/* SPDX-License-Identifier: LGPL-2.1-or-later */ /* * Copyright (C) 2021-2022, Ideas On Board * * AGC/AEC mean-based control algorithm */ #include "agc.h" #include <algorithm> #include <chrono> #include <cmath> #include <libcamera/base/log.h> #include <libcamera/base/utils.h> #include <libcamera/control_ids.h> #include <libcamera/ipa/core_ipa_interface.h> #include "libipa/histogram.h" /** * \file agc.h */ namespace libcamera { using namespace std::literals::chrono_literals; namespace ipa::rkisp1::algorithms { /** * \class Agc * \brief A mean-based auto-exposure algorithm */ LOG_DEFINE_CATEGORY(RkISP1Agc) Agc::Agc() { supportsRaw_ = true; } /** * \brief Initialise the AGC algorithm from tuning files * \param[in] context The shared IPA context * \param[in] tuningData The YamlObject containing Agc tuning data * * This function calls the base class' tuningData parsers to discover which * control values are supported. * * \return 0 on success or errors from the base class */ int Agc::init(IPAContext &context, const YamlObject &tuningData) { int ret; ret = parseTuningData(tuningData); if (ret) return ret; context.ctrlMap.merge(controls()); return 0; } /** * \brief Configure the AGC given a configInfo * \param[in] context The shared IPA context * \param[in] configInfo The IPA configuration data * * \return 0 */ int Agc::configure(IPAContext &context, const IPACameraSensorInfo &configInfo) { /* Configure the default exposure and gain. */ context.activeState.agc.automatic.gain = context.configuration.sensor.minAnalogueGain; context.activeState.agc.automatic.exposure = 10ms / context.configuration.sensor.lineDuration; context.activeState.agc.manual.gain = context.activeState.agc.automatic.gain; context.activeState.agc.manual.exposure = context.activeState.agc.automatic.exposure; context.activeState.agc.autoEnabled = !context.configuration.raw; context.activeState.agc.constraintMode = constraintModes().begin()->first; context.activeState.agc.exposureMode = exposureModeHelpers().begin()->first; /* * Define the measurement window for AGC as a centered rectangle * covering 3/4 of the image width and height. */ context.configuration.agc.measureWindow.h_offs = configInfo.outputSize.width / 8; context.configuration.agc.measureWindow.v_offs = configInfo.outputSize.height / 8; context.configuration.agc.measureWindow.h_size = 3 * configInfo.outputSize.width / 4; context.configuration.agc.measureWindow.v_size = 3 * configInfo.outputSize.height / 4; /* \todo Run this again when FrameDurationLimits is passed in */ setLimits(context.configuration.sensor.minShutterSpeed, context.configuration.sensor.maxShutterSpeed, context.configuration.sensor.minAnalogueGain, context.configuration.sensor.maxAnalogueGain); resetFrameCount(); return 0; } /** * \copydoc libcamera::ipa::Algorithm::queueRequest */ void Agc::queueRequest(IPAContext &context, [[maybe_unused]] const uint32_t frame, IPAFrameContext &frameContext, const ControlList &controls) { auto &agc = context.activeState.agc; if (!context.configuration.raw) { const auto &agcEnable = controls.get(controls::AeEnable); if (agcEnable && *agcEnable != agc.autoEnabled) { agc.autoEnabled = *agcEnable; LOG(RkISP1Agc, Debug) << (agc.autoEnabled ? "Enabling" : "Disabling") << " AGC"; } } const auto &exposure = controls.get(controls::ExposureTime); if (exposure && !agc.autoEnabled) { agc.manual.exposure = *exposure * 1.0us / context.configuration.sensor.lineDuration; LOG(RkISP1Agc, Debug) << "Set exposure to " << agc.manual.exposure; } const auto &gain = controls.get(controls::AnalogueGain); if (gain && !agc.autoEnabled) { agc.manual.gain = *gain; LOG(RkISP1Agc, Debug) << "Set gain to " << agc.manual.gain; } frameContext.agc.autoEnabled = agc.autoEnabled; if (!frameContext.agc.autoEnabled) { frameContext.agc.exposure = agc.manual.exposure; frameContext.agc.gain = agc.manual.gain; } } /** * \copydoc libcamera::ipa::Algorithm::prepare */ void Agc::prepare(IPAContext &context, const uint32_t frame, IPAFrameContext &frameContext, rkisp1_params_cfg *params) { if (frameContext.agc.autoEnabled) { frameContext.agc.exposure = context.activeState.agc.automatic.exposure; frameContext.agc.gain = context.activeState.agc.automatic.gain; } if (frame > 0) return; /* Configure the measurement window. */ params->meas.aec_config.meas_window = context.configuration.agc.measureWindow; /* Use a continuous method for measure. */ params->meas.aec_config.autostop = RKISP1_CIF_ISP_EXP_CTRL_AUTOSTOP_0; /* Estimate Y as (R + G + B) x (85/256). */ params->meas.aec_config.mode = RKISP1_CIF_ISP_EXP_MEASURING_MODE_1; params->module_cfg_update |= RKISP1_CIF_ISP_MODULE_AEC; params->module_ens |= RKISP1_CIF_ISP_MODULE_AEC; params->module_en_update |= RKISP1_CIF_ISP_MODULE_AEC; /* Configure histogram. */ params->meas.hst_config.meas_window = context.configuration.agc.measureWindow; /* Produce the luminance histogram. */ params->meas.hst_config.mode = RKISP1_CIF_ISP_HISTOGRAM_MODE_Y_HISTOGRAM; /* Set