/* SPDX-License-Identifier: LGPL-2.1-or-later */ /* * Copyright (C) 2024, Paul Elder <paul.elder@ideasonboard.com> * * Helper class for interpolating objects */ #include "interpolator.h" #include <algorithm> #include <string> #include <libcamera/base/log.h> #include "libcamera/internal/yaml_parser.h" #include "interpolator.h" /** * \file interpolator.h * \brief Helper class for linear interpolating a set of objects */ namespace libcamera { LOG_DEFINE_CATEGORY(Interpolator) namespace ipa { /** * \class Interpolator * \brief Class for storing, retrieving, and interpolating objects * \tparam T Type of objects stored in the interpolator * * The main use case is to pass a map from color temperatures to corresponding * objects (eg. matrices for color correction), and then requesting a * interpolated object for a specific color temperature. This class will * abstract away the interpolation portion. */ /** * \fn Interpolator::Interpolator() * \brief Construct an empty interpolator */ /** * \fn Interpolator::Interpolator(const std::map<unsigned int, T> &data) * \brief Construct an interpolator from a map of objects * \param data Map from which to construct the interpolator */ /** * \fn Interpolator::Interpolator(std::map<unsigned int, T> &&data) * \brief Construct an interpolator from a map of objects * \param data Map from which to construct the interpolator */ /** * \fn int Interpolator<T>::readYaml(const libcamera::YamlObject &yaml, const std::string &key_name, const std::string &value_name) * \brief Initialize an Interpolator instance from yaml * \tparam T Type of data stored in the interpolator * \param[in] yaml The yaml object that contains the map of unsigned integers to * objects * \param[in] key_name The name of the key in the yaml object * \param[in] value_name The name of the value in the yaml object * * The yaml object is expected to be a list of maps. Each map has two or more * pairs: one of \a key_name to the key value (usually color temperature), and * one or more of \a value_name to the object. This is a bit difficult to * explain, so here is an example (in python, as it is easier to parse than * yaml): * [ * { * 'ct': 2860, * 'ccm': [ 2.12089, -0.52461, -0.59629, * -0.85342, 2.80445, -0.95103, * -0.26897, -1.14788, 2.41685 ], * 'offsets': [ 0, 0, 0 ] * }, * * { * 'ct': 2960, * 'ccm': [ 2.26962, -0.54174, -0.72789, * -0.77008, 2.60271, -0.83262, * -0.26036, -1.51254, 2.77289 ], * 'offsets': [ 0, 0, 0 ] * }, * * { * 'ct': 3603, * 'ccm': [ 2.18644, -0.66148, -0.52496, * -0.77828, 2.69474, -0.91645, * -0.25239, -0.83059, 2.08298 ], * 'offsets': [ 0, 0, 0 ] * }, * ] * * In this case, \a key_name would be 'ct', and \a value_name can be either * 'ccm' or 'offsets'. This way multiple interpolators can be defined in * one set of color temperature ranges in the tuning file, and they can be * retrieved separately with the \a value_name parameter. * * \return Zero on success, negative error code otherwise */ /** * \fn void Interpolator<T>::setQuantization(const unsigned int q) * \brief Set the quantization value * \param[in] q The quantization value * * Sets the quantization value. When this is set, 'key' gets quantized to this * size, before doing the interpolation. This can help in reducing the number of * updates pushed to the hardware. * * Note that normally a threshold needs to be combined with quantization. * Otherwise a value that swings around the edge of the quantization step will * lead to constant updates. */ /** * \fn void Interpolator<T>::setData(std::map<unsigned int, T> &&data) * \brief Set the internal map * * Overwrites the internal map using move semantics. */ /** * \fn const T& Interpolator<T>::getInterpolated() * \brief Retrieve an interpolated value for the given key * \param[in] key The unsigned integer key of the object to retrieve * \param[out] quantizedKey If provided, the key value after quantization * \return The object corresponding to the key. The object is cached internally, * so on successive calls with the same key (after quantization) interpolation * is not recalculated. */ /** * \fn void Interpolator<T>::interpolate(const T &a, const T &b, T &dest, double * lambda) * \brief Interpolate between two instances of T * \param a The first value to interpolate * \param b The second value to interpolate * \param dest The destination for the interpolated value * \param lambda The interpolation factor (0..1) * * Interpolates between \a a and \a b according to \a lambda. It calculates * dest = a * (1.0 - lambda) + b * lambda; * * If T supports multiplication with double and addition, this function can be * used as is. For other types this function can be overwritten using partial * template specialization. */ } /* namespace ipa */ } /* namespace libcamera */