</span>i<span class="hl opt">][</span><span class="hl num">0</span><span class="hl opt">] =</span> mac_mids<span class="hl opt">[</span>i<span class="hl opt">][</span><span class="hl num">0</span><span class="hl opt">][</span><span class="hl num">0</span><span class="hl opt">]</span> <span class="hl str">"""</span> <span class="hl str"> find where midpoints cluster to identify most likely macbeth centres</span> <span class="hl str"> """</span> clustering <span class="hl opt">=</span> cluster<span class="hl opt">.</span><span class="hl kwd">AgglomerativeClustering</span><span class="hl opt">(</span> n_clusters<span class="hl opt">=</span><span class="hl kwa">None</span><span class="hl opt">,</span> compute_full_tree<span class="hl opt">=</span><span class="hl kwa">True</span><span class="hl opt">,</span> distance_threshold<span class="hl opt">=</span>side<span class="hl opt">*</span><span class="hl num">2</span> <span class="hl opt">)</span> mac_mids_list <span class="hl opt">= [</span>x<span class="hl opt">[</span><span class="hl num">0</span><span class="hl opt">]</span> <span class="hl kwa">for</span> x <span class="hl kwa">in</span> mac_mids<span class="hl opt">]</span> <span class="hl kwa">if</span> <span class="hl kwb">len</span><span class="hl opt">(</span>mac_mids_list<span class="hl opt">) ==</span> <span class="hl num">1</span><span class="hl opt">:</span> <span class="hl str">"""</span> <span class="hl str"> special case of only one valid centre found (probably not needed)</span> <span class="hl str"> """</span> clus_list <span class="hl opt">= []</span> clus_list<span class="hl opt">.</span><span class="hl kwd">append</span><span class="hl opt">([</span>mac_mids<span class="hl opt">,</span> <span class="hl kwb">len</span><span class="hl opt">(</span>mac_mids<span class="hl opt">)])</span> <span class="hl kwa">else</span><span class="hl opt">:</span> clustering<span class="hl opt">.</span><span class="hl kwd">fit</span><span class="hl opt">(</span>mac_mids_list<span class="hl opt">)</span> <span class="hl slc"># try:</span> <span class="hl slc"># clustering.fit(mac_mids_list)</span> <span class="hl slc"># except RuntimeWarning as error:</span> <span class="hl slc"># return(0, None, None, error)</span> <span class="hl str">"""</span> <span class="hl str"> create list of all clusters</span> <span class="hl str"> """</span> clus_list <span class="hl opt">= []</span> <span class="hl kwa">if</span> clustering<span class="hl opt">.</span>n_clusters_ <span class="hl opt">></span> <span class="hl num">1</span><span class="hl opt">:</span> <span class="hl kwa">for</span> i <span class="hl kwa">in</span> <span class="hl kwb">range</span><span class="hl opt">(</span>clustering<span class="hl opt">.</span>labels_<span class="hl opt">.</span><span class="hl kwb">max</span><span class="hl opt">()+</span><span class="hl num">1</span><span class="hl opt">):</span> indices <span class="hl opt">= [</span>j <span class="hl kwa">for</span> j<span class="hl opt">,</span> x <span class="hl kwa">in</span> <span class="hl kwb">enumerate</span><span class="hl opt">(</span>clustering<span class="hl opt">.</span>labels_<span class="hl opt">)</span> <span class="hl kwa">if</span> x <span class="hl opt">==</span> i<span class="hl opt">]</span> clus <span class="hl opt">= []</span> <span class="hl kwa">for</span> index <span class="hl kwa">in</span> indices<span class="hl opt">:</span> clus<span class="hl opt">.</span><span class="hl kwd">append</span><span class="hl opt">(</span>mac_mids<span class="hl opt">[</span>index<span class="hl opt">])</span> clus_list<span class="hl opt">.</span><span class="hl kwd">append</span><span class="hl opt">([</span>clus<span class="hl opt">,</span> <span class="hl kwb">len</span><span class="hl opt">(</span>clus<span class="hl opt">)])</span> clus_list<span class="hl opt">.