From 95fa5c40ba7f0f947e1db3e0fe25134f5175bca7 Mon Sep 17 00:00:00 2001 From: Paul Elder Date: Fri, 15 Mar 2024 12:11:00 +0900 Subject: ipa: libipa: Copy pwl from rpi, and clean it up to match libcamera Copy the piecewise linear function code from Raspberry Pi, and clean it up to align it more with the libcamera style. Signed-off-by: Paul Elder Reviewed-by: Stefan Klug Acked-by: David Plowman Reviewed-by: Kieran Bingham Reviewed-by: Laurent Pinchart --- src/ipa/libipa/meson.build | 2 + src/ipa/libipa/pwl.cpp | 447 +++++++++++++++++++++++++++++++++++++++++++++ src/ipa/libipa/pwl.h | 86 +++++++++ 3 files changed, 535 insertions(+) create mode 100644 src/ipa/libipa/pwl.cpp create mode 100644 src/ipa/libipa/pwl.h (limited to 'src/ipa') diff --git a/src/ipa/libipa/meson.build b/src/ipa/libipa/meson.build index 4814b7c5..49608423 100644 --- a/src/ipa/libipa/meson.build +++ b/src/ipa/libipa/meson.build @@ -8,6 +8,7 @@ libipa_headers = files([ 'fc_queue.h', 'histogram.h', 'module.h', + 'pwl.h', 'vector.h', ]) @@ -19,6 +20,7 @@ libipa_sources = files([ 'fc_queue.cpp', 'histogram.cpp', 'module.cpp', + 'pwl.cpp', 'vector.cpp', ]) diff --git a/src/ipa/libipa/pwl.cpp b/src/ipa/libipa/pwl.cpp new file mode 100644 index 00000000..901e42ce --- /dev/null +++ b/src/ipa/libipa/pwl.cpp @@ -0,0 +1,447 @@ +/* SPDX-License-Identifier: BSD-2-Clause */ +/* + * Copyright (C) 2019, Raspberry Pi Ltd + * Copyright (C) 2024, Ideas on Board Oy + * + * Piecewise linear functions + */ + +#include "pwl.h" + +#include +#include +#include +#include + +/** + * \file pwl.h + * \brief Piecewise linear functions + */ + +namespace libcamera { + +namespace ipa { + +/** + * \class Pwl + * \brief Describe a univariate piecewise linear function in two-dimensional + * real space + * + * A piecewise linear function is a univariate function that maps reals to + * reals, and it is composed of multiple straight-line segments. + * + * While a mathematical piecewise linear function would usually be defined by + * a list of linear functions and for which values of the domain they apply, + * this Pwl class is instead defined by a list of points at which these line + * segments intersect. These intersecting points are known as knots. + * + * https://en.wikipedia.org/wiki/Piecewise_linear_function + * + * A consequence of the Pwl class being defined by knots instead of linear + * functions is that the values of the piecewise linear function past the ends + * of the function are constants as opposed to linear functions. In a + * mathematical piecewise linear function that is defined by multiple linear + * functions, the ends of the function are also linear functions and hence grow + * to infinity (or negative infinity). However, since this Pwl class is defined + * by knots, the y-value of the leftmost and rightmost knots will hold for all + * x values to negative infinity and positive infinity, respectively. + */ + +/** + * \typedef Pwl::Point + * \brief Describe a point in two-dimensional real space + */ + +/** + * \class Pwl::Interval + * \brief Describe an interval in one-dimensional real space + */ + +/** + * \fn Pwl::Interval::Interval(double _start, double _end) + * \brief Construct an interval + * \param _start Start of the interval + * \param _end End of the interval + */ + +/** + * \fn Pwl::Interval::contains + * \brief Check if a given value falls within the interval + * \param value Value to check + * \return True if the value falls within the interval, including its bounds, + * or false otherwise + */ + +/** + * \fn Pwl::Interval::clamp + * \brief Clamp a value such that it is within the interval + * \param value Value to clamp + * \return The clamped value + */ + +/** + * \fn Pwl::Interval::length + * \brief Compute the length of the interval + * \return The length of the interval + */ + +/** + * \var Pwl::Interval::start + * \brief Start of the interval + */ + +/** + * \var Pwl::Interval::end + * \brief End of the interval + */ + +/** + * \brief Construct an empty piecewise linear function + */ +Pwl::Pwl() +{ +} + +/** + * \brief Construct