diff options
Diffstat (limited to 'src/ipa/raspberrypi/controller/rpi/alsc.cpp')
-rw-r--r-- | src/ipa/raspberrypi/controller/rpi/alsc.cpp | 865 |
1 files changed, 0 insertions, 865 deletions
diff --git a/src/ipa/raspberrypi/controller/rpi/alsc.cpp b/src/ipa/raspberrypi/controller/rpi/alsc.cpp deleted file mode 100644 index 3a2e8fe0..00000000 --- a/src/ipa/raspberrypi/controller/rpi/alsc.cpp +++ /dev/null @@ -1,865 +0,0 @@ -/* SPDX-License-Identifier: BSD-2-Clause */ -/* - * Copyright (C) 2019, Raspberry Pi Ltd - * - * alsc.cpp - ALSC (auto lens shading correction) control algorithm - */ - -#include <algorithm> -#include <functional> -#include <math.h> -#include <numeric> - -#include <libcamera/base/log.h> -#include <libcamera/base/span.h> - -#include "../awb_status.h" -#include "alsc.h" - -/* Raspberry Pi ALSC (Auto Lens Shading Correction) algorithm. */ - -using namespace RPiController; -using namespace libcamera; - -LOG_DEFINE_CATEGORY(RPiAlsc) - -#define NAME "rpi.alsc" - -static const double InsufficientData = -1.0; - -Alsc::Alsc(Controller *controller) - : Algorithm(controller) -{ - asyncAbort_ = asyncStart_ = asyncStarted_ = asyncFinished_ = false; - asyncThread_ = std::thread(std::bind(&Alsc::asyncFunc, this)); -} - -Alsc::~Alsc() -{ - { - std::lock_guard<std::mutex> lock(mutex_); - asyncAbort_ = true; - } - asyncSignal_.notify_one(); - asyncThread_.join(); -} - -char const *Alsc::name() const -{ - return NAME; -} - -static int generateLut(Array2D<double> &lut, const libcamera::YamlObject ¶ms) -{ - /* These must be signed ints for the co-ordinate calculations below. */ - int X = lut.dimensions().width, Y = lut.dimensions().height; - double cstrength = params["corner_strength"].get<double>(2.0); - if (cstrength <= 1.0) { - LOG(RPiAlsc, Error) << "corner_strength must be > 1.0"; - return -EINVAL; - } - - double asymmetry = params["asymmetry"].get<double>(1.0); - if (asymmetry < 0) { - LOG(RPiAlsc, Error) << "asymmetry must be >= 0"; - return -EINVAL; - } - - double f1 = cstrength - 1, f2 = 1 + sqrt(cstrength); - double R2 = X * Y / 4 * (1 + asymmetry * asymmetry); - int num = 0; - for (int y = 0; y < Y; y++) { - for (int x = 0; x < X; x++) { - double dy = y - Y / 2 + 0.5, - dx = (x - X / 2 + 0.5) * asymmetry; - double r2 = (dx * dx + dy * dy) / R2; - lut[num++] = - (f1 * r2 + f2) * (f1 * r2 + f2) / - (f2 * f2); /* this reproduces the cos^4 rule */ - } - } - return 0; -} - -static int readLut(Array2D<double> &lut, const libcamera::YamlObject ¶ms) -{ - if (params.size() != lut.size()) { - LOG(RPiAlsc, Error) << "Invalid number of entries in LSC table"; - return -EINVAL; - } - - int num = 0; - for (const auto &p : params.asList()) { - auto value = p.get<double>(); - if (!value) - return -EINVAL; - lut[num++] = *value; - } - - return 0; -} - -static int readCalibrations(std::vector<AlscCalibration> &calibrations, - const libcamera::YamlObject ¶ms, - std::string const &name, const Size &size) -{ - if (params.contains(name)) { - double lastCt = 0; - for (const auto &p : params[name].asList()) { - auto value = p["ct"].get<double>(); - if (!value) - return -EINVAL; - double ct = *value; - if (ct <= lastCt) { - LOG(RPiAlsc, Error) - << "Entries in " << name << " must be in increasing ct order"; - return -EINVAL; - } - AlscCalibration calibration; - calibration.ct = lastCt = ct; - - const libcamera::YamlObject &table = p["table"]; - if (table.size() != size.width * size.height) { - LOG(RPiAlsc, Error) - << "Incorrect number of values for ct " - << ct << " in " << name; - return -EINVAL; - } - - int num = 0; - calibration.table.resize(size); - for (const auto &elem : table.asList()) { - value = elem.get<double>(); - if (!value) - return -EINVAL; - calibration.table[num++] = *value; - } - - calibrations.push_back(std::move(calibration)); - LOG(RPiAlsc, Debug) - << "Read " << name << " calibration for ct " << ct; - } - } - return 0; -} - -int Alsc::read(const libcamera::YamlObject ¶ms) -{ - config_.tableSize = getHardwareConfig().awbRegions; - config_.framePeriod = params["frame_period"].get<uint16_t>(12); - config_.startupFrames = params["startup_frames"].get<uint16_t>(10); - config_.speed = params["speed"].get<double>(0.05); - double sigma = params["sigma"].get<double>(0.01); - config_.sigmaCr = params["sigma_Cr"].get<double>(sigma); - config_.sigmaCb = params["sigma_Cb"].get<double>(sigma); - config_.minCount = params["min_count"].get<double>(10.0); - config_.minG = params["min_G"].get<uint16_t>(50); - config_.omega = params["omega"].get<double>(1.3); - config_.nIter = params["n_iter"].get<uint32_t>(config_.tableSize.width + config_.tableSize.height); - config_.luminanceStrength = - params["luminance_strength"].get<double>(1.0); - - config_.luminanceLut.resize(config_.tableSize, 1.0); - int ret = 0; - - if (params.contains("corner_strength")) - ret = generateLut(config_.luminanceLut, params); - else if (params.contains("luminance_lut")) - ret = readLut(config_.luminanceLut, params["luminance_lut"]); - else - LOG(RPiAlsc, Warning) - << "no luminance table - assume unity everywhere"; - if (ret) - return ret; - - ret = readCalibrations(config_.calibrationsCr, params, "calibrations_Cr", - config_.tableSize); - if (ret) - return ret; - ret = readCalibrations(config_.calibrationsCb, params, "calibrations_Cb", - config_.tableSize); - if (ret) - return ret; - - config_.defaultCt = params["default_ct"].get<double>(4500.0); - config_.threshold = params["threshold"].get<double>(1e-3); - config_.lambdaBound = params["lambda_bound"].get<double>(0.05); - - return 0; -} - -static double getCt(Metadata *metadata, double defaultCt); -static void getCalTable(double ct, std::vector<AlscCalibration> const &calibrations, - Array2D<double> &calTable); -static void resampleCalTable(const Array2D<double> &calTableIn, CameraMode const &cameraMode, - Array2D<double> &calTableOut); -static void compensateLambdasForCal(const Array2D<double> &calTable, - const Array2D<double> &oldLambdas, - Array2D<double> &newLambdas); -static void addLuminanceToTables(std::array<Array2D<double>, 3> &results, - const Array2D<double> &lambdaR, double lambdaG, - const Array2D<double> &lambdaB, - const Array2D<double> &luminanceLut, - double luminanceStrength); - -void Alsc::initialise() -{ - frameCount2_ = frameCount_ = framePhase_ = 0; - firstTime_ = true; - ct_ = config_.defaultCt; - - const size_t XY = config_.tableSize.width * config_.tableSize.height; - - for (auto &r : syncResults_) - r.resize(config_.tableSize); - for (auto &r : prevSyncResults_) - r.resize(config_.tableSize); - for (auto &r : asyncResults_) - r.resize(config_.tableSize); - - luminanceTable_.resize(config_.tableSize); - asyncLambdaR_.resize(config_.tableSize); - asyncLambdaB_.resize(config_.tableSize); - /* The lambdas are initialised in the SwitchMode. */ - lambdaR_.resize(config_.tableSize); - lambdaB_.resize(config_.tableSize); - - /* Temporaries for the computations, but sensible to allocate this up-front! */ - for (auto &c : tmpC_) - c.resize(config_.tableSize); - for (auto &m : tmpM_) - m.resize(XY); -} - -void Alsc::waitForAysncThread() -{ - if (asyncStarted_) { - asyncStarted_ = false; - std::unique_lock<std::mutex> lock(mutex_); - syncSignal_.wait(lock, [&] { - return asyncFinished_; - }); - asyncFinished_ = false; - } -} - -static bool compareModes(CameraMode const &cm0, CameraMode const &cm1) -{ - /* - * Return true if the modes crop from the sensor significantly differently, - * or if the user transform has changed. - */ - if (cm0.transform != cm1.transform) - return true; - int leftDiff = abs(cm0.cropX - cm1.cropX); - int topDiff = abs(cm0.cropY - cm1.cropY); - int rightDiff = fabs(cm0.cropX + cm0.scaleX * cm0.width - - cm1.cropX - cm1.scaleX * cm1.width); - int bottomDiff = fabs(cm0.cropY + cm0.scaleY * cm0.height - - cm1.cropY - cm1.scaleY * cm1.height); - /* - * These thresholds are a rather arbitrary amount chosen to trigger - * when carrying on with the previously calculated tables might be - * worse than regenerating them (but without the adaptive algorithm). - */ - int thresholdX = cm0.sensorWidth >> 4; - int thresholdY = cm0.sensorHeight >> 4; - return leftDiff > thresholdX || rightDiff > thresholdX || - topDiff > thresholdY || bottomDiff > thresholdY; -} - -void Alsc::switchMode(CameraMode const &cameraMode, - [[maybe_unused]] Metadata *metadata) -{ - /* - * We're going to start over with the tables if there's any "significant" - * change. - */ - bool resetTables = firstTime_ || compareModes(cameraMode_, cameraMode); - - /* Believe the colour temperature from the AWB, if there is one. */ - ct_ = getCt(metadata, ct_); - - /* Ensure the other thread isn't running while we do this. */ - waitForAysncThread(); - - cameraMode_ = cameraMode; - - /* - * We must resample the luminance table like we do the others, but it's - * fixed so we can simply do it up front here. - */ - resampleCalTable(config_.luminanceLut, cameraMode_, luminanceTable_); - - if (resetTables) { - /* - * Upon every "table reset", arrange for something sensible to be - * generated. Construct the tables for the previous recorded colour - * temperature. In order to start over from scratch we initialise - * the lambdas, but the rest of this code then echoes the code in - * doAlsc, without the adaptive algorithm. - */ - std::fill(lambdaR_.begin(), lambdaR_.end(), 1.0); - std::fill(lambdaB_.begin(), lambdaB_.end(), 1.0); - Array2D<double> &calTableR = tmpC_[0], &calTableB = tmpC_[1], &calTableTmp = tmpC_[2]; - getCalTable(ct_, config_.calibrationsCr, calTableTmp); - resampleCalTable(calTableTmp, cameraMode_, calTableR); - getCalTable(ct_, config_.calibrationsCb, calTableTmp); - resampleCalTable(calTableTmp, cameraMode_, calTableB); - compensateLambdasForCal(calTableR, lambdaR_, asyncLambdaR_); - compensateLambdasForCal(calTableB, lambdaB_, asyncLambdaB_); - addLuminanceToTables(syncResults_, asyncLambdaR_, 1.0, asyncLambdaB_, - luminanceTable_, config_.luminanceStrength); - prevSyncResults_ = syncResults_; - framePhase_ = config_.framePeriod; /* run the algo again asap */ - firstTime_ = false; - } -} - -void Alsc::fetchAsyncResults() -{ - LOG(RPiAlsc, Debug) << "Fetch ALSC results"; - asyncFinished_ = false; - asyncStarted_ = false; - syncResults_ = asyncResults_; -} - -double getCt(Metadata *metadata, double defaultCt) -{ - AwbStatus awbStatus; - awbStatus.temperatureK = defaultCt; /* in case nothing found */ - if (metadata->get("awb.status", awbStatus) != 0) - LOG(RPiAlsc, Debug) << "no AWB results found, using " - << awbStatus.temperatureK; - else - LOG(RPiAlsc, Debug) << "AWB results found, using " - << awbStatus.temperatureK; - return awbStatus.temperatureK; -} - -static void copyStats(RgbyRegions ®ions, StatisticsPtr &stats, - AlscStatus const &status) -{ - if (!regions.numRegions()) - regions.init(stats->awbRegions.size()); - - const std::vector<double> &rTable = status.r; - const std::vector<double> &gTable = status.g; - const std::vector<double> &bTable = status.b; - for (unsigned int i = 0; i < stats->awbRegions.numRegions(); i++) { - auto r = stats->awbRegions.get(i); - r.val.rSum = static_cast<uint64_t>(r.val.rSum / rTable[i]); - r.val.gSum = static_cast<uint64_t>(r.val.gSum / gTable[i]); - r.val.bSum = static_cast<uint64_t>(r.val.bSum / bTable[i]); - regions.set(i, r); - } -} - -void Alsc::restartAsync(StatisticsPtr &stats, Metadata *imageMetadata) -{ - LOG(RPiAlsc, Debug) << "Starting ALSC calculation"; - /* - * Get the current colour temperature. It's all we need from the - * metadata. Default to the last CT value (which could be the default). - */ - ct_ = getCt(imageMetadata, ct_); - /* - * We have to copy the statistics here, dividing out our best guess of - * the LSC table that the pipeline applied to them. - */ - AlscStatus alscStatus; - if (imageMetadata->get("alsc.status", alscStatus) != 0) { - LOG(RPiAlsc, Warning) - << "No ALSC status found for applied gains!"; - alscStatus.r.resize(config_.tableSize.width * config_.tableSize.height, 1.0); - alscStatus.g.resize(config_.tableSize.width * config_.tableSize.height, 1.0); - alscStatus.b.resize(config_.tableSize.width * config_.tableSize.height, 1.0); - } - copyStats(statistics_, stats, alscStatus); - framePhase_ = 0; - asyncStarted_ = true; - { - std::lock_guard<std::mutex> lock(mutex_); - asyncStart_ = true; - } - asyncSignal_.notify_one(); -} - -void Alsc::prepare(Metadata *imageMetadata) -{ - /* - * Count frames since we started, and since we last poked the async - * thread. - */ - if (frameCount_ < (int)config_.startupFrames) - frameCount_++; - double speed = frameCount_ < (int)config_.startupFrames - ? 1.0 - : config_.speed; - LOG(RPiAlsc, Debug) - << "frame count " << frameCount_ << " speed " << speed; - { - std::unique_lock<std::mutex> lock(mutex_); - if (asyncStarted_ && asyncFinished_) - fetchAsyncResults(); - } - /* Apply IIR filter to results and program into the pipeline. */ - for (unsigned int j = 0; j < syncResults_.size(); j++) { - for (unsigned int i = 0; i < syncResults_[j].size(); i++) - prevSyncResults_[j][i] = speