1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
|
#!/usr/bin/env python3
#
# SPDX-License-Identifier: BSD-2-Clause
#
# Copyright (C) 2019, Raspberry Pi (Trading) Limited
#
# ctt.py - camera tuning tool
import os
import sys
from ctt_image_load import *
from ctt_ccm import *
from ctt_awb import *
from ctt_alsc import *
from ctt_lux import *
from ctt_noise import *
from ctt_geq import *
from ctt_pretty_print_json import *
import random
import json
import re
"""
This file houses the camera object, which is used to perform the calibrations.
The camera object houses all the calibration images as attributes in two lists:
- imgs (macbeth charts)
- imgs_alsc (alsc correction images)
Various calibrations are methods of the camera object, and the output is stored
in a dictionary called self.json.
Once all the caibration has been completed, the Camera.json is written into a
json file.
The camera object initialises its json dictionary by reading from a pre-written
blank json file. This has been done to avoid reproducing the entire json file
in the code here, thereby avoiding unecessary clutter.
"""
"""
Get the colour and lux values from the strings of each inidvidual image
"""
def get_col_lux(string):
"""
Extract colour and lux values from filename
"""
col = re.search(r'([0-9]+)[kK](\.(jpg|jpeg|brcm|dng)|_.*\.(jpg|jpeg|brcm|dng))$', string)
lux = re.search(r'([0-9]+)[lL](\.(jpg|jpeg|brcm|dng)|_.*\.(jpg|jpeg|brcm|dng))$', string)
try:
col = col.group(1)
except AttributeError:
"""
Catch error if images labelled incorrectly and pass reasonable defaults
"""
return None, None
try:
lux = lux.group(1)
except AttributeError:
"""
Catch error if images labelled incorrectly and pass reasonable defaults
Still returns colour if that has been found.
"""
return col, None
return int(col), int(lux)
"""
Camera object that is the backbone of the tuning tool.
Input is the desired path of the output json.
"""
class Camera:
def __init__(self, jfile):
self.path = os.path.dirname(os.path.expanduser(__file__)) + '/'
if self.path == '/':
self.path = ''
self.imgs = []
self.imgs_alsc = []
self.log = 'Log created : ' + time.asctime(time.localtime(time.time()))
self.log_separator = '\n'+'-'*70+'\n'
self.jf = jfile
"""
initial json dict populated by uncalibrated values
"""
self.json = {
"rpi.black_level": {
"black_level": 4096
},
"rpi.dpc": {
},
"rpi.lux": {
"reference_shutter_speed": 10000,
"reference_gain": 1,
"reference_aperture": 1.0
},
"rpi.noise": {
},
"rpi.geq": {
},
"rpi.sdn": {
},
"rpi.awb": {
"priors": [
{"lux": 0, "prior": [2000, 1.0, 3000, 0.0, 13000, 0.0]},
{"lux": 800, "prior": [2000, 0.0, 6000, 2.0, 13000, 2.0]},
{"lux": 1500, "prior": [2000, 0.0, 4000, 1.0, 6000, 6.0, 6500, 7.0, 7000, 1.0, 13000, 1.0]}
],
"modes": {
"auto": {"lo": 2500, "hi": 8000},
"incandescent": {"lo": 2500, "hi": 3000},
"tungsten": {"lo": 3000, "hi": 3500},
"fluorescent": {"lo": 4000, "hi": 4700},
"indoor": {"lo": 3000, "hi": 5000},
"daylight": {"lo": 5500, "hi": 6500},
"cloudy": {"lo": 7000, "hi": 8600}
},
"bayes": 1
},
"rpi.agc": {
"metering_modes": {
"centre-weighted": {
"weights": [3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0]
},
"spot": {
"weights": [2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
},
"matrix": {
"weights": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
}
},
"exposure_modes": {
"normal": {
"shutter": [100, 10000, 30000, 60000, 120000],
"gain": [1.0, 2.0, 4.0, 6.0, 6.0]
},
"sport": {
"shutter": [100, 5000, 10000, 20000, 120000],
"gain": [1.0, 2.0, 4.0, 6.0, 6.0]
}
},
"constraint_modes": {
"normal": [
{"bound": "LOWER", "q_lo": 0.98, "q_hi": 1.0, "y_target": [0, 0.5, 1000, 0.5]}
],
"highlight": [
{"bound": "LOWER", "q_lo": 0.98, "q_hi": 1.0, "y_target": [0, 0.5, 1000, 0.5]},
{"bound": "UPPER", "q_lo": 0.98, "q_hi": 1.0, "y_target": [0, 0.8, 1000, 0.8]}
]
},
"y_target": [0, 0.16, 1000, 0.165, 10000, 0.17]
},
"rpi.alsc": {
'omega': 1.3,
'n_iter': 100,
'luminance_strength': 0.7,
},
"rpi.contrast": {
"ce_enable": 1,
"gamma_curve": [
0, 0,
1024, 5040,
2048, 9338,
3072, 12356,
4096, 15312,
5120, 18051,
6144, 20790,
7168, 23193,
8192, 25744,
9216, 27942,
10240, 30035,
11264, 32005,
12288, 33975,
13312, 35815,
14336, 37600,
15360, 39168,
16384, 40642,
18432, 43379,
20480, 45749,
22528, 47753,
24576, 49621,
26624, 51253,
28672, 52698,
30720, 53796,
32768, 54876,
36864, 57012,
40960, 58656,
45056, 59954,
49152, 61183,
53248, 62355,
57344, 63419,
61440, 64476,
65535, 65535
]
},
"rpi.ccm": {
},
"rpi.sharpen": {
}
}
"""
Perform colour correction calibrations by comparing macbeth patch colours
to standard macbeth chart colours.
