/* SPDX-License-Identifier: LGPL-2.1-or-later */ /* * Copyright (C) 2021, Ideas On Board * * ipu3_agc.cpp - AGC/AEC mean-based control algorithm */ #include "agc.h" #include #include #include #include #include #include "libipa/histogram.h" /** * \file agc.h */ namespace libcamera { using namespace std::literals::chrono_literals; namespace ipa::ipu3::algorithms { /** * \class Agc * \brief A mean-based auto-exposure algorithm * * This algorithm calculates a shutter time and an analogue gain so that the * average value of the green channel of the brightest 2% of pixels approaches * 0.5. The AWB gains are not used here, and all cells in the grid have the same * weight, like an average-metering case. In this metering mode, the camera uses * light information from the entire scene and creates an average for the final * exposure setting, giving no weighting to any particular portion of the * metered area. * * Reference: Battiato, Messina & Castorina. (2008). Exposure * Correction for Imaging Devices: An Overview. 10.1201/9781420054538.ch12. */ LOG_DEFINE_CATEGORY(IPU3Agc) /* Number of frames to wait before calculating stats on minimum exposure */ static constexpr uint32_t kInitialFrameMinAECount = 4; /* Number of frames to wait between new gain/shutter time estimations */ static constexpr uint32_t kFrameSkipCount = 6; /* Limits for analogue gain values */ static constexpr double kMinAnalogueGain = 1.0; static constexpr double kMaxAnalogueGain = 8.0; /* \todo Honour the FrameDurationLimits control instead of hardcoding a limit */ static constexpr utils::Duration kMaxShutterSpeed = 60ms; /* Histogram constants */ static constexpr uint32_t knumHistogramBins = 256; /* Target value to reach for the top 2% of the histogram */ static constexpr double kEvGainTarget = 0.5; Agc::Agc() : frameCount_(0), lastFrame_(0), iqMean_(0.0), lineDuration_(0s), minExposureLines_(0), maxExposureLines_(0), filteredExposure_(0s), currentExposure_(0s), prevExposureValue_(0s) { } /** * \brief Configure the AGC given a configInfo * \param[in] context The shared IPA context * \param[in] configInfo The IPA configuration data * * \return 0 */ int Agc::configure(IPAContext &context, const IPAConfigInfo &configInfo) { stride_ = context.configuration.grid.stride; /* \todo use the IPAContext to provide the limits */ lineDuration_ = configInfo.sensorInfo.lineLength * 1.0s / configInfo.sensorInfo.pixelRate; /* \todo replace the exposure in lines storage with time based ones. */ minExposureLines_ = context.configuration.agc.minShutterSpeed / lineDuration_; maxExposureLines_ = std::min(context.configuration.agc.maxShutterSpeed / lineDuration_, kMaxShutterSpeed / lineDuration_); minAnalogueGain_ = std::max(context.configuration.agc.minAnalogueGain, kMinAnalogueGain); maxAnalogueGain_ = std::min(context.configuration.agc.maxAnalogueGain, kMaxAnalogueGain); /* Configure the default exposure and gain. */ context.frameContext.agc.gain = minAnalogueGain_; context.frameContext.agc.exposure = minExposureLines_; prevExposureValue_ = context.frameContext.agc.gain * context.frameContext.agc.exposure * lineDuration_; return 0; } /** * \brief Estimate the mean value of the top 2% of the histogram * \param[in] stats The statistics computed by the ImgU * \param[in] grid The grid used to store the statistics in the IPU3 */ void Agc::measureBrightness(const ipu3_uapi_stats_3a *stats, const ipu3_uapi_grid_config &grid) { /* Initialise the histogram array */ uint32_t hist[knumHistogramBins] = { 0 }; for (unsigned int cellY = 0; cellY < grid.height; cellY++) { for (unsigned int cellX = 0; cellX < grid.width; cellX++) { uint32_t cellPosition = cellY * stride_ + cellX; const ipu3_uapi_awb_set_item *cell = reinterpret_cast( &stats->awb_raw_buffer.meta_data[cellPosition] ); if (cell->sat_ratio == 0) { uint8_t gr = cell->Gr_avg; uint8_t gb = cell->Gb_avg; /* * Store the average green value to estimate the * brightness. Even the overexposed pixels are * taken into account. */ hist[(gr + gb) / 2]++; } } } /* Estimate the quantile mean of the top 2% of the histogram */ iqMean_ = Histogram(Span(hist)).interQuantileMean(0.98, 1.0); } /** * \brief Apply a filter on the exposure value to limit the speed of changes */ void Agc::filterExposure() { double speed = 0.2; if (filteredExposure_ == 0s) { /* DG stands for digital gain.