a piecewise linear function from a list of 2D points + * \param points Vector of points from which to construct the piecewise linear function + * + * \a points must be in ascending order of x-value. + */ +Pwl::Pwl(const std::vector &points) + : points_(points) +{ +} + +/** + * \brief Populate the piecewise linear function from yaml data + * \param params Yaml data to populate the piecewise linear function with + * + * Any existing points in the piecewise linear function *will* be overwritten. + * + * The yaml data is expected to be a list with an even number of numerical + * elements. These will be parsed in pairs into x and y points in the piecewise + * linear function, and added in order. x must be monotonically increasing. + * + * \return 0 on success, negative error code otherwise + */ +int Pwl::readYaml(const libcamera::YamlObject ¶ms) +{ + if (!params.size() || params.size() % 2) + return -EINVAL; + + const auto &list = params.asList(); + + points_.clear(); + + for (auto it = list.begin(); it != list.end(); it++) { + auto x = it->get(); + if (!x) + return -EINVAL; + if (it != list.begin() && *x <= points_.back().x()) + return -EINVAL; + + auto y = (++it)->get(); + if (!y) + return -EINVAL; + + points_.push_back(Point({ *x, *y })); + } + + return 0; +} + +/** + * \brief Append a point to the end of the piecewise linear function + * \param x x-coordinate of the point to add to the piecewise linear function + * \param y y-coordinate of the point to add to the piecewise linear function + * \param eps Epsilon for the minimum x distance between points (optional) + * + * The point's x-coordinate must be greater than the x-coordinate of the last + * (= greatest) point already in the piecewise linear function. + */ +void Pwl::append(double x, double y, const double eps) +{ + if (points_.empty() || points_.back().x() + eps < x) + points_.push_back(Point({ x, y })); +} + +/** + * \brief Prepend a point to the beginning of the piecewise linear function + * \param x x-coordinate of the point to add to the piecewise linear function + * \param y y-coordinate of the point to add to the piecewise linear function + * \param eps Epsilon for the minimum x distance between points (optional) + * + * The point's x-coordinate must be less than the x-coordinate of the first + * (= smallest) point already in the piecewise linear function. + */ +void Pwl::prepend(double x, double y, const double eps) +{ + if (points_.empty() || points_.front().x() - eps > x) + points_.insert(points_.begin(), Point({ x, y })); +} + +/** + * \brief Get the domain of the piecewise linear function + * \return An interval representing the domain + */ +Pwl::Interval Pwl::domain() const +{ + return Interval(points_[0].x(), points_[points_.size() - 1].x()); +} + +/** + * \brief Get the range of the piecewise linear function + * \return An interval representing the range + */ +Pwl::Interval Pwl::range() const +{ + double lo = points_[0].y(), hi = lo; + for (auto &p : points_) + lo = std::min(lo, p.y()), hi = std::max(hi, p.y()); + return Interval(lo, hi); +} + +/** + * \brief Check if the piecewise linear function is empty + * \return True if there are no points in the function, false otherwise + */ +bool Pwl::empty() const +{ + return points_.empty(); +} + +/** + * \brief Evaluate the piecewise linear function + * \param[in] x The x value to input into the function + * \param[inout] span Initial guess for span + * \param[in] updateSpan Set to true to update span + * + * Evaluate Pwl, optionally supplying an initial guess for the + * "span". The "span" may be optionally be updated. If you want to know + * the "span" value but don't have an initial guess you can set it to + * -1. + * + * \return The result of evaluating the piecewise linear function at position \a x + */ +double Pwl::eval(double x, int *span, bool updateSpan) const +{ + int index = findSpan(x, span && *span != -1 + ? *span + : points_.size() / 2 - 1); + if (span && updateSpan) + *span = index; + return points_[index].y() + + (x - points_[index].x()) * (points_[index + 