"""
def ccm_cal(self, do_alsc_colour):
if 'rpi.ccm' in self.disable:
return 1
print('\nStarting CCM calibration')
self.log_new_sec('CCM')
"""
if image is greyscale then CCm makes no sense
"""
if self.grey:
print('\nERROR: Can\'t do CCM on greyscale image!')
self.log += '\nERROR: Cannot perform CCM calibration '
self.log += 'on greyscale image!\nCCM aborted!'
del self.json['rpi.ccm']
return 0
a = time.time()
"""
Check if alsc tables have been generated, if not then do ccm without
alsc
"""
if ("rpi.alsc" not in self.disable) and do_alsc_colour:
"""
case where ALSC colour has been done, so no errors should be
expected...
"""
try:
cal_cr_list = self.json['rpi.alsc']['calibrations_Cr']
cal_cb_list = self.json['rpi.alsc']['calibrations_Cb']
self.log += '\nALSC tables found successfully'
except KeyError:
cal_cr_list, cal_cb_list = None, None
print('WARNING! No ALSC tables found for CCM!')
print('Performing CCM calibrations without ALSC correction...')
self.log += '\nWARNING: No ALSC tables found.\nCCM calibration '
self.log += 'performed without ALSC correction...'
else:
"""
case where config options result in CCM done without ALSC colour tables
"""
cal_cr_list, cal_cb_list = None, None
self.log += '\nWARNING: No ALSC tables found.\nCCM calibration '
self.log += 'performed without ALSC correction...'
"""
Do CCM calibration
"""
try:
ccms = ccm(self, cal_cr_list, cal_cb_list)
except ArithmeticError:
print('ERROR: Matrix is singular!\nTake new pictures and try again...')
self.log += '\nERROR: Singular matrix encountered during fit!'
self.log += '\nCCM aborted!'
return 1
"""
Write output to json
"""
self.json['rpi.ccm']['ccms'] = ccms
self.log += '\nCCM calibration written to json file'
print('Finished CCM calibration')
"""
Auto white balance calibration produces a colour curve for
various colour temperatures, as well as providing a maximum 'wiggle room'
distance from this curve (transverse_neg/pos).
"""
def awb_cal(self, greyworld, do_alsc_colour):
if 'rpi.awb' in self.disable:
return 1
print('\nStarting AWB calibration')
self.log_new_sec('AWB')
"""
if image is greyscale then AWB makes no sense
"""
if self.grey:
print('\nERROR: Can\'t do AWB on greyscale image!')
self.log += '\nERROR: Cannot perform AWB calibration '
self.log += 'on greyscale image!\nAWB aborted!'
del self.json['rpi.awb']
return 0
"""
optional set greyworld (e.g. for noir cameras)
"""
if greyworld:
self.json['rpi.awb']['bayes'] = 0
self.log += '\nGreyworld set'
"""
Check if alsc tables have been generated, if not then do awb without
alsc correction
"""
if ("rpi.alsc" not in self.disable) and do_alsc_colour:
try:
cal_cr_list = self.json['rpi.alsc']['calibrations_Cr']
cal_cb_list = self.json['rpi.alsc']['calibrations_Cb']
self.log += '\nALSC tables found successfully'
except KeyError:
cal_cr_list, cal_cb_list = None, None
print('ERROR, no ALSC calibrations found for AWB')
print('Performing AWB without ALSC tables')
self.log += '\nWARNING: No ALSC tables found.\nAWB calibration '
self.log += 'performed without ALSC correction...'
else:
cal_cr_list, cal_cb_list = None, None
self.log += '\nWARNING: No ALSC tables found.\nAWB calibration '
self.log += 'performed without ALSC correction...'
