From db99d966633c5d7a5b33d03d653f1839d9feaaea Mon Sep 17 00:00:00 2001 From: Paul Elder Date: Fri, 11 Nov 2022 02:05:53 +0900 Subject: utils: tuning: libtuning: Implement math helpers Implement math helpers for libtuning. This includes: - Average, a wrapper class for numpy averaging functions - Gradient, a class that represents gradients, for distributing and mapping - Smoothing, a wrapper class for cv2 smoothing functions Signed-off-by: Paul Elder Reviewed-by: Laurent Pinchart --- utils/tuning/libtuning/average.py | 21 +++++++++++ utils/tuning/libtuning/gradient.py | 75 +++++++++++++++++++++++++++++++++++++ utils/tuning/libtuning/smoothing.py | 24 ++++++++++++ 3 files changed, 120 insertions(+) create mode 100644 utils/tuning/libtuning/average.py create mode 100644 utils/tuning/libtuning/gradient.py create mode 100644 utils/tuning/libtuning/smoothing.py (limited to 'utils') diff --git a/utils/tuning/libtuning/average.py b/utils/tuning/libtuning/average.py new file mode 100644 index 00000000..e28770d7 --- /dev/null +++ b/utils/tuning/libtuning/average.py @@ -0,0 +1,21 @@ +# SPDX-License-Identifier: GPL-2.0-or-later +# +# Copyright (C) 2022, Paul Elder +# +# average.py - Wrapper for numpy averaging functions to enable duck-typing + +import numpy as np + + +# @brief Wrapper for np averaging functions so that they can be duck-typed +class Average(object): + def __init__(self): + pass + + def average(self, np_array): + raise NotImplementedError + + +class Mean(Average): + def average(self, np_array): + return np.mean(np_array) diff --git a/utils/tuning/libtuning/gradient.py b/utils/tuning/libtuning/gradient.py new file mode 100644 index 00000000..5106f821 --- /dev/null +++ b/utils/tuning/libtuning/gradient.py @@ -0,0 +1,75 @@ +# SPDX-License-Identifier: GPL-2.0-or-later +# +# Copyright (C) 2022, Paul Elder +# +# gradient.py - Gradients that can be used to distribute or map numbers + +import libtuning as lt + +import math +from numbers import Number + + +# @brief Gradient for how to allocate pixels to sectors +# @description There are no parameters for the gradients as the domain is the +# number of pixels and the range is the number of sectors, and +# there is only one curve that has a startpoint and endpoint at +# (0, 0) and at (#pixels, #sectors). The exception is for curves +# that *do* have multiple solutions for only two points, such as +# gaussian, and curves of higher polynomial orders if we had them. +# +# \todo There will probably be a helper in the Gradient class, as I have a +# feeling that all the other curves (besides Linear and Gaussian) can be +# implemented in the same way. +class Gradient(object): + def __init__(self): + pass + + # @brief Distribute pixels into sectors (only in one dimension) + # @param domain Number of pixels + # @param sectors Number of sectors + # @return A list of number of pixels in each sector + def distribute(self, domain: list, sectors: list) -> list: + raise NotImplementedError + + # @brief Map a number on a curve + # @param domain Domain of the curve + # @param rang Range of the curve + # @param x Input on the domain of the curve + # @return y from the range of the curve + def map(self, domain: tuple, rang: tuple, x: Number) -> Number: + raise NotImplementedError + + +class Linear(Gradient): + # @param remainder Mode of handling remainder + def __init__(self, remainder: lt.Remainder = lt.Remainder.Float): + self.remainder = remainder + + def distribute(self, domain: list, sectors: list) -> list: + size = domain / sectors + rem = domain % sectors + + if rem == 0: + return [int(size)] * sectors + + size = math.ceil(size) + rem = domain % size + output_sectors = [int(size)] * (sectors - 1) + + if self.remainder == lt.Remainder.Float: + size = domain / sectors + output_sectors = [size] * sectors + elif self.remainder == lt.Remainder.DistributeFront: + output_sectors.append(int(rem)) + elif self.remainder == lt.Remainder.DistributeBack: + output_sectors.insert(0, int(rem)) + else: + raise ValueError + + return output_sectors + + def map(self, domain: tuple, rang: tuple, x: Number) -> Number: + m = (rang[1] - rang[0]) / (domain[1] - domain[0]) + b = rang[0] - m * domain[0] + return m * x + b diff --git a/utils/tuning/libtuning/smoothing.py b/utils/tuning/libtuning/smoothing.py new file mode 100644 index 00000000..b8a5a242 --- /dev/null +++ b/utils/tuning/libtuning/smoothing.py @@ -0,0 +1,24 @@ +# SPDX-License-Identifier: GPL-2.0-or-later +# +# Copyright (C) 2022, Paul Elder +# +# smoothing.py - Wrapper for cv2 smoothing functions to enable duck-typing + +import cv2 + + +# @brief Wrapper for cv2 smoothing functions so that they can be duck-typed +class Smoothing(object): + def __init__(self): + pass + + def smoothing(self, src): + raise NotImplementedError + + +class MedianBlur(Smoothing): + def __init__(self, ksize): + self.ksize = ksize + + def smoothing(self, src): + return cv2.medianBlur(src.astype('float32'), self.ksize).astype('float64') -- cgit v1.2.1