1].y() - points_[index].y()) / + (points_[index + 1].x() - points_[index].x()); +} + +int Pwl::findSpan(double x, int span) const +{ + /* + * Pwls are generally small, so linear search may well be faster than + * binary, though could review this if large Pwls start turning up. + */ + int lastSpan = points_.size() - 2; + /* + * some algorithms may call us with span pointing directly at the last + * control point + */ + span = std::max(0, std::min(lastSpan, span)); + while (span < lastSpan && x >= points_[span + 1].x()) + span++; + while (span && x < points_[span].x()) + span--; + return span; +} + +/** + * \brief Compute the inverse function + * \param[in] eps Epsilon for the minimum x distance between points (optional) + * + * The output includes whether the resulting inverse function is a proper + * (true) inverse, or only a best effort (e.g. input was non-monotonic). + * + * \return A pair of the inverse piecewise linear function, and whether or not + * the result is a proper/true inverse + */ +std::pair Pwl::inverse(const double eps) const +{ + bool appended = false, prepended = false, neither = false; + Pwl inverse; + + for (Point const &p : points_) { + if (inverse.empty()) { + inverse.append(p.y(), p.x(), eps); + } else if (std::abs(inverse.points_.back().x() - p.y()) <= eps || + std::abs(inverse.points_.front().x() - p.y()) <= eps) { + /* do nothing */; + } else if (p.y() > inverse.points_.back().x()) { + inverse.append(p.y(), p.x(), eps); + appended = true; + } else if (p.y() < inverse.points_.front().x()) { + inverse.prepend(p.y(), p.x(), eps); + prepended = true; + } else { + neither = true; + } + } + + /* + * This is not a proper inverse if we found ourselves putting points + * onto both ends of the inverse, or if there were points that couldn't + * go on either. + */ + bool trueInverse = !(neither || (appended && prepended)); + + return { inverse, trueInverse }; +} + +/** + * \brief Compose two piecewise linear functions together + * \param[in] other The "other" piecewise linear function + * \param[in] eps Epsilon for the minimum x distance between points (optional) + * + * The "this" function is done first, and "other" after. + * + * \return The composed piecewise linear function + */ +Pwl Pwl::compose(Pwl const &other, const double eps) const +{ + double thisX = points_[0].x(), thisY = points_[0].y(); + int thisSpan = 0, otherSpan = other.findSpan(thisY, 0); + Pwl result({ Point({ thisX, other.eval(thisY, &otherSpan, false) }) }); + + while (thisSpan != (int)points_.size() - 1) { + double dx = points_[thisSpan + 1].x() - points_[thisSpan].x(), + dy = points_[thisSpan + 1].y() - points_[thisSpan].y(); + if (std::abs(dy) > eps && + otherSpan + 1 < (int)other.points_.size() && + points_[thisSpan + 1].y() >= other.points_[otherSpan + 1].x() + eps) { + /* + * next control point in result will be where this + * function's y reaches the next span in other + */ + thisX = points_[thisSpan].x() + + (other.points_[otherSpan + 1].x() - + points_[thisSpan].y()) * + dx / dy; + thisY = other.points_[++otherSpan].x(); + } else if (std::abs(dy) > eps && otherSpan > 0 && + points_[thisSpan + 1].y() <= + other.points_[otherSpan - 1].x() - eps) { + /* + * next control point in result will be where this + * function's y reaches the previous span in other + */ + thisX = points_[thisSpan].x() + + (other.points_[otherSpan + 1].x() - + points_[thisSpan].y()) * + dx / dy; + thisY = other.points_[--otherSpan].x(); + } else { + /* we stay in the same span in other */ + thisSpan++; + thisX = points_[thisSpan].x(), + thisY = points_[thisSpan].y(); + } + result.append(thisX, other.eval(thisY, &otherSpan, false), + eps); + } + return result; +} + +/** + * \brief Apply function to (x, y) values at every control point + * \param f Function to be applied + */ +void Pwl::map(std::function f) const +{ + for (auto &pt : points_) + f(pt.x(), pt.y()); +} + +/** + * \brief Apply function to (x, y0, y1) values wherever either Pwl has a + * control point. + * \param pwl0 First piecewise linear function + * \param pwl1 Second piecewise