/* SPDX-License-Identifier: LGPL-2.1-or-later */ /* * Copyright (C) 2021-2022, Ideas On Board * * AGC/AEC mean-based control algorithm */ #include "agc.h" #include #include #include #include #include #include #include #include #include #include "libcamera/internal/yaml_parser.h" #include "libipa/histogram.h" /** * \file agc.h */ namespace libcamera { using namespace std::literals::chrono_literals; namespace ipa::rkisp1::algorithms { /** * \class Agc * \brief A mean-based auto-exposure algorithm */ LOG_DEFINE_CATEGORY(RkISP1Agc) int Agc::parseMeteringModes(IPAContext &context, const YamlObject &tuningData) { if (!tuningData.isDictionary()) { LOG(RkISP1Agc, Error) << "'AeMeteringMode' parameter not found in tuning file"; return -EINVAL; } for (const auto &[key, value] : tuningData.asDict()) { if (controls::AeMeteringModeNameValueMap.find(key) == controls::AeMeteringModeNameValueMap.end()) { LOG(RkISP1Agc, Warning) << "Skipping unknown metering mode '" << key << "'"; continue; } std::vector weights = value.getList().value_or(std::vector{}); if (weights.size() != context.hw->numHistogramWeights) { LOG(RkISP1Agc, Warning) << "Failed to read metering mode'" << key << "'"; continue; } meteringModes_[controls::AeMeteringModeNameValueMap.at(key)] = weights; } if (meteringModes_.empty()) { LOG(RkISP1Agc, Warning) << "No metering modes read from tuning file; defaulting to matrix"; int32_t meteringModeId = controls::AeMeteringModeNameValueMap.at("MeteringMatrix"); std::vector weights(context.hw->numHistogramWeights, 1); meteringModes_[meteringModeId] = weights; } std::vector meteringModes; std::vector meteringModeKeys = utils::map_keys(meteringModes_); std::transform(meteringModeKeys.begin(), meteringModeKeys.end(), std::back_inserter(meteringModes), [](int x) { return ControlValue(x); }); context.ctrlMap[&controls::AeMeteringMode] = ControlInfo(meteringModes); return 0; } uint8_t Agc::computeHistogramPredivider(Size &size, enum rkisp1_cif_isp_histogram_mode mode) { /* * The maximum number of pixels that could potentially be in one bin is * if all the pixels of the image are in it, multiplied by 3 for the * three color channels. The counter for each bin is 16 bits wide, so * `factor` thus contains the number of times we'd wrap around. This is * obviously the number of pixels that we need to skip to make sure * that we don't wrap around, but we compute the square root of it * instead, as the skip that we need to program is for both the x and y * directions. * * Even though it looks like dividing into a counter of 65536 would * overflow by 1, this is apparently fine according to the hardware * documentation, and this successfully gets the expected documented * predivider size for cases where: * (width / predivider) * (height / predivider) * 3 == 65536. * * There's a bit of extra rounding math to make sure the rounding goes * the correct direction so that the square of the step is big enough * to encompass the `factor` number of pixels that we need to skip. * * \todo Take into account weights. That is, if the weights are low * enough we can potentially reduce the predivider to increase * precision. This needs some investigation however, as this hardware * behavior is undocumented and is only an educated guess. */ int count = mode == RKISP1_CIF_ISP_HISTOGRAM_MODE_RGB_COMBINED ? 