"""
call calibration function
"""
plot = "rpi.awb" in self.plot
awb_out = awb(self, cal_cr_list, cal_cb_list, plot)
ct_curve, transverse_neg, transverse_pos = awb_out
"""
write output to json
"""
self.json['rpi.awb']['ct_curve'] = ct_curve
self.json['rpi.awb']['sensitivity_r'] = 1.0
self.json['rpi.awb']['sensitivity_b'] = 1.0
self.json['rpi.awb']['transverse_pos'] = transverse_pos
self.json['rpi.awb']['transverse_neg'] = transverse_neg
self.log += '\nAWB calibration written to json file'
print('Finished AWB calibration')
"""
Auto lens shading correction completely mitigates the effects of lens shading for ech
colour channel seperately, and then partially corrects for vignetting.
The extent of the correction depends on the 'luminance_strength' parameter.
"""
def alsc_cal(self, luminance_strength, do_alsc_colour):
if 'rpi.alsc' in self.disable:
return 1
print('\nStarting ALSC calibration')
self.log_new_sec('ALSC')
"""
check if alsc images have been taken
"""
if len(self.imgs_alsc) == 0:
print('\nError:\nNo alsc calibration images found')
self.log += '\nERROR: No ALSC calibration images found!'
self.log += '\nALSC calibration aborted!'
return 1
self.json['rpi.alsc']['luminance_strength'] = luminance_strength
if self.grey and do_alsc_colour:
print('Greyscale camera so only luminance_lut calculated')
do_alsc_colour = False
self.log += '\nWARNING: ALSC colour correction cannot be done on '
self.log += 'greyscale image!\nALSC colour corrections forced off!'
"""
call calibration function
"""
plot = "rpi.alsc" in self.plot
alsc_out = alsc_all(self, do_alsc_colour, plot)
cal_cr_list, cal_cb_list, luminance_lut, av_corn = alsc_out
"""
write ouput to json and finish if not do_alsc_colour
"""
if not do_alsc_colour:
self.json['rpi.alsc']['luminance_lut'] = luminance_lut
self.json['rpi.alsc']['n_iter'] = 0
self.log += '\nALSC calibrations written to json file'
self.log += '\nNo colour calibrations performed'
print('Finished ALSC calibrations')
return 1
self.json['rpi.alsc']['calibrations_Cr'] = cal_cr_list
self.json['rpi.alsc']['calibrations_Cb'] = cal_cb_list
self.json['rpi.alsc']['luminance_lut'] = luminance_lut
self.log += '\nALSC colour and luminance tables written to json file'
"""
The sigmas determine the strength of the adaptive algorithm, that
cleans up any lens shading that has slipped through the alsc. These are
determined by measuring a 'worst-case' difference between two alsc tables
that are adjacent in colour space. If, however, only one colour
temperature has been provided, then this difference can not be computed
as only one table is available.
To determine the sigmas you would have to estimate the error of an alsc
table with only the image it was taken on as a check. To avoid circularity,
dfault exaggerated sigmas are used, which can result in too much alsc and
is therefore not advised.
In general, just take another alsc picture at another colour temperature!
"""
if len(self.imgs_alsc) == 1:
self.json['rpi.alsc']['sigma'] = 0.005
self.json['rpi.alsc']['sigma_Cb'] = 0.005
print('\nWarning:\nOnly one alsc calibration found'
'\nStandard sigmas used for adaptive algorithm.')
print('Finished ALSC calibrations')
self.log += '\nWARNING: Only one colour temperature found in '
self.log += 'calibration images.\nStandard sigmas used for adaptive '
self.log += 'algorithm!'
return 1
"""
obtain worst-case scenario residual sigmas
"""
sigma_r, sigma_b = get_sigma(self, cal_cr_list, cal_cb_list)
"""
write output to json
"""
self.json['rpi.alsc']['sigma'] = np.round(sigma_r, 5)
self.json['rpi.alsc']['sigma_Cb'] = np.round(sigma_b, 5)
self.log += '\nCalibrated sigmas written to json file'
print('Finished ALSC calibrations')
"""
Green equalisation fixes problems caused by discrepancies in green
channels. This is done by measuring the effect on macbeth chart patches,
which ideally would have the same green values throughout.
An upper bound linear model is fit, fixing a threshold for the green
differences that are corrected.
"""
def geq_cal(self):
if 'rpi.geq' in self.disable:
return 1
print('\nStarting GEQ calibrations')
self.log_new_sec('GEQ')
"""
perform calibration
"""
plot = 'rpi.geq' in self.plot
slope, offset = geq_fit(self, plot)
"""
write output to json
"""
self.json['rpi.geq']['offset'] = offset
self.json['rpi.geq']['slope'] = slope
self.log += '\nGEQ calibrations written to json file'
print('Finished GEQ calibrations')
"""
Lux calibrations allow the lux level of a scene to be estimated by a ratio
calculation. Lux values are used in the pipeline for algorithms such as AGC
and AWB
"""
def lux_cal(self):
if 'rpi.lux' in self.disable:
return 1
print('\nStarting LUX calibrations')
self.log_new_sec('LUX')
"""
The lux calibration is done on a single image. For best effects, the
image with lux level closest to 1000 is chosen.