</span><span class="hl kwd">sort</span><span class="hl opt">(</span>key<span class="hl opt">=</span><span class="hl kwa">lambda</span> x<span class="hl opt">: -</span>x<span class="hl opt">[</span><span class="hl num">1</span><span class="hl opt">])</span> <span class="hl kwa">elif</span> clustering<span class="hl opt">.</span>n_clusters_ <span class="hl opt">==</span> <span class="hl num">1</span><span class="hl opt">:</span> <span class="hl str">"""</span> <span class="hl str"> special case of only one cluster found</span> <span class="hl str"> """</span> <span class="hl slc"># print('only 1 cluster')</span> clus_list<span class="hl opt">.</span><span class="hl kwd">append</span><span class="hl opt">([</span>mac_mids<span class="hl opt">,</span> <span class="hl kwb">len</span><span class="hl opt">(</span>mac_mids<span class="hl opt">)])</span> <span class="hl kwa">else</span><span class="hl opt">:</span> <span class="hl kwa">raise</span> <span class="hl kwd">MacbethError</span><span class="hl opt">(</span> <span class="hl str">'</span><span class="hl esc">\n</span><span class="hl str">WARNING: No macebth chart found!'</span> <span class="hl str">'</span><span class="hl esc">\n</span><span class="hl str">No clusters found'</span> <span class="hl str">'</span><span class="hl esc">\n</span><span class="hl str">Possible problems:</span><span class="hl esc">\n</span><span class="hl str">'</span> <span class="hl str">'- NA</span><span class="hl esc">\n</span><span class="hl str">'</span> <span class="hl opt">)</span> <span class="hl str">"""</span> <span class="hl str"> keep only clusters with enough votes</span> <span class="hl str"> """</span> clus_len_max <span class="hl opt">=</span> clus_list<span class="hl opt">[</span><span class="hl num">0</span><span class="hl opt">][</span><span class="hl num">1</span><span class="hl opt">]</span> clus_tol <span class="hl opt">=</span> <span class="hl num">0.7</span> <span class="hl kwa">for</span> i <span class="hl kwa">in</span> <span class="hl kwb">range</span><span class="hl opt">(</span><span class="hl kwb">len</span><span class="hl opt">(</span>clus_list<span class="hl opt">)):</span> <span class="hl kwa">if</span> clus_list<span class="hl opt">[</span>i<span class="hl opt">][</span><span class="hl num">1</span><span class="hl opt">] <</span> clus_len_max <span class="hl opt">*</span> clus_tol<span class="hl opt">:</span> clus_list <span class="hl opt">=</span> clus_list<span class="hl opt">[:</span>i<span class="hl opt">]</span> <span class="hl kwa">break</span> cent <span class="hl opt">=</span> np<span class="hl opt">.</span><span class="hl kwd">mean</span><span class="hl opt">(</span>clus_list<span class="hl opt">[</span>i<span class="hl opt">][</span><span class="hl num">0</span><span class="hl opt">],</span> axis<span class="hl opt">=</span><span class="hl num">0</span><span class="hl opt">)[</span><span class="hl num">0</span><span class="hl opt">]</span> clus_list<span class="hl opt">[</span>i<span class="hl opt">].</span><span class="hl kwd">append</span><span class="hl opt">(</span>cent<span class="hl opt">)</span> <span class="hl str">"""</span> <span class="hl str"> represent most popular cluster centroids</span> <span class="hl str"> """</span> <span class="hl slc"># copy = original_bw.copy()</span> <span class="hl slc"># copy = cv2.cvtColor(copy, cv2.COLOR_GRAY2RGB)</span> <span class="hl slc"># copy = cv2.resize(copy, None, fx=2, fy=2)</span> <span class="hl slc"># for clus in clus_list:</span> <span class="hl slc"># centroid = tuple(2*np.round(clus[2]).astype(np.int32))</span> <span class="hl slc"># cv2.circle(copy, centroid, 7, (255, 0, 0), -1)</span> <span class="hl slc"># cv2.circle(copy, centroid, 2, (0, 0, 255), -1)</span> <span class="hl slc"># represent(copy)</span> <span class="hl str">"""</span> <span class="hl str"> get centres of each normalised square</span> <span class="hl str"> """</span> reference <span class="hl opt">=</span> <span class="hl kwd">get_square_centres</span><span