summaryrefslogtreecommitdiff
path: root/test/stream/stream_formats.cpp
AgeCommit message (Collapse)Author
2020-03-19libcamera: geometry: Construct SizeRange from SizeLaurent Pinchart
The SizeRange constructors take minimum and maximum width and height values as separate arguments. We have a Size class to convey size information, use it in the constructors, and update the callers. Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Reviewed-by: Niklas Söderlund <niklas.soderlund@ragnatech.se> Reviewed-by: Kieran Bingham <kieran.bingham@ideasonboard.com>
2020-03-18libcamera: PixelFormat: Make constructor explicitLaurent Pinchart
To achieve the goal of preventing unwanted conversion between a DRM and a V4L2 FourCC, make the PixelFormat constructor that takes an integer value explicit. All users of pixel formats flagged by the compiler are fixed. Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Reviewed-by: Niklas Söderlund <niklas.soderlund@ragnatech.se> Signed-off-by: Niklas Söderlund <niklas.soderlund@ragnatech.se>
2019-06-19test: stream: Add test for StreamFormatNiklas Söderlund
Test that both discrete and range based stream format descriptions result in good discrete frame sizes. The range based stream formats needs to be fitted with a table of resolutions inside libcamera so if that table is updated this test might need to be updated. Signed-off-by: Niklas Söderlund <niklas.soderlund@ragnatech.se> Reviewed-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
> 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
 * Copyright (C) 2021-2022, Ideas On Board
 *
 * agc.cpp - AGC/AEC mean-based control algorithm
 */

#include "agc.h"

#include <algorithm>
#include <chrono>
#include <cmath>

#include <libcamera/base/log.h>
#include <libcamera/base/utils.h>

#include <libcamera/ipa/core_ipa_interface.h>

#include "libipa/histogram.h"

/**
 * \file agc.h
 */

namespace libcamera {

using namespace std::literals::chrono_literals;

namespace ipa::rkisp1::algorithms {

/**
 * \class Agc
 * \brief A mean-based auto-exposure algorithm
 */

LOG_DEFINE_CATEGORY(RkISP1Agc)

/* Limits for analogue gain values */
static constexpr double kMinAnalogueGain = 1.0;
static constexpr double kMaxAnalogueGain = 8.0;

/* \todo Honour the FrameDurationLimits control instead of hardcoding a limit */
static constexpr utils::Duration kMaxShutterSpeed = 60ms;

/* Number of frames to wait before calculating stats on minimum exposure */
static constexpr uint32_t kNumStartupFrames = 10;

/* Target value to reach for the top 2% of the histogram */
static constexpr double kEvGainTarget = 0.5;

/*
 * Relative luminance target.
 *
 * It's a number that's chosen so that, when the camera points at a grey
 * target, the resulting image brightness is considered right.
 *
 * \todo Why is the value different between IPU3 and RkISP1 ?
 */
static constexpr double kRelativeLuminanceTarget = 0.4;

Agc::Agc()
	: frameCount_(0), numCells_(0), numHistBins_(0), filteredExposure_(0s)
{
}

/**
 * \brief Configure the AGC given a configInfo
 * \param[in] context The shared IPA context
 * \param[in] configInfo The IPA configuration data
 *
 * \return 0
 */
int Agc::configure(IPAContext &context, const IPACameraSensorInfo &configInfo)
{
	/* Configure the default exposure and gain. */
	context.frameContext.agc.gain = std::max(context.configuration.agc.minAnalogueGain, kMinAnalogueGain);
	context.frameContext.agc.exposure = 10ms / context.configuration.sensor.lineDuration;

	/*
	 * According to the RkISP1 documentation:
	 * - versions < V12 have RKISP1_CIF_ISP_AE_MEAN_MAX_V10 entries,
	 * - versions >= V12 have RKISP1_CIF_ISP_AE_MEAN_MAX_V12 entries.
	 */
	if (context.configuration.hw.revision < RKISP1_V12) {
		numCells_ = RKISP1_CIF_ISP_AE_MEAN_MAX_V10;
		numHistBins_ = RKISP1_CIF_ISP_HIST_BIN_N_MAX_V10;
	} else {
		numCells_ = RKISP1_CIF_ISP_AE_MEAN_MAX_V12;
		numHistBins_ = RKISP1_CIF_ISP_HIST_BIN_N_MAX_V12;
	}

	/*
	 * Define the measurement window for AGC as a centered rectangle
	 * covering 3/4 of the image width and height.
	 */
	context.configuration.agc.measureWindow.h_offs = configInfo.outputSize.width / 8;
	context.configuration.agc.measureWindow.v_offs = configInfo.outputSize.height / 8;
	context.configuration.agc.measureWindow.h_size = 3 * configInfo.outputSize.width / 4;
	context.configuration.agc.measureWindow.v_size = 3 * configInfo.outputSize.height / 4;

	/* \todo Use actual frame index by populating it in the frameContext. */
	frameCount_ = 0;
	return 0;
}