3 : 1; double factor = size.width * size.height * count / 65536.0; double root = std::sqrt(factor); uint8_t predivider; if (std::pow(std::floor(root), 2) < factor) predivider = static_cast(std::ceil(root)); else predivider = static_cast(std::floor(root)); return std::clamp(predivider, 3, 127); } Agc::Agc() { supportsRaw_ = true; } /** * \brief Initialise the AGC algorithm from tuning files * \param[in] context The shared IPA context * \param[in] tuningData The YamlObject containing Agc tuning data * * This function calls the base class' tuningData parsers to discover which * control values are supported. * * \return 0 on success or errors from the base class */ int Agc::init(IPAContext &context, const YamlObject &tuningData) { int ret; ret = parseTuningData(tuningData); if (ret) return ret; const YamlObject &yamlMeteringModes = tuningData["AeMeteringMode"]; ret = parseMeteringModes(context, yamlMeteringModes); if (ret) return ret; context.ctrlMap.merge(controls()); return 0; } /** * \brief Configure the AGC given a configInfo * \param[in] context The shared IPA context * \param[in] configInfo The IPA configuration data * * \return 0 */ int Agc::configure(IPAContext &context, const IPACameraSensorInfo &configInfo) { /* Configure the default exposure and gain. */ context.activeState.agc.automatic.gain = context.configuration.sensor.minAnalogueGain; context.activeState.agc.automatic.exposure = 10ms / context.configuration.sensor.lineDuration; context.activeState.agc.manual.gain = context.activeState.agc.automatic.gain; context.activeState.agc.manual.exposure = context.activeState.agc.automatic.exposure; context.activeState.agc.autoEnabled = !context.configuration.raw; context.activeState.agc.constraintMode = static_cast(constraintModes().begin()->first); context.activeState.agc.exposureMode = static_cast(exposureModeHelpers().begin()->first); context.activeState.agc.meteringMode = static_cast(meteringModes_.begin()->first); /* * \todo This should probably come from FrameDurationLimits instead, * except it's computed in the IPA and not here so we'd have to * recompute it. */ context.activeState.agc.maxShutterSpeed = context.configuration.sensor.maxShutterSpeed; /* * Define the measurement window for AGC as a centered rectangle * covering 3/4 of the image width and height. */ context.configuration.agc.measureWindow.h_offs = configInfo.outputSize.width / 8; context.configuration.agc.measureWindow.v_offs = configInfo.outputSize.height / 8; context.configuration.agc.measureWindow.h_size = 3 * configInfo.outputSize.width / 4; context.configuration.agc.measureWindow.v_size = 3 * configInfo.outputSize.height / 4; setLimits(context.configuration.sensor.minShutterSpeed, context.configuration.sensor.maxShutterSpeed, context.configuration.sensor.minAnalogueGain, context.configuration.sensor.maxAnalogueGain); resetFrameCount(); return 0; } /** * \copydoc libcamera::ipa::Algorithm::queueRequest */ void Agc::queueRequest(IPAContext &context, [[maybe_unused]] const uint32_t frame, IPAFrameContext &frameContext, const ControlList &controls) { auto &agc = context.activeState.agc; if (!context.configuration.raw) { const auto &agcEnable = controls.get(controls::AeEnable); if (agcEnable && *agcEnable != agc.autoEnabled) { agc.autoEnabled = *agcEnable; LOG(RkISP1Agc, Debug) << (agc.autoEnabled ? "Enabling" : "Disabling") << " AGC"; } } const auto &exposure = controls.get(controls::ExposureTime); if (exposure && !agc.autoEnabled) { agc.manual.exposure = *exposure * 1.0us / context.configuration.sensor.lineDuration; LOG(RkISP1Agc, Debug) << "Set exposure to " << agc.manual.exposure; } const auto &gain = controls.get(controls::AnalogueGain); if (gain && !agc.autoEnabled) { agc.manual.gain = *gain; LOG(RkISP1Agc, Debug) << "Set gain to " << agc.manual.gain; } frameContext.agc.autoEnabled = agc.autoEnabled; if (!frameContext.agc.autoEnabled) { frameContext.agc.exposure = agc.manual.exposure; frameContext.agc.gain = agc.manual.gain; } const auto &meteringMode = controls.get(controls::AeMeteringMode); if (meteringMode) { frameContext.agc.update = agc.meteringMode != *meteringMode; agc.meteringMode = static_cast(*meteringMode); } frameContext.agc.meteringMode = agc.meteringMode; const auto &exposureMode = controls.get(controls::AeExposureMode); if (exposureMode) { frameContext.agc.update = agc.exposureMode != *exposureMode; agc.exposureMode = static_cast(*exposureMode); } frameContext.agc.exposureMode = agc.exposureMode; const auto &constraintMode = controls.get(controls::AeConstraintMode); if (constraintMode) { frameContext.agc.update = agc.constraintMode != *constraintMode; agc.constraintMode = static_cast(*constraintMode); } frameContext.agc.constraintMode = agc.constraintMode; const auto &frameDurationLimits = controls.get(controls::FrameDurationLimits); if (frameDurationLimits) { utils::Duration maxShutterSpeed = std::chrono::milliseconds((*frameDurationLimits).back()); frameContext.agc.update = agc.maxShutterSpeed != maxShutterSpeed; agc.maxShutterSpeed = maxShutterSpeed; } frameContext.agc.maxShutterSpeed = agc.maxShutterSpeed; } /** * \copydoc libcamera::ipa::Algorithm::prepare */ void Agc::prepare(IPAContext &context, const uint32_t frame, IPAFrameContext &frameContext, rkisp1_params_cfg *params) { if (frameContext.agc.autoEnabled) { frameContext.agc.exposure = context.activeState.agc.automatic.exposure; frameContext.agc.gain = context.activeState.agc.automatic.gain; } if (frame > 0 && !frameContext.agc.update) return; /* Configure the measurement window. */ params->meas.aec_config.meas_window = context.configuration.agc.measureWindow; /* Use a continuous method for measure. */ params->meas.aec_config.autostop = RKISP1_CIF_ISP_EXP_CTRL_AUTOSTOP_0; /* Estimate Y as (R + G + B) x (85/256). */ params->meas.aec_config.mode = RKISP1_CIF_ISP_EXP_MEASURING_MODE_1; params->module_cfg_update |= RKISP1_CIF_ISP_MODULE_AEC; params->module_ens |= RKISP1_CIF_ISP_MODULE_AEC; params->module_en_update |= RKISP1_CIF_ISP_MODULE_AEC; /* Configure histogram. */ params->meas.hst_config.meas_window = context.configuration.agc.measureWindow; /* Produce the luminance histogram. */ params->meas.hst_config.mode = RKISP1_CIF_ISP_HISTOGRAM_MODE_Y_HISTOGRAM; /* Set an average weighted histogram. */ Span weights{ params->meas.hst_config.hist_weight, context.hw->numHistogramWeights }; std::vector &modeWeights = meteringModes_.at(frameContext.agc.meteringMode); std::copy(modeWeights.begin(), modeWeights.end(), weights.begin()); struct rkisp1_cif_isp_window window = params->meas.hst_config.meas_window; Size windowSize = { window.h_size, window.v_size }; params->meas.hst_config.histogram_predivider = computeHistogramPredivider(windowSize, static_cast(params->meas.hst_config.mode)); /* Update the configuration for histogram. */ params->module_cfg_update |= RKISP1_CIF_ISP_MODULE_HST; /* Enable the histogram measure unit. */ params->module_ens |= RKISP1_CIF_ISP_MODULE_HST; params->module_en_update |= RKISP1_CIF_ISP_MODULE_HST; } void Agc::fillMetadata(IPAContext &context, IPAFrameContext &frameContext, ControlList &metadata) { utils::Duration exposureTime = context.configuration.sensor.lineDuration * frameContext.sensor.exposure; metadata.set(controls::AnalogueGain, frameContext.sensor.gain); metadata.set(controls::ExposureTime, exposureTime.get()); metadata.set(controls::AeEnable, frameContext.agc.autoEnabled); /* \todo Use VBlank value calculated from each frame exposure. */ uint32_t vTotal = context.configuration.sensor.size.height + context.configuration.sensor.defVBlank; utils::Duration frameDuration = context.configuration.sensor.lineDuration * vTotal; metadata.set(controls::FrameDuration, frameDuration.get()); metadata.set(controls::AeMeteringMode, frameContext.agc.meteringMode); metadata.set(controls::AeExposureMode, frameContext.agc.exposureMode); metadata.set(controls::AeConstraintMode, frameContext.agc.constraintMode); } /** * \brief Estimate the relative luminance of the frame with a given gain * \param[in] gain The gain to apply to the frame * * This function estimates the average relative luminance of the frame that * would be output by the sensor if an additional \a gain was applied. * * The estimation is based on the AE statistics for the current frame. Y * averages for all cells are first multiplied by the gain, and then saturated * to approximate the sensor behaviour at high brightness values. The * approximation is quite rough, as it doesn't take into account non-linearities * when approaching saturation. In this case, saturating after the conversion to * YUV doesn't take into account the fact that the R, G and B components * contribute differently to the relative luminance. * * The values are normalized to the [0.0, 1.0] range, where 1.0 corresponds to a * theoretical perfect reflector of 100% reference white. * * More detailed information can be found in: * https://en.wikipedia.org/wiki/Relative_luminance * * \return The relative luminance */ double Agc::estimateLuminance(double gain) const { double ySum = 0.0; /* Sum the averages, saturated to 255. */ for (uint8_t expMean : expMeans_) ySum += std::min(expMean * gain, 255.0); /* \todo Weight with the AWB gains */ return ySum / expMeans_.size() / 255; } /** * \brief Process RkISP1 statistics, and run AGC operations * \param[in] context The shared IPA context * \param[in] frame The frame context sequence number * \param[in] frameContext The current frame context * \param[in] stats The RKISP1 statistics and ISP results * \param[out] metadata Metadata for the frame, to be filled by the algorithm * * Identify the current image brightness, and use that to estimate the optimal * new exposure and gain for the scene. */ void Agc::process(IPAContext &context, [[maybe_unused]] const uint32_t frame, IPAFrameContext &frameContext, const rkisp1_stat_buffer *stats, ControlList &metadata) { if (!stats) { fillMetadata(context, frameContext, metadata); return; } /* * \todo Verify that the exposure and gain applied by the sensor for * this frame match what has been requested. This isn't a hard * requirement for stability of the AGC (the guarantee we need in * automatic mode is a perfect match between the frame and the values * we receive), but is important in manual mode. */ const rkisp1_cif_isp_stat *params = &stats->params; ASSERT(stats->meas_type & RKISP1_CIF_ISP_STAT_AUTOEXP); /* The lower 4 bits are fractional and meant to be discarded. */ Histogram hist({ params->hist.hist_bins, context.hw->numHistogramBins }, [](uint32_t x) { return x >> 4; }); expMeans_ = { params->ae.exp_mean, context.hw->numAeCells }; utils::Duration maxShutterSpeed = std::min(context.configuration.sensor.maxShutterSpeed, frameContext.agc.maxShutterSpeed); setLimits(context.configuration.sensor.minShutterSpeed, maxShutterSpeed, context.configuration.sensor.minAnalogueGain, context.configuration.sensor.maxAnalogueGain); /* * The Agc algorithm needs to know the effective exposure value that was * applied to the sensor when the statistics were collected. */ utils::Duration exposureTime = context.configuration.sensor.lineDuration * frameContext.sensor.exposure; double analogueGain = frameContext.sensor.gain; utils::Duration effectiveExposureValue = exposureTime * analogueGain; utils::Duration shutterTime; double aGain, dGain; std::tie(shutterTime, aGain, dGain) = calculateNewEv(context.activeState.agc.constraintMode, context.activeState.agc.exposureMode, hist, effectiveExposureValue); LOG(RkISP1Agc, Debug) << "Divided up shutter, analogue gain and digital gain are " << shutterTime << ", " << aGain << " and " << dGain; IPAActiveState &activeState = context.activeState; /* Update the estimated exposure and gain. */ activeState.agc.automatic.exposure = shutterTime / context.configuration.sensor.lineDuration; activeState.agc.automatic.gain = aGain; fillMetadata(context, frameContext, metadata); expMeans_ = {}; } REGISTER_IPA_ALGORITHM(Agc, "Agc") } /* namespace ipa::rkisp1::algorithms */ } /* namespace libcamera */