class="hl opt">(</span><span class="hl num">0.06</span><span class="hl opt">)</span> <span class="hl str">"""</span> <span class="hl str"> for each possible macbeth chart, transform image into</span> <span class="hl str"> normalised space and find correlation with reference</span> <span class="hl str"> """</span> max_cor <span class="hl opt">=</span> <span class="hl num">0</span> best_map <span class="hl opt">=</span> <span class="hl kwa">None</span> best_fit <span class="hl opt">=</span> <span class="hl kwa">None</span> best_cen_fit <span class="hl opt">=</span> <span class="hl kwa">None</span> best_ref_mat <span class="hl opt">=</span> <span class="hl kwa">None</span> <span class="hl kwa">for</span> clus <span class="hl kwa">in</span> clus_list<span class="hl opt">:</span> clus <span class="hl opt">=</span> clus<span class="hl opt">[</span><span class="hl num">0</span><span class="hl opt">]</span> sq_cents <span class="hl opt">= []</span> ref_cents <span class="hl opt">= []</span> i_list <span class="hl opt">= [</span>p<span class="hl opt">[</span><span class="hl num">1</span><span class="hl opt">][</span><span class="hl num">0</span><span class="hl opt">]</span> <span class="hl kwa">for</span> p <span class="hl kwa">in</span> clus<span class="hl opt">]</span> <span class="hl kwa">for</span> point <span class="hl kwa">in</span> clus<span class="hl opt">:</span> i<span class="hl opt">,</span> j <span class="hl opt">=</span> point<span class="hl opt">[</span><span class="hl num">1</span><span class="hl opt">]</span> <span class="hl str">"""</span> <span class="hl str"> remove any square that voted for two different points within</span> <span class="hl str"> the same cluster. This causes the same point in the image to be</span> <span class="hl str"> mapped to two different reference square centres, resulting in</span> <span class="hl str"> a very distorted perspective transform since cv2.findHomography</span> <span class="hl str"> simply minimises error.</span> <span class="hl str"> This phenomenon is not particularly likely to occur due to the</span> <span class="hl str"> enforced distance threshold in the clustering fit but it is</span> <span class="hl str"> best to keep this in just in case.</span> <span class="hl str"> """</span> <span class="hl kwa">if</span> i_list<span class="hl opt">.</span><span class="hl kwd">count</span><span class="hl opt">(</span>i<span class="hl opt">) ==</span> <span class="hl num">1</span><span class="hl opt">:</span> square <span class="hl opt">=</span> squares_raw<span class="hl opt">[</span>i<span class="hl opt">]</span> sq_cent <span class="hl opt">=</span> np<span class="hl opt">.</span><span class="hl kwd">mean</span><span class="hl opt">(</span>square<span class="hl opt">,</span> axis<span class="hl opt">=</span><span class="hl num">0</span><span class="hl opt">)</span> ref_cent <span class="hl opt">=</span> reference<span class="hl opt">[</span>j<span class="hl opt">]</span> sq_cents<span class="hl opt">.</span><span class="hl kwd">append</span><span class="hl opt">(</span>sq_cent<span class="hl opt">)</span> ref_cents<span class="hl opt">.</span><span class="hl kwd">append</span><span class="hl opt">(</span>ref_cent<span class="hl opt">)</span> <span class="hl str">"""</span> <span class="hl str"> At least four squares need to have voted for a centre in</span> <span class="hl str"> order for a transform to be found</span> <span class="hl str"> """</span> <span class="hl kwa">if</span> <span class="hl kwb">len</span><span class="hl opt">(</span>sq_cents<span class="hl opt">) <</span> <span class="hl num">4</span><span class="hl opt">:</span> <span class="hl kwa">raise</span> <span class="hl kwd">MacbethError</span><span class="hl opt">(</span> <span class="hl str">'</span><span class="hl esc">\n</span><span class="hl str">WARNING: No macbeth chart found!'