diff options
Diffstat (limited to 'src/ipa/raspberrypi/controller/rpi/awb.cpp')
-rw-r--r-- | src/ipa/raspberrypi/controller/rpi/awb.cpp | 734 |
1 files changed, 0 insertions, 734 deletions
diff --git a/src/ipa/raspberrypi/controller/rpi/awb.cpp b/src/ipa/raspberrypi/controller/rpi/awb.cpp deleted file mode 100644 index ef3435d6..00000000 --- a/src/ipa/raspberrypi/controller/rpi/awb.cpp +++ /dev/null @@ -1,734 +0,0 @@ -/* SPDX-License-Identifier: BSD-2-Clause */ -/* - * Copyright (C) 2019, Raspberry Pi Ltd - * - * awb.cpp - AWB control algorithm - */ - -#include <assert.h> -#include <functional> - -#include <libcamera/base/log.h> - -#include "../lux_status.h" - -#include "awb.h" - -using namespace RPiController; -using namespace libcamera; - -LOG_DEFINE_CATEGORY(RPiAwb) - -#define NAME "rpi.awb" - -/* - * todo - the locking in this algorithm needs some tidying up as has been done - * elsewhere (ALSC and AGC). - */ - -int AwbMode::read(const libcamera::YamlObject ¶ms) -{ - auto value = params["lo"].get<double>(); - if (!value) - return -EINVAL; - ctLo = *value; - - value = params["hi"].get<double>(); - if (!value) - return -EINVAL; - ctHi = *value; - - return 0; -} - -int AwbPrior::read(const libcamera::YamlObject ¶ms) -{ - auto value = params["lux"].get<double>(); - if (!value) - return -EINVAL; - lux = *value; - - return prior.read(params["prior"]); -} - -static int readCtCurve(Pwl &ctR, Pwl &ctB, const libcamera::YamlObject ¶ms) -{ - if (params.size() % 3) { - LOG(RPiAwb, Error) << "AwbConfig: incomplete CT curve entry"; - return -EINVAL; - } - - if (params.size() < 6) { - LOG(RPiAwb, Error) << "AwbConfig: insufficient points in CT curve"; - return -EINVAL; - } - - const auto &list = params.asList(); - - for (auto it = list.begin(); it != list.end(); it++) { - auto value = it->get<double>(); - if (!value) - return -EINVAL; - double ct = *value; - - assert(it == list.begin() || ct != ctR.domain().end); - - value = (++it)->get<double>(); - if (!value) - return -EINVAL; - ctR.append(ct, *value); - - value = (++it)->get<double>(); - if (!value) - return -EINVAL; - ctB.append(ct, *value); - } - - return 0; -} - -int AwbConfig::read(const libcamera::YamlObject ¶ms) -{ - int ret; - - bayes = params["bayes"].get<int>(1); - framePeriod = params["frame_period"].get<uint16_t>(10); - startupFrames = params["startup_frames"].get<uint16_t>(10); - convergenceFrames = params["convergence_frames"].get<unsigned int>(3); - speed = params["speed"].get<double>(0.05); - - if (params.contains("ct_curve")) { - ret = readCtCurve(ctR, ctB, params["ct_curve"]); - if (ret) - return ret; - /* We will want the inverse functions of these too. */ - ctRInverse = ctR.inverse(); - ctBInverse = ctB.inverse(); - } - - if (params.contains("priors")) { - for (const auto &p : params["priors"].asList()) { - AwbPrior prior; - ret = prior.read(p); - if (ret) - return ret; - if (!priors.empty() && prior.lux <= priors.back().lux) { - LOG(RPiAwb, Error) << "AwbConfig: Prior must be ordered in increasing lux value"; - return -EINVAL; - } - priors.push_back(prior); - } - if (priors.empty()) { - LOG(RPiAwb, Error) << "AwbConfig: no AWB priors configured"; - return ret; - } - } - if (params.contains("modes")) { - for (const auto &[key, value] : params["modes"].asDict()) { - ret = modes[key].read(value); - if (ret) - return ret; - if (defaultMode == nullptr) - defaultMode = &modes[key]; - } - if (defaultMode == nullptr) { - LOG(RPiAwb, Error) << "AwbConfig: no AWB modes configured"; - return -EINVAL; - } - } - - minPixels = params["min_pixels"].get<double>(16.0); - minG = params["min_G"].get<uint16_t>(32); - minRegions = params["min_regions"].get<uint32_t>(10); - deltaLimit = params["delta_limit"].get<double>(0.2); - coarseStep = params["coarse_step"].get<double>(0.2); - transversePos = params["transverse_pos"].get<double>(0.01); - transverseNeg = params["transverse_neg"].get<double>(0.01); - if (transversePos <= 0 || transverseNeg <= 0) { - LOG(RPiAwb, Error) << "AwbConfig: transverse_pos/neg must be > 0"; - return -EINVAL; - } - - sensitivityR = params["sensitivity_r"].get<double>(1.0); - sensitivityB = params["sensitivity_b"].get<double>(1.0); - - if (bayes) { - if (ctR.empty() || ctB.empty() || priors.empty() || - defaultMode == nullptr) { - LOG(RPiAwb, Warning) - << "Bayesian AWB mis-configured - switch to Grey method"; - bayes = false; - } - } - fast = params[fast].get<int>(bayes); /* default to fast for Bayesian, otherwise slow */ - whitepointR = params["whitepoint_r"].get<double>(0.0); - whitepointB = params["whitepoint_b"].get<double>(0.0); - if (bayes == false) - sensitivityR = sensitivityB = 1.0; /* nor do sensitivities make any sense */ - return 0; -} - -Awb::Awb(Controller *controller) - : AwbAlgorithm(controller) -{ - asyncAbort_ = asyncStart_ = asyncStarted_ = asyncFinished_ = false; - mode_ = nullptr; - manualR_ = manualB_ = 0.0; - asyncThread_ = std::thread(std::bind(&Awb::asyncFunc, this)); -} - -Awb::~Awb() -{ - { - std::lock_guard<std::mutex> lock(mutex_); - asyncAbort_ = true; - } - asyncSignal_.notify_one(); - asyncThread_.join(); -} - -char const *Awb::name() const -{ - return NAME; -} - -int Awb::read(const libcamera::YamlObject ¶ms) -{ - return config_.read(params); -} - -void Awb::initialise() -{ - frameCount_ = framePhase_ = 0; - /* - * Put something sane into the status that we are filtering towards, - * just in case the first few frames don't have anything meaningful in - * them. - */ - if (!config_.ctR.empty() && !config_.ctB.empty()) { - syncResults_.temperatureK = config_.ctR.domain().clip(4000); - syncResults_.gainR = 1.0 / config_.ctR.eval(syncResults_.temperatureK); - syncResults_.gainG = 1.0; - syncResults_.gainB = 1.0 / config_.ctB.eval(syncResults_.temperatureK); - } else { - /* random values just to stop the world blowing up */ - syncResults_.temperatureK = 4500; - syncResults_.gainR = syncResults_.gainG = syncResults_.gainB = 1.0; - } - prevSyncResults_ = syncResults_; - asyncResults_ = syncResults_; -} - -void Awb::disableAuto() -{ - /* Freeze the most recent values, and treat them as manual gains */ - manualR_ = syncResults_.gainR = prevSyncResults_.gainR; - manualB_ = syncResults_.gainB = prevSyncResults_.gainB; - syncResults_.gainG = prevSyncResults_.gainG; - syncResults_.temperatureK = prevSyncResults_.temperatureK; -} - -void Awb::enableAuto() -{ - manualR_ = 0.0; - manualB_ = 0.0; -} - -unsigned int Awb::getConvergenceFrames() const -{ - /* - * If not in auto mode, there is no convergence - * to happen, so no need to drop any frames - return zero. - */ - if (!isAutoEnabled()) - return 0; - else - return config_.convergenceFrames; -} - -void Awb::setMode(std::string const &modeName) -{ - modeName_ = modeName; -} - -void Awb::setManualGains(double manualR, double manualB) -{ - /* If any of these are 0.0, we swich back to auto. */ - manualR_ = manualR; - manualB_ = manualB; - /* - * If not in auto mode, set these values into the syncResults which - * means that Prepare() will adopt them immediately. - */ - if (!isAutoEnabled()) { - syncResults_.gainR = prevSyncResults_.gainR = manualR_; - syncResults_.gainG = prevSyncResults_.gainG = 1.0; - syncResults_.gainB = prevSyncResults_.gainB = manualB_; - if (config_.bayes) { - /* Also estimate the best corresponding colour temperature from the curves. */ - double ctR = config_.ctRInverse.eval(config_.ctRInverse.domain().clip(1 / manualR_)); - double ctB = config_.ctBInverse.eval(config_.ctBInverse.domain().clip(1 / manualB_)); - prevSyncResults_.temperatureK = (ctR + ctB) / 2; - syncResults_.temperatureK = prevSyncResults_.temperatureK; - } - } -} - -void Awb::switchMode([[maybe_unused]] CameraMode const &cameraMode, - Metadata *metadata) -{ - /* Let other algorithms know the current white balance values. */ - metadata->set("awb.status", prevSyncResults_); -} - -bool Awb::isAutoEnabled() const -{ - return manualR_ == 0.0 || manualB_ == 0.0; -} - -void Awb::fetchAsyncResults() -{ - LOG(RPiAwb, Debug) << "Fetch AWB results"; - asyncFinished_ = false; - asyncStarted_ = false; - /* - * It's possible manual gains could be set even while the async - * thread was running, so only copy the results if still in auto mode. - */ - if (isAutoEnabled()) - syncResults_ = asyncResults_; -} - -void Awb::restartAsync(StatisticsPtr &stats, double lux) -{ - LOG(RPiAwb, Debug) << "Starting AWB calculation"; - /* this makes a new reference which belongs to the asynchronous thread */ - statistics_ = stats; - /* store the mode as it could technically change */ - auto m = config_.modes.find(modeName_); - mode_ = m != config_.modes.end() - ? &m->second - : (mode_ == nullptr ? config_.defaultMode : mode_); - lux_ = lux; - framePhase_ = 0; - asyncStarted_ = true; - size_t len = modeName_.copy(asyncResults_.mode, - sizeof(asyncResults_.mode) - 1); - asyncResults_.mode[len] = '\0'; - { - std::lock_guard<std::mutex> lock(mutex_); - asyncStart_ = true; - } - asyncSignal_.notify_one(); -} - -void Awb::prepare(Metadata *imageMetadata) -{ - if (frameCount_ < (int)config_.startupFrames) - frameCount_++; - double speed = frameCount_ < (int)config_.startupFrames - ? 1.0 - : config_.speed; - LOG(RPiAwb, Debug) - << "frame_count " << frameCount_ << " speed " << speed; - { - std::unique_lock<std::mutex> lock(mutex_); - if (asyncStarted_ && asyncFinished_) - fetchAsyncResults(); - } - /* Finally apply IIR filter to results and put into metadata. */ - memcpy(prevSyncResults_.mode, syncResults_.mode, - sizeof(prevSyncResults_.mode)); - prevSyncResults_.temperatureK = speed * syncResults_.temperatureK + - (1.0 - speed) * prevSyncResults_.temperatureK; - prevSyncResults_.gainR = speed * syncResults_.gainR + - (1.0 - speed) * prevSyncResults_.gainR; - prevSyncResults_.gainG = speed * syncResults_.gainG + - (1.0 - speed) * prevSyncResults_.gainG; - prevSyncResults_.gainB = speed * syncResults_.gainB + - (1.0 - speed) * prevSyncResults_.gainB; - imageMetadata->set("awb.status", prevSyncResults_); - LOG(RPiAwb, Debug) - << "Using AWB gains r " << prevSyncResults_.gainR << " g " - << prevSyncResults_.gainG << " b " - << prevSyncResults_.gainB; -} - -void Awb::process(StatisticsPtr &stats, Metadata *imageMetadata) -{ - /* Count frames since we last poked the async thread. */ - if (framePhase_ < (int)config_.framePeriod) - framePhase_++; - LOG(RPiAwb, Debug) << "frame_phase " << framePhase_; - /* We do not restart the async thread if we're not in auto mode. */ - if (isAutoEnabled() && - (framePhase_ >= (int)config_.framePeriod || - frameCount_ < (int)config_.startupFrames)) { - /* Update any settings and any image metadata that we need. */ - struct LuxStatus luxStatus = {}; - luxStatus.lux = 400; /* in case no metadata */ - if (imageMetadata->get("lux.status", luxStatus) != 0) - LOG(RPiAwb, Debug) << "No lux metadata found"; - LOG(RPiAwb, Debug) << "Awb lux value is " << luxStatus.lux; - - if (asyncStarted_ == false) - restartAsync(stats, luxStatus.lux); - } -} - -void Awb::asyncFunc() -{ - while (true) { - { - std::unique_lock<std::mutex> lock(mutex_); - asyncSignal_.wait(lock, [&] { - return asyncStart_ || asyncAbort_; - }); - asyncStart_ = false; - if (asyncAbort_) - break; - } - doAwb(); - { - std::lock_guard<std::mutex> lock(mutex_); - asyncFinished_ = true; - } - syncSignal_.notify_one(); - } -} - -static void generateStats(std::vector<Awb::RGB> &zones, - RgbyRegions &stats, double minPixels, - double minG) -{ - for (auto const ®ion : stats) { - Awb::RGB zone; - if (region.counted >= minPixels) { - zone.G = region.val.gSum / region.counted; - if (zone.G >= minG) { - zone.R = region.val.rSum / region.counted; - zone.B = region.val.bSum / region.counted; - zones.push_back(zone); - } - } - } -} - -void Awb::prepareStats() -{ - zones_.clear(); - /* - * LSC has already been applied to the stats in this pipeline, so stop - * any LSC compensation. We also ignore config_.fast in this version. - */ - generateStats(zones_, statistics_->awbRegions, config_.minPixels, - config_.minG); - /* - * apply sensitivities, so values appear to come from our "canonical" - * sensor. - */ - for (auto &zone : zones_) { - zone.R *= config_.sensitivityR; - zone.B *= config_.sensitivityB; - } -} - -double Awb::computeDelta2Sum(double gainR, double gainB) -{ - /* - * Compute the sum of the squared colour error (non-greyness) as it - * appears in the log likelihood equation. - */ - double delta2Sum = 0; - for (auto &z : zones_) { - double deltaR = gainR * z.R - 1 - config_.whitepointR; - double deltaB = gainB * z.B - 1 - config_.whitepointB; - double delta2 = deltaR * deltaR + deltaB * deltaB; - /* LOG(RPiAwb, Debug) << "deltaR " << deltaR << " deltaB " << deltaB << " delta2 " << delta2; */ - delta2 = std::min(delta2, config_.deltaLimit); - delta2Sum += delta2; - } - return delta2Sum; -} - -Pwl Awb::interpolatePrior() -{ - /* - * Interpolate the prior log likelihood function for our current lux - * value. - */ - if (lux_ <= config_.priors.front().lux) - return config_.priors.front().prior; - else if (lux_ >= config_.priors.back().lux) - return config_.priors.back().prior; - else { - int idx = 0; - /* find which two we lie between */ - while (config_.priors[idx + 1].lux < lux_) - idx++; - double lux0 = config_.priors[idx].lux, - lux1 = config_.priors[idx + 1].lux; - return Pwl::combine(config_.priors[idx].prior, - config_.priors[idx + 1].prior, - [&](double /*x*/, double y0, double y1) { - return y0 + (y1 - y0) * - (lux_ - lux0) / (lux1 - lux0); - }); - } -} - -static double interpolateQuadatric(Pwl::Point const &a, Pwl::Point const &b, - Pwl::Point const &c) -{ - /* - * Given 3 points on a curve, find the extremum of the function in that - * interval by fitting a quadratic. - */ - const double eps = 1e-3; - Pwl::Point ca = c - a, ba = b - a; - double denominator = 2 * (ba.y * ca.x - ca.y * ba.x); - if (abs(denominator) > eps) { - double numerator = ba.y * ca.x * ca.x - ca.y * ba.x * ba.x; - double result = numerator / denominator + a.x; - return std::max(a.x, std::min(c.x, result)); - } - /* has degenerated to straight line segment */ - return a.y < c.y - eps ? a.x : (c.y < a.y - eps ? c.x : b.x); -} - -double Awb::coarseSearch(Pwl const &prior) -{ - points_.clear(); /* assume doesn't deallocate memory */ - size_t bestPoint = 0; - double t = mode_->ctLo; - int spanR = 0, spanB = 0; - /* Step down the CT curve evaluating log likelihood. */ - while (true) { - double r = config_.ctR.eval(t, &spanR); - double b = config_.ctB.eval(t, &spanB); - double gainR = 1 / r, gainB = 1 / b; - double delta2Sum = computeDelta2Sum(gainR, gainB); - double priorLogLikelihood = prior.eval(prior.domain().clip(t)); - double finalLogLikelihood = delta2Sum - priorLogLikelihood; - LOG(RPiAwb, Debug) - << "t: " << t << " gain R " << gainR << " gain B " - << gainB << " delta2_sum " << delta2Sum - << " prior " << priorLogLikelihood << " final " - << finalLogLikelihood; - points_.push_back(Pwl::Point(t, finalLogLikelihood)); - if (points_.back().y < points_[bestPoint].y) - bestPoint = points_.size() - 1; - if (t == mode_->ctHi) - break; - /* for even steps along the r/b curve scale them by the current t */ - t = std::min(t + t / 10 * config_.coarseStep, mode_->ctHi); - } - t = points_[bestPoint].x; - LOG(RPiAwb, Debug) << "Coarse search found CT " << t; - /* - * We have the best point of the search, but refine it with a quadratic - * interpolation around its neighbours. - */ - if (points_.size() > 2) { - unsigned long bp = std::min(bestPoint, points_.size() - 2); - bestPoint = std::max(1UL, bp); - t = interpolateQuadatric(points_[bestPoint - 1], - points_[bestPoint], - points_[bestPoint + 1]); - LOG(RPiAwb, Debug) - << "After quadratic refinement, coarse search has CT " - << t; - } - return t; -} - -void Awb::fineSearch(double &t, double &r, double &b, Pwl const &prior) -{ - int spanR = -1, spanB = -1; - config_.ctR.eval(t, &spanR); - config_.ctB.eval(t, &spanB); - double step = t / 10 * config_.coarseStep * 0.1; - int nsteps = 5; - double rDiff = config_.ctR.eval(t + nsteps * step, &spanR) - - config_.ctR.eval(t - nsteps * step, &spanR); - double bDiff = config_.ctB.eval(t + nsteps * step, &spanB) - - config_.ctB.eval(t - nsteps * step, &spanB); - Pwl::Point transverse(bDiff, -rDiff); - if (transverse.len2() < 1e-6) - return; - /* - * unit vector orthogonal to the b vs. r function (pointing outwards - * with r and b increasing) - */ - transverse = transverse / transverse.len(); - double bestLogLikelihood = 0, bestT = 0, bestR = 0, bestB = 0; - double transverseRange = config_.transverseNeg + config_.transversePos; - const int maxNumDeltas = 12; - /* a transverse step approximately every 0.01 r/b units */ - int numDeltas = floor(transverseRange * 100 + 0.5) + 1; - numDeltas = numDeltas < 3 ? 3 : (numDeltas > maxNumDeltas ? maxNumDeltas : numDeltas); - /* - * Step down CT curve. March a bit further if the transverse range is - * large. - */ - nsteps += numDeltas; - for (int i = -nsteps; i <= nsteps; i++) { - double tTest = t + i * step; - double priorLogLikelihood = - prior.eval(prior.domain().clip(tTest)); - double rCurve = config_.ctR.eval(tTest, &spanR); - double bCurve = config_.ctB.eval(tTest, &spanB); - /* x will be distance off the curve, y the log likelihood there */ - Pwl::Point points[maxNumDeltas]; - int bestPoint = 0; - /* Take some measurements transversely *off* the CT curve. */ - for (int j = 0; j < numDeltas; j++) { - points[j].x = -config_.transverseNeg + - (transverseRange * j) / (numDeltas - 1); - Pwl::Point rbTest = Pwl::Point(rCurve, bCurve) + - transverse * points[j].x; - double rTest = rbTest.x, bTest = rbTest.y; - double gainR = 1 / rTest, gainB = 1 / bTest; - double delta2Sum = computeDelta2Sum(gainR, gainB); - points[j].y = delta2Sum - priorLogLikelihood; - LOG(RPiAwb, Debug) - << "At t " << tTest << " r " << rTest << " b " - << bTest << ": " << points[j].y; - if (points[j].y < points[bestPoint].y) - bestPoint = j; - } - /* - * We have NUM_DELTAS points transversely across the CT curve, - * now let's do a quadratic interpolation for the best result. - */ - bestPoint = std::max(1, std::min(bestPoint, numDeltas - 2)); - Pwl::Point rbTest = Pwl::Point(rCurve, bCurve) + - transverse * interpolateQuadatric(points[bestPoint - 1], - points[bestPoint], - points[bestPoint + 1]); - double rTest = rbTest.x, bTest = rbTest.y; - double gainR = 1 / rTest, gainB = 1 / bTest; - double delta2Sum = computeDelta2Sum(gainR, gainB); - double finalLogLikelihood = delta2Sum - priorLogLikelihood; - LOG(RPiAwb, Debug) - << "Finally " - << tTest << " r " << rTest << " b " << bTest << ": " - << finalLogLikelihood - << (finalLogLikelihood < bestLogLikelihood ? " BEST" : ""); - if (bestT == 0 || finalLogLikelihood < bestLogLikelihood) - bestLogLikelihood = finalLogLikelihood, - bestT = tTest, bestR = rTest, bestB = bTest; - } - t = bestT, r = bestR, b = bestB; - LOG(RPiAwb, Debug) - << "Fine search found t " << t << " r " << r << " b " << b; -} - -void Awb::awbBayes() -{ - /* - * May as well divide out G to save computeDelta2Sum from doing it over - * and over. - */ - for (auto &z : zones_) - z.R = z.R / (z.G + 1), z.B = z.B / (z.G + 1); - /* - * Get the current prior, and scale according to how many zones are - * valid... not entirely sure about this. - */ - Pwl prior = interpolatePrior(); - prior *= zones_.size() / (double)(statistics_->awbRegions.numRegions()); - prior.map([](double x, double y) { - LOG(RPiAwb, Debug) << "(" << x << "," << y << ")"; - }); - double t = coarseSearch(prior); - double r = config_.ctR.eval(t); - double b = config_.ctB.eval(t); - LOG(RPiAwb, Debug) - << "After coarse search: r " << r << " b " << b << " (gains r " - << 1 / r << " b " << 1 / b << ")"; - /* - * Not entirely sure how to handle the fine search yet. Mostly the - * estimated CT is already good enough, but the fine search allows us to - * wander transverely off the CT curve. Under some illuminants, where - * there may be more or less green light, this may prove beneficial, - * though I probably need more real datasets before deciding exactly how - * this should be controlled and tuned. - */ - fineSearch(t, r, b, prior); - LOG(RPiAwb, Debug) - << "After fine search: r " << r << " b " << b << " (gains r " - << 1 / r << " b " << 1 / b << ")"; - /* - * Write results out for the main thread to pick up. Remember to adjust - * the gains from the ones that the "canonical sensor" would require to - * the ones needed by *this* sensor. - */ - asyncResults_.temperatureK = t; - asyncResults_.gainR = 1.0 / r * config_.sensitivityR; - asyncResults_.gainG = 1.0; - asyncResults_.gainB = 1.0 / b * config_.sensitivityB; -} - -void Awb::awbGrey() -{ - LOG(RPiAwb, Debug) << "Grey world AWB"; - /* - * Make a separate list of the derivatives for each of red and blue, so - * that we can sort them to exclude the extreme gains. We could - * consider some variations, such as normalising all the zones first, or - * doing an L2 average etc. - */ - std::vector<RGB> &derivsR(zones_); - std::vector<RGB> derivsB(derivsR); - std::sort(derivsR.begin(), derivsR.end(), - [](RGB const &a, RGB const &b) { - return a.G * b.R < b.G * a.R; - }); - std::sort(derivsB.begin(), derivsB.end(), - [](RGB const &a, RGB const &b) { - return a.G * b.B < b.G * a.B; - }); - /* Average the middle half of the values. */ - int discard = derivsR.size() / 4; - RGB sumR(0, 0, 0), sumB(0, 0, 0); - for (auto ri = derivsR.begin() + discard, - bi = derivsB.begin() + discard; - ri != derivsR.end() - discard; ri++, bi++) - sumR += *ri, sumB += *bi; - double gainR = sumR.G / (sumR.R + 1), - gainB = sumB.G / (sumB.B + 1); - asyncResults_.temperatureK = 4500; /* don't know what it is */ - asyncResults_.gainR = gainR; - asyncResults_.gainG = 1.0; - asyncResults_.gainB = gainB; -} - -void Awb::doAwb() -{ - prepareStats(); - LOG(RPiAwb, Debug) << "Valid zones: " << zones_.size(); - if (zones_.size() > config_.minRegions) { - if (config_.bayes) - awbBayes(); - else - awbGrey(); - LOG(RPiAwb, Debug) - << "CT found is " - << asyncResults_.temperatureK - << " with gains r " << asyncResults_.gainR - << " and b " << asyncResults_.gainB; - } - /* - * we're done with these; we may as well relinquish our hold on the - * pointer. - */ - statistics_.reset(); -} - -/* Register algorithm with the system. */ -static Algorithm *create(Controller *controller) -{ - return (Algorithm *)new Awb(controller); -} -static RegisterAlgorithm reg(NAME, &create); |