/**
 * \brief Apply a filter on the exposure value to limit the speed of changes
 * \param[in] exposureValue The target exposure from the AGC algorithm
 *
 * The speed of the filter is adaptive, and will produce the target quicker
 * during startup, or when the target exposure is within 20% of the most recent
 * filter output.
 *
 * \return The filtered exposure
 */
utils::Duration Agc::filterExposure(utils::Duration exposureValue)
{
	double speed = 0.2;

	/* Adapt instantly if we are in startup phase. */
	if (frameCount_ < kNumStartupFrames)
		speed = 1.0;

	/*
	 * If we are close to the desired result, go faster to avoid making
	 * multiple micro-adjustments.
	 * \todo Make this customisable?
	 */
	if (filteredExposure_ < 1.2 * exposureValue &&
	    filteredExposure_ > 0.8 * exposureValue)
		speed = sqrt(speed);

	filteredExposure_ = speed * exposureValue +
			    filteredExposure_ * (1.0 - speed);

	LOG(RkISP1Agc, Debug) << "After filtering, exposure " << filteredExposure_;

	return filteredExposure_;
}

/**
 * \brief Estimate the new exposure and gain values
 * \param[inout] frameContext The shared IPA frame Context
 * \param[in] yGain The gain calculated on the current brightness level
 * \param[in] iqMeanGain The gain calculated based on the relative luminance target
 */
void Agc::computeExposure(IPAContext &context, double yGain, double iqMeanGain)
{
	IPASessionConfiguration &configuration = context.configuration;
	IPAFrameContext &frameContext = context.frameContext;

	/* Get the effective exposure and gain applied on the sensor. */
	uint32_t exposure = frameContext.sensor.exposure;
	double analogueGain = frameContext.sensor.gain;

	/* Use the highest of the two gain estimates. */
	double evGain = std::max(yGain, iqMeanGain);

	utils::Duration minShutterSpeed = configuration.agc.minShutterSpeed;
	utils::Duration maxShutterSpeed = std::min(configuration.agc.maxShutterSpeed,
						   kMaxShutterSpeed);

	double minAnalogueGain = std::max(configuration.agc.minAnalogueGain,
					  kMinAnalogueGain);
	double maxAnalogueGain = std::min(configuration.agc.maxAnalogueGain,
					  kMaxAnalogueGain);

	/* Consider within 1% of the target as correctly exposed. */
	if (utils::abs_diff(evGain, 1.0) < 0.01)
		return;

	/* extracted from Rpi::Agc::computeTargetExposure. */

	/* Calculate the shutter time in seconds. */
	utils::Duration currentShutter = exposure * configuration.sensor.lineDuration;

	/*
	 * Update the exposure value for the next computation using the values
	 * of exposure and gain really used by the sensor.
	 */
	utils::Duration effectiveExposureValue = currentShutter * analogueGain;

	LOG(RkISP1Agc, Debug) << "Actual total exposure " << currentShutter * analogueGain
			      << " Shutter speed " << currentShutter
			      << " Gain " << analogueGain
			      << " Needed ev gain " << evGain;

	/*
	 * Calculate the current exposure value for the scene as the latest
	 * exposure value applied multiplied by the new estimated gain.
	 */
	utils::Duration exposureValue = effectiveExposureValue * evGain;

	/* Clamp the exposure value to the min and max authorized. */
	utils::Duration maxTotalExposure = maxShutterSpeed * maxAnalogueGain;
	exposureValue = std::min(exposureValue, maxTotalExposure);
	LOG(RkISP1Agc, Debug) << "Target total exposure " << exposureValue
			      << ", maximum is " << maxTotalExposure;

	/*
	 * Divide the exposure value as new exposure and gain values.
	 * \todo estimate if we need to desaturate
	 */
	exposureValue = filterExposure(exposureValue);

	/*
	 * Push the shutter time up to the maximum first, and only then
	 * increase the gain.
	 */
	utils::Duration shutterTime = std::clamp<utils::Duration>(exposureValue / minAnalogueGain,
								  minShutterSpeed, maxShutterSpeed);
	double stepGain = std::clamp(exposureValue / shutterTime,
				     minAnalogueGain, maxAnalogueGain);
	LOG(RkISP1Agc, Debug) << "Divided up shutter and gain are "
			      << shutterTime << " and "
			      << stepGain;

	/* Update the estimated exposure and gain. */
	frameContext.agc.exposure = shutterTime / configuration.sensor.lineDuration;
	frameContext.agc.gain = stepGain;
}

/**
 * \brief Estimate the relative luminance of the frame with a given gain
 * \param[in] ae The RkISP1 statistics and ISP results
 * \param[in] gain The gain to apply to the frame
 *
 * This function estimates the average relative luminance of the frame that
 * would be output by the sensor if an additional \a gain was applied.
 *
 * The estimation is based on the AE statistics for the current frame. Y
 * averages for all cells are first multiplied by the gain, and then saturated
 * to approximate the sensor behaviour at high brightness values. The
 * approximation is quite rough, as it doesn't take into account non-linearities
 * when approaching saturation. In this case, saturating after the conversion to
 * YUV doesn't take into account the fact that the R, G and B components
 * contribute differently to the relative luminance.
 *
 * \todo Have a dedicated YUV algorithm ?
 *
 * The values are normalized to the [0.0, 1.0] range, where 1.0 corresponds to a
 * theoretical perfect reflector of 100% reference white.
 *
 * More detailed information can be found in:
 * https://en.wikipedia.org/wiki/Relative_luminance
 *
 * \return The relative luminance
 */
double Agc::estimateLuminance(const rkisp1_cif_isp_ae_stat *ae,
			      double gain)
{
	double ySum = 0.0;