</span> <span class="hl str">'</span><span class="hl esc">\n</span><span class="hl str">Not enough squares found'</span> <span class="hl str">'</span><span class="hl esc">\n</span><span class="hl str">Possible problems:</span><span class="hl esc">\n</span><span class="hl str">'</span> <span class="hl str">'- Macbeth chart is occluded</span><span class="hl esc">\n</span><span class="hl str">'</span> <span class="hl str">'- Macbeth chart is too dark or bright</span><span class="hl esc">\n</span><span class="hl str">'</span> <span class="hl opt">)</span> ref_cents <span class="hl opt">=</span> np<span class="hl opt">.</span><span class="hl kwd">array</span><span class="hl opt">(</span>ref_cents<span class="hl opt">)</span> sq_cents <span class="hl opt">=</span> np<span class="hl opt">.</span><span class="hl kwd">array</span><span class="hl opt">(</span>sq_cents<span class="hl opt">)</span> <span class="hl str">"""</span> <span class="hl str"> find best fit transform from normalised centres to image</span> <span class="hl str"> """</span> h_mat<span class="hl opt">,</span> mask <span class="hl opt">=</span> cv2<span class="hl opt">.</span><span class="hl kwd">findHomography</span><span class="hl opt">(</span>ref_cents<span class="hl opt">,</span> sq_cents<span class="hl opt">)</span> <span class="hl kwa">if</span> <span class="hl str">'None'</span> <span class="hl kwa">in</span> <span class="hl kwb">str</span><span class="hl opt">(</span><span class="hl kwb">type</span><span class="hl opt">(</span>h_mat<span class="hl opt">)):</span> <span class="hl kwa">raise</span> <span class="hl kwd">MacbethError</span><span class="hl opt">(</span> <span class="hl str">'</span><span class="hl esc">\n</span><span class="hl str">ERROR</span><span class="hl esc">\n</span><span class="hl str">'</span> <span class="hl opt">)</span> <span class="hl str">"""</span> <span class="hl str"> transform normalised corners and centres into image space</span> <span class="hl str"> """</span> mac_fit <span class="hl opt">=</span> cv2<span class="hl opt">.</span><span class="hl kwd">perspectiveTransform</span><span class="hl opt">(</span>mac_norm<span class="hl opt">,</span> h_mat<span class="hl opt">)</span> mac_cen_fit <span class="hl opt">=</span> cv2<span class="hl opt">.</span><span class="hl kwd">perspectiveTransform</span><span class="hl opt">(</span>np<span class="hl opt">.</span><span class="hl kwd">array</span><span class="hl opt">([</span>reference<span class="hl opt">]),</span> h_mat<span class="hl opt">)</span> <span class="hl str">"""</span> <span class="hl str"> transform located corners into reference space</span> <span class="hl str"> """</span> ref_mat <span class="hl opt">=</span> cv2<span class="hl opt">.</span><span class="hl kwd">getPerspectiveTransform</span><span class="hl opt">(</span> mac_fit<span class="hl opt">,</span> np<span class="hl opt">.</span><span class="hl kwd">array</span><span class="hl opt">([</span>ref_corns<span class="hl opt">])</span> <span class="hl opt">)</span> map_to_ref <span class="hl opt">=</span> cv2<span class="hl opt">.</span><span class="hl kwd">warpPerspective</span><span class="hl opt">(</span> original_bw<span class="hl opt">,</span> ref_mat<span class="hl opt">,</span> <span class="hl opt">(</span>ref_w<span class="hl opt">,</span> ref_h<span class="hl opt">)</span> <span class="hl opt">)</span> <span class="hl str">"""</span> <span class="hl str"> normalise brigthness</span> <span class="hl str"> """</span> a <span class="hl opt">=</span> <span class="hl num">125</span><span class="hl opt">/</span>np<span class="hl opt">.</span><span class="hl kwd">average</span><span class="hl opt">(</span>map_to_ref<span class="hl opt">)</span> map_to_ref <span class="hl opt">=</span> cv2<span class="hl opt">.</span><span class="hl kwd">convertScaleAbs</span><span class="hl opt">(</span>map_to_ref<span class="hl opt">,</span> alpha<span class="hl opt">=</span>a<span class="hl opt">,</span> beta<span class="hl opt">=</span><span class="hl num">0</span><span class="hl opt">)</span> <span class="hl str">"""</span> <span class="hl str"> find correlation with bw reference macbeth</span> <span class="hl str"> """</span> cor <span class="hl opt">=</span> <span class="hl kwd">correlate</span><span class="hl opt">(</span>map_to_ref<span class="hl opt">,</span> ref<span class="hl opt">)</span> <span class="hl str">"""</span> <span class="hl str"> keep only if best correlation</span> <span class="hl str"> """</span> <span class="hl kwa">if</span> cor <span class="hl opt">></span> max_cor<span class="hl opt">:</span> max_cor <span class="hl opt">=</span> cor best_map <span class="hl opt">=</span> map_to_ref best_fit <span class="hl opt">=</span> mac_fit best_cen_fit <span class="hl opt">=</span> mac_cen_fit best_ref_mat <span class="hl opt">=</span> ref_mat <span class="hl str">"""</span> <span class="hl str"> rotate macbeth by pi and recorrelate in case macbeth chart is</span> <span class="hl str"> upside-down</span> <span class="hl str"> """</span> mac_fit_inv <span class="hl opt">=</span> np<span class="hl opt">.</span><span class="hl kwd">array</span><span class="hl opt">(</span> <span class="hl opt">([[</span>mac_fit<span class="hl opt">[</span><span class="hl num">0</span><span class="hl opt">][</span><span class="hl num">2</span><span class="hl opt">],</span> mac_fit<span class="hl opt">[</span><span class="hl num">0</span><span class="hl opt">][</span><span class="hl num">3</span><span class="hl opt">],</span> mac_fit<span class="hl opt">[</span><span class="hl num">0</span><span class="hl opt">][</span><span class="hl num">0</span><span class="hl opt">],</span> mac_fit<span class="hl opt">[</span><span class="hl num">0</span><span class="hl opt">][</span><span class="hl num">1</span><span class="hl opt">]]])</span> <span class="hl opt">)</span> mac_cen_fit_inv <span class="hl opt">=</span> np<span class="hl opt">.</span><span class="hl kwd">flip</span><span class="hl opt">(</span>mac_cen_fit<span class="hl opt">,</span> axis<span class="hl opt">=</span><span class="hl num">1</span><span class="hl opt">)</span> ref_mat <span class="hl opt">=</span> cv2<span class="hl opt">.</span><span class="hl kwd">getPerspectiveTransform</span><span class="hl opt">(</span> mac_fit_inv<span class="hl opt">,</span> np<span class="hl opt">.</span><span class="hl kwd">array</span><span class="hl opt">([</span>ref_corns<span class="hl opt">])</span> <span class="hl opt">)</span> map_to_ref <span class="hl opt">=</span> cv2<span class="hl opt">.</span><span class="hl kwd">warpPerspective</span><span class="hl opt">(</span> original_bw<span class="hl opt">,</span> ref_mat<span class="hl opt">,</span> <span class="hl opt">(</span>ref_w<span class="hl opt">,</span> ref_h<span class="hl opt">)</span> <span class="hl opt">)</span> a <span class="hl opt">=</span> <span class="hl num">125</span><span class="hl opt">/</span>np<span class="hl opt">.</span><span class="hl kwd">average</span><span class="hl opt">(</span>map_to_ref<span class="hl opt">)</span> map_to_ref <span class="hl opt">=</span> cv2<span class="hl opt">.</span><span class="hl kwd">convertScaleAbs</span><span class="hl opt">(</span>map_to_ref<span class="hl opt">,</span> alpha<span class="hl opt">=</span>a<span class="hl opt">,</span> beta<span class="hl opt">=</span><span class="hl num">0</span><span class="hl opt">)</span> cor <span class="hl opt">=</span> <span class="hl kwd">correlate</span><span class="hl opt">(</span>map_to_ref<span class="hl opt">,</span> ref<span class="hl opt">)</span> <span class="hl kwa">if</span> cor <span class="hl opt">></span> max_cor<span class="hl opt">:</span> max_cor <span class="hl opt">=</span> cor best_map <span class="hl opt">=</span> map_to_ref best_fit <span class="hl opt">=</span> mac_fit_inv best_cen_fit <span class="hl opt">=</span> mac_cen_fit_inv best_ref_mat <span class="hl opt">=</span> ref_mat <span class="hl str">"""