linear function + * \param f Function to be applied + * + * This applies the function \a f to every parameter (x, y0, y1), where x is + * the combined list of x-values from \a pwl0 and \a pwl1, y0 is the y-value + * for the given x in \a pwl0, and y1 is the y-value for the same x in \a pwl1. + */ +void Pwl::map2(Pwl const &pwl0, Pwl const &pwl1, + std::function f) +{ + int span0 = 0, span1 = 0; + double x = std::min(pwl0.points_[0].x(), pwl1.points_[0].x()); + f(x, pwl0.eval(x, &span0, false), pwl1.eval(x, &span1, false)); + + while (span0 < (int)pwl0.points_.size() - 1 || + span1 < (int)pwl1.points_.size() - 1) { + if (span0 == (int)pwl0.points_.size() - 1) + x = pwl1.points_[++span1].x(); + else if (span1 == (int)pwl1.points_.size() - 1) + x = pwl0.points_[++span0].x(); + else if (pwl0.points_[span0 + 1].x() > pwl1.points_[span1 + 1].x()) + x = pwl1.points_[++span1].x(); + else + x = pwl0.points_[++span0].x(); + f(x, pwl0.eval(x, &span0, false), pwl1.eval(x, &span1, false)); + } +} + +/** + * \brief Combine two Pwls + * \param pwl0 First piecewise linear function + * \param pwl1 Second piecewise linear function + * \param f Function to be applied + * \param[in] eps Epsilon for the minimum x distance between points (optional) + * + * Create a new Pwl where the y values are given by running \a f wherever + * either pwl has a knot. + * + * \return The combined pwl + */ +Pwl Pwl::combine(Pwl const &pwl0, Pwl const &pwl1, + std::function f, + const double eps) +{ + Pwl result; + map2(pwl0, pwl1, [&](double x, double y0, double y1) { + result.append(x, f(x, y0, y1), eps); + }); + return result; +} + +/** + * \brief Multiply the piecewise linear function + * \param d Scalar multiplier to multiply the function by + * \return This function, after it has been multiplied by \a d + */ +Pwl &Pwl::operator*=(double d) +{ + for (auto &pt : points_) + pt[1] *= d; + return *this; +} + +/** + * \brief Assemble and return a string describing the piecewise linear function + * \return A string describing the piecewise linear function + */ +std::string Pwl::toString() const +{ + std::stringstream ss; + ss << "Pwl { "; + for (auto &p : points_) + ss << "(" << p.x() << ", " << p.y() << ") "; + ss << "}"; + return ss.str(); +} + +} /* namespace ipa */ + +} /* namespace libcamera */ diff --git a/src/ipa/libipa/pwl.h b/src/ipa/libipa/pwl.h new file mode 100644 index 00000000..4cc257f9 --- /dev/null +++ b/src/ipa/libipa/pwl.h @@ -0,0 +1,86 @@ +/* SPDX-License-Identifier: BSD-2-Clause */ +/* + * Copyright (C) 2019, Raspberry Pi Ltd + * + * Piecewise linear functions interface + */ +#pragma once + +#include +#include +#include +#include +#include +#include + +#include "libcamera/internal/yaml_parser.h" + +#include "vector.h" + +namespace libcamera { + +namespace ipa { + +class Pwl +{ +public: + using Point = Vector; + + struct Interval { + Interval(double _start, double _end) + : start(_start), end(_end) {} + + bool contains(double value) + { + return value >= start && value <= end; + } + + double clamp(double value) + { + return std::clamp(value, start, end); + } + + double length() const { return end - start; } + + double start, end; + }; + + Pwl(); + Pwl(const std::vector &points); + int readYaml(const libcamera::YamlObject ¶ms); + + void append(double x, double y, double eps = 1e-6); + + bool empty() const; + Interval domain() const; + Interval range() const; + + double eval(double x, int *span = nullptr, + bool updateSpan = true) const; + + std::pair inverse(double eps = 1e-6) const; + Pwl compose(const Pwl &other, double eps = 1e-6) const; + + void map(std::function f) const; + + static Pwl + combine(const Pwl &pwl0, const Pwl &pwl1, + std::function f, + double eps = 1e-6); + + Pwl &operator*=(double d); + + std::string toString() const; + +private: + static void map2(const Pwl &pwl0, const Pwl &pwl1, + std::function f); + void prepend(double x, double y, double eps = 1e-6); + int findSpan(double x, int span) const; + + std::vector points_; +}; + +} /* namespace ipa */ + +} /* namespace libcamera */ -- cgit v1.2.1