	/* Sum the averages, saturated to 255. */
	for (unsigned int aeCell = 0; aeCell < numCells_; aeCell++)
		ySum += std::min(ae->exp_mean[aeCell] * gain, 255.0);

	/* \todo Weight with the AWB gains */

	return ySum / numCells_ / 255;
}

/**
 * \brief Estimate the mean value of the top 2% of the histogram
 * \param[in] hist The histogram statistics computed by the ImgU
 * \return The mean value of the top 2% of the histogram
 */
double Agc::measureBrightness(const rkisp1_cif_isp_hist_stat *hist) const
{
	Histogram histogram{ Span<const uint32_t>(hist->hist_bins, numHistBins_) };
	/* Estimate the quantile mean of the top 2% of the histogram. */
	return histogram.interQuantileMean(0.98, 1.0);
}

/**
 * \brief Process RkISP1 statistics, and run AGC operations
 * \param[in] context The shared IPA context
 * \param[in] stats The RKISP1 statistics and ISP results
 *
 * Identify the current image brightness, and use that to estimate the optimal
 * new exposure and gain for the scene.
 */
void Agc::process(IPAContext &context,
		  [[maybe_unused]] IPAFrameContext *frameContext,
		  const rkisp1_stat_buffer *stats)
{
	const rkisp1_cif_isp_stat *params = &stats->params;
	ASSERT(stats->meas_type & RKISP1_CIF_ISP_STAT_AUTOEXP);

	const rkisp1_cif_isp_ae_stat *ae = &params->ae;
	const rkisp1_cif_isp_hist_stat *hist = &params->hist;

	double iqMean = measureBrightness(hist);
	double iqMeanGain = kEvGainTarget * numHistBins_ / iqMean;

	/*
	 * Estimate the gain needed to achieve a relative luminance target. To
	 * account for non-linearity caused by saturation, the value needs to be
	 * estimated in an iterative process, as multiplying by a gain will not
	 * increase the relative luminance by the same factor if some image
	 * regions are saturated.
	 */
	double yGain = 1.0;
	double yTarget = kRelativeLuminanceTarget;

	for (unsigned int i = 0; i < 8; i++) {
		double yValue = estimateLuminance(ae, yGain);
		double extra_gain = std::min(10.0, yTarget / (yValue + .001));

		yGain *= extra_gain;
		LOG(RkISP1Agc, Debug) << "Y value: " << yValue
				      << ", Y target: " << yTarget
				      << ", gives gain " << yGain;
		if (extra_gain < 1.01)
			break;
	}

	computeExposure(context, yGain, iqMeanGain);
	frameCount_++;
}

/**
 * \copydoc libcamera::ipa::Algorithm::prepare
 */
void Agc::prepare(IPAContext &context, rkisp1_params_cfg *params)
{
	if (context.frameContext.frameCount > 0)
		return;

	/* Configure the measurement window. */
	params->meas.aec_config.meas_window = context.configuration.agc.measureWindow;
	/* Use a continuous method for measure. */
	params->meas.aec_config.autostop = RKISP1_CIF_ISP_EXP_CTRL_AUTOSTOP_0;
	/* Estimate Y as (R + G + B) x (85/256). */
	params->meas.aec_config.mode = RKISP1_CIF_ISP_EXP_MEASURING_MODE_1;

	params->module_cfg_update |= RKISP1_CIF_ISP_MODULE_AEC;
	params->module_ens |= RKISP1_CIF_ISP_MODULE_AEC;
	params->module_en_update |= RKISP1_CIF_ISP_MODULE_AEC;

	/* Configure histogram. */
	params->meas.hst_config.meas_window = context.configuration.agc.measureWindow;
	/* Produce the luminance histogram. */
	params->meas.hst_config.mode = RKISP1_CIF_ISP_HISTOGRAM_MODE_Y_HISTOGRAM;
	/* Set an average weighted histogram. */
	for (unsigned int histBin = 0; histBin < numHistBins_; histBin++)
		params->meas.hst_config.hist_weight[histBin] = 1;
	/* Step size can't be less than 3. */
	params->meas.hst_config.histogram_predivider = 4;

	/* Update the configuration for histogram. */
	params->module_cfg_update |= RKISP1_CIF_ISP_MODULE_HST;
	/* Enable the histogram measure unit. */
	params->module_ens |= RKISP1_CIF_ISP_MODULE_HST;
	params->module_en_update |= RKISP1_CIF_ISP_MODULE_HST;
}

REGISTER_IPA_ALGORITHM(Agc, "Agc")

} /* namespace ipa::rkisp1::algorithms */

} /* namespace libcamera */