summaryrefslogtreecommitdiff
path: root/meson_options.txt
AgeCommit message (Expand)Author
2021-05-24meson: Add a configuration option to build IPAsUmang Jain
2021-04-12lc-compliance: Add a libcamera compliance toolNiklas Söderlund
2021-03-23meson: Add configuration option to build the cam applicationLaurent Pinchart
2021-03-03android: Introduce Chromium OS buffer managerJacopo Mondi
2021-03-03meson: options: Add option to select the Android platformJacopo Mondi
2020-11-03libcamera: tracing: Implement tracing infrastructurePaul Elder
2020-09-24Documentation: Move all dependencies into featuresRicardo Ribalda
2020-09-16libcamera: Turn the android option into a featureLaurent Pinchart
2020-06-24meson: options: Add an option to control compilation of qcamNiklas Söderlund
2020-05-13licenses: License all meson files under CC0-1.0Laurent Pinchart
2020-05-11libcamera: raspberrypi: Add components to meson buildNaushir Patuck
2020-05-10libcamera: pipeline: Add a simple pipeline handlerMartijn Braam
2020-03-25libcamera: Make pipeline handlers selectable at compile timeLaurent Pinchart
2020-03-07Add GStreamer plugin and element skeletonNicolas Dufresne
2020-01-03v4l2: v4l2_compat: Add V4L2 compatibility layerPaul Elder
2019-08-22meson: Rename 'tests' option to 'test'Laurent Pinchart
2019-08-12android: hal: Add Camera3 HALJacopo Mondi
2019-04-03meson: options: Document the optionsKieran Bingham
2019-03-20meson: Provide options to disable test/docsKieran Bingham
, but in embedded devices algorithms have been moved to the main CPU to save cost. Blurring the boundary between camera devices and Linux often left the user with no other option than a vendor-specific closed-source solution. To address this problem the Linux media community has very recently started collaboration with the industry to develop a camera stack that will be open-source-friendly while still protecting vendor core IP. libcamera was born out of that collaboration and will offer modern camera support to Linux-based systems, including traditional Linux distributions, ChromeOS and Android. .. section-end-libcamera .. section-begin-getting-started Getting Started --------------- To fetch the sources, build and install: :: git clone https://git.libcamera.org/libcamera/libcamera.git cd libcamera meson build ninja -C build install Dependencies ~~~~~~~~~~~~ The following Debian/Ubuntu packages are required for building libcamera. Other distributions may have differing package names: A C++ toolchain: [required] Either {g++, clang} Meson Build system: [required] meson (>= 0.55) ninja-build pkg-config If your distribution doesn't provide a recent enough version of meson, you can install or upgrade it using pip3. .. code:: pip3 install --user meson pip3 install --user --upgrade meson for the libcamera core: [required] python3-yaml python3-ply python3-jinja2 for IPA module signing: [required] libgnutls28-dev openssl for improved debugging: [optional] libdw-dev libunwind-dev libdw and libunwind provide backtraces to help debugging assertion failures. Their functions overlap, libdw provides the most detailed information, and libunwind is not needed if both libdw and the glibc backtrace() function are available. for the Raspberry Pi IPA: [optional] libboost-dev Support for Raspberry Pi can be disabled through the meson 'pipelines' option to avoid this dependency. for device hotplug enumeration: [optional] libudev-dev for documentation: [optional] python3-sphinx doxygen graphviz texlive-latex-extra for gstreamer: [optional] libgstreamer1.0-dev libgstreamer-plugins-base1.0-dev for cam: [optional] libevent-dev for qcam: [optional] qtbase5-dev libqt5core5a libqt5gui5 libqt5widgets5 qttools5-dev-tools libtiff-dev for tracing with lttng: [optional] liblttng-ust-dev python3-jinja2 lttng-tools for android: [optional] libexif-dev libjpeg-dev libyaml-dev for lc-compliance: [optional] libevent-dev Using GStreamer plugin ~~~~~~~~~~~~~~~~~~~~~~ To use GStreamer plugin from source tree, set the following environment so that GStreamer can find it. This isn't necessary when libcamera is installed. export GST_PLUGIN_PATH=$(pwd)/build/src/gstreamer The debugging tool ``gst-launch-1.0`` can be used to construct a pipeline and test it. The following pipeline will stream from the camera named "Camera 1" onto the OpenGL accelerated display element on your system. .. code:: gst-launch-1.0 libcamerasrc camera-name="Camera 1" ! glimagesink To show the first camera found you can omit the camera-name property, or you can list the cameras and their capabilities using: .. code:: gst-device-monitor-1.0 Video This will also show the supported stream sizes which can be manually selected if desired with a pipeline such as: .. code:: gst-launch-1.0 libcamerasrc ! 'video/x-raw,width=1280,height=720' ! \ glimagesink The libcamerasrc element has two log categories, named libcamera-provider (for the video device provider) and libcamerasrc (for the operation of the camera). All corresponding debug messages can be enabled by setting the ``GST_DEBUG`` environment variable to ``libcamera*:7``. .. section-end-getting-started Troubleshooting ~~~~~~~~~~~~~~~ Several users have reported issues with meson installation, crux of the issue is a potential version mismatch between the version that root uses, and the version that the normal user uses. On calling `ninja -C build`, it can't find the build.ninja module. This is a snippet of the error message. :: ninja: Entering directory `build' ninja: error: loading 'build.ninja': No such file or directory This can be solved in two ways: 1) Don't install meson again if it is already installed system-wide. 2) If a version of meson which is different from the system-wide version is already installed, uninstall that meson using pip3, and install again without the --user argument.