an average weighted histogram. */ Span<uint8_t> weights{ params->meas.hst_config.hist_weight, context.hw->numHistogramWeights }; std::fill(weights.begin(), weights.end(), 1); /* Step size can't be less than 3. */ params->meas.hst_config.histogram_predivider = 4; /* Update the configuration for histogram. */ params->module_cfg_update |= RKISP1_CIF_ISP_MODULE_HST; /* Enable the histogram measure unit. */ params->module_ens |= RKISP1_CIF_ISP_MODULE_HST; params->module_en_update |= RKISP1_CIF_ISP_MODULE_HST; } void Agc::fillMetadata(IPAContext &context, IPAFrameContext &frameContext, ControlList &metadata) { utils::Duration exposureTime = context.configuration.sensor.lineDuration * frameContext.sensor.exposure; metadata.set(controls::AnalogueGain, frameContext.sensor.gain); metadata.set(controls::ExposureTime, exposureTime.get<std::micro>()); /* \todo Use VBlank value calculated from each frame exposure. */ uint32_t vTotal = context.configuration.sensor.size.height + context.configuration.sensor.defVBlank; utils::Duration frameDuration = context.configuration.sensor.lineDuration * vTotal; metadata.set(controls::FrameDuration, frameDuration.get<std::micro>()); } /** * \brief Estimate the relative luminance of the frame with a given gain * \param[in] gain The gain to apply to the frame * * This function estimates the average relative luminance of the frame that * would be output by the sensor if an additional \a gain was applied. * * The estimation is based on the AE statistics for the current frame. Y * averages for all cells are first multiplied by the gain, and then saturated * to approximate the sensor behaviour at high brightness values. The * approximation is quite rough, as it doesn't take into account non-linearities * when approaching saturation. In this case, saturating after the conversion to * YUV doesn't take into account the fact that the R, G and B components * contribute differently to the relative luminance. * * The values are normalized to the [0.0, 1.0] range, where 1.0 corresponds to a * theoretical perfect reflector of 100% reference white. * * More detailed information can be found in: * https://en.wikipedia.org/wiki/Relative_luminance * * \return The relative luminance */ double Agc::estimateLuminance(double gain) const { double ySum = 0.0; /* Sum the averages, saturated to 255. */ for (uint8_t expMean : expMeans_) ySum += std::min(expMean * gain, 255.0); /* \todo Weight with the AWB gains */ return ySum / expMeans_.size() / 255; } /** * \brief Process RkISP1 statistics, and run AGC operations * \param[in] context The shared IPA context * \param[in] frame The frame context sequence number * \param[in] frameContext The current frame context * \param[in] stats The RKISP1 statistics and ISP results * \param[out] metadata Metadata for the frame, to be filled by the algorithm * * Identify the current image brightness, and use that to estimate the optimal * new exposure and gain for the scene. */ void Agc::process(IPAContext &context, [[maybe_unused]] const uint32_t frame, IPAFrameContext &frameContext, const rkisp1_stat_buffer *stats, ControlList &metadata) { if (!stats) { fillMetadata(context, frameContext, metadata); return; } /* * \todo Verify that the exposure and gain applied by the sensor for * this frame match what has been requested. This isn't a hard * requirement for stability of the AGC (the guarantee we need in * automatic mode is a perfect match between the frame and the values * we receive), but is important in manual mode. */ const rkisp1_cif_isp_stat *params = &stats->params; ASSERT(stats->meas_type & RKISP1_CIF_ISP_STAT_AUTOEXP); /* The lower 4 bits are fractional and meant to be discarded. */ Histogram hist({ params->hist.hist_bins, context.hw->numHistogramBins }, [](uint32_t x) { return x >> 4; }); expMeans_ = { params->ae.exp_mean, context.hw->numAeCells }; /* * The Agc algorithm needs to know the effective exposure value that was * applied to the sensor when the statistics were collected. */ utils::Duration exposureTime = context.configuration.sensor.lineDuration * frameContext.sensor.exposure; double analogueGain = frameContext.sensor.gain; utils::Duration effectiveExposureValue = exposureTime * analogueGain; utils::Duration shutterTime; double aGain, dGain; std::tie(shutterTime, aGain, dGain) = calculateNewEv(context.activeState.agc.constraintMode, context.activeState.agc.exposureMode, hist, effectiveExposureValue); LOG(RkISP1Agc, Debug) << "Divided up shutter, analogue gain and digital gain are " << shutterTime << ", " << aGain << " and " << dGain; IPAActiveState &activeState = context.activeState; /* Update the estimated exposure and gain. */ activeState.agc.automatic.exposure = shutterTime / context.configuration.sensor.lineDuration; activeState.agc.automatic.gain = aGain; fillMetadata(context, frameContext, metadata); expMeans_ = {}; } REGISTER_IPA_ALGORITHM(Agc, "Agc") } /* namespace ipa::rkisp1::algorithms */ } /* namespace libcamera */