*/ filteredExposure_ = currentExposure_; } else { /* * If we are close to the desired result, go faster to avoid making * multiple micro-adjustments. * \todo Make this customisable? */ if (filteredExposure_ < 1.2 * currentExposure_ && filteredExposure_ > 0.8 * currentExposure_) speed = sqrt(speed); filteredExposure_ = speed * currentExposure_ + filteredExposure_ * (1.0 - speed); } LOG(IPU3Agc, Debug) << "After filtering, total_exposure " << filteredExposure_; } /** * \brief Estimate the new exposure and gain values * \param[inout] frameContext The shared IPA frame Context */ void Agc::computeExposure(IPAFrameContext &frameContext) { /* Algorithm initialization should wait for first valid frames */ /* \todo - have a number of frames given by DelayedControls ? * - implement a function for IIR */ if ((frameCount_ < kInitialFrameMinAECount) || (frameCount_ - lastFrame_ < kFrameSkipCount)) return; lastFrame_ = frameCount_; /* Are we correctly exposed ? */ if (std::abs(iqMean_ - kEvGainTarget * knumHistogramBins) <= 1) { LOG(IPU3Agc, Debug) << "We are well exposed (iqMean = " << iqMean_ << ")"; return; } /* Get the effective exposure and gain applied on the sensor. */ uint32_t exposure = frameContext.sensor.exposure; double analogueGain = frameContext.sensor.gain; /* Estimate the gain needed to have the proportion wanted */ double evGain = kEvGainTarget * knumHistogramBins / iqMean_; /* extracted from Rpi::Agc::computeTargetExposure */ /* Calculate the shutter time in seconds */ utils::Duration currentShutter = exposure * lineDuration_; LOG(IPU3Agc, Debug) << "Actual total exposure " << currentShutter * analogueGain << " Shutter speed " << currentShutter << " Gain " << analogueGain << " Needed ev gain " << evGain; /* * Calculate the current exposure value for the scene as the latest * exposure value applied multiplied by the new estimated gain. */ currentExposure_ = prevExposureValue_ * evGain; utils::Duration minShutterSpeed = minExposureLines_ * lineDuration_; utils::Duration maxShutterSpeed = maxExposureLines_ * lineDuration_; /* Clamp the exposure value to the min and max authorized */ utils::Duration maxTotalExposure = maxShutterSpeed * maxAnalogueGain_; currentExposure_ = std::min(currentExposure_, maxTotalExposure); LOG(IPU3Agc, Debug) << "Target total exposure " << currentExposure_ << ", maximum is " << maxTotalExposure; /* \todo: estimate if we need to desaturate */ filterExposure(); /* Divide the exposure value as new exposure and gain values */ utils::Duration exposureValue = filteredExposure_; utils::Duration shutterTime = minShutterSpeed; /* * Push the shutter time up to the maximum first, and only then * increase the gain. */ shutterTime = std::clamp(exposureValue / minAnalogueGain_, minShutterSpeed, maxShutterSpeed); double stepGain = std::clamp(exposureValue / shutterTime, minAnalogueGain_, maxAnalogueGain_); LOG(IPU3Agc, Debug) << "Divided up shutter and gain are " << shutterTime << " and " << stepGain; /* Update the estimated exposure and gain. */ frameContext.agc.exposure = shutterTime / lineDuration_; frameContext.agc.gain = stepGain; /* * Update the exposure value for the next process call. * * \todo Obtain the values of the exposure time and analog gain * that were actually used by the sensor, either from embedded * data when available, or from the delayed controls * infrastructure in case a slow down caused a mismatch. */ prevExposureValue_ = shutterTime * analogueGain; } /** * \brief Process IPU3 statistics, and run AGC operations * \param[in] context The shared IPA context * \param[in] stats The IPU3 statistics and ISP results * * Identify the current image brightness, and use that to estimate the optimal * new exposure and gain for the scene. */ void Agc::process(IPAContext &context, const ipu3_uapi_stats_3a *stats) { measureBrightness(stats, context.configuration.grid.bdsGrid); computeExposure(context.frameContext); frameCount_++; } } /* namespace ipa::ipu3::algorithms */ } /* namespace libcamera */