"""
luxes = [Img.lux for Img in self.imgs]
argmax = luxes.index(min(luxes, key=lambda l: abs(1000-l)))
Img = self.imgs[argmax]
self.log += '\nLux found closest to 1000: {} lx'.format(Img.lux)
self.log += '\nImage used: ' + Img.name
if Img.lux < 50:
self.log += '\nWARNING: Low lux could cause inaccurate calibrations!'
"""
do calibration
"""
lux_out, shutter_speed, gain = lux(self, Img)
"""
write output to json
"""
self.json['rpi.lux']['reference_shutter_speed'] = shutter_speed
self.json['rpi.lux']['reference_gain'] = gain
self.json['rpi.lux']['reference_lux'] = Img.lux
self.json['rpi.lux']['reference_Y'] = lux_out
self.log += '\nLUX calibrations written to json file'
print('Finished LUX calibrations')
"""
Noise alibration attempts to describe the noise profile of the sensor. The
calibration is run on macbeth images and the final output is taken as the average
"""
def noise_cal(self):
if 'rpi.noise' in self.disable:
return 1
print('\nStarting NOISE calibrations')
self.log_new_sec('NOISE')
"""
run calibration on all images and sort by slope.
"""
plot = "rpi.noise" in self.plot
noise_out = sorted([noise(self, Img, plot) for Img in self.imgs], key=lambda x: x[0])
self.log += '\nFinished processing images'
"""
take the average of the interquartile
"""
length = len(noise_out)
noise_out = np.mean(noise_out[length//4:1+3*length//4], axis=0)
self.log += '\nAverage noise profile: constant = {} '.format(int(noise_out[1]))
self.log += 'slope = {:.3f}'.format(noise_out[0])
"""
write to json
"""
self.json['rpi.noise']['reference_constant'] = int(noise_out[1])
self.json['rpi.noise']['reference_slope'] = round(noise_out[0], 3)
self.log += '\nNOISE calibrations written to json'
print('Finished NOISE calibrations')
"""
Removes json entries that are turned off
"""
def json_remove(self, disable):
self.log_new_sec('Disabling Options', cal=False)
if len(self.disable) == 0:
self.log += '\nNothing disabled!'
return 1
for key in disable:
try:
del self.json[key]
self.log += '\nDisabled: ' + key
except KeyError:
self.log += '\nERROR: ' + key + ' not found!'
"""
writes the json dictionary to the raw json file then make pretty
"""
def write_json(self):
"""
Write json dictionary to file
"""
jstring = json.dumps(self.json, sort_keys=False)
"""
make it pretty :)
"""
pretty_print_json(jstring, self.jf)
"""
add a new section to the log file
"""
def log_new_sec(self, section, cal=True):
self.log += '\n'+self.log_separator
self.log += section
if cal:
self.log += ' Calibration'
self.log += self.log_separator
"""
write script arguments to log file
"""
def log_user_input(self, json_output, directory, config, log_output):
self.log_new_sec('User Arguments', cal=False)
self.log += '\nJson file output: ' + json_output
self.log += '\nCalibration images directory: ' + directory
if config is None:
self.log += '\nNo configuration file input... using default options'
elif config is False:
self.log += '\nWARNING: Invalid configuration file path...'
self.log += ' using default options'
elif config is True:
self.log += '\nWARNING: Invalid syntax in configuration file...'
self.log += ' using default options'
else:
self.log += '\nConfiguration file: ' + config
if log_output is None:
self.log += '\nNo log file path input... using default: ctt_log.txt'
else:
self.log += '\nLog file output: ' + log_output
# if log_output
"""
write log file
"""
def write_log(self, filename):
if filename is None:
filename = 'ctt_log.txt'
self.log += '\n' + self.log_separator
with open(filename, 'w') as logfile:
logfile.write(self.log)
"""
Add all images from directory, pass into relevant list of images and
extrace lux and temperature values.
"""
def add_imgs(self, directory, mac_config, blacklevel=-1):
self.log_new_sec('Image Loading', cal=False)
img_suc_msg = 'Image loaded successfully!'
print('\n\nLoading images from '+directory)
self.log += '\nDirectory: ' + directory
"""
get list of files
"""
filename_list = get_photos(directory)
print("Files found: {}".format(len(filename_list)))
self.log += '\nFiles found: {}'.format(len(filename_list))
"""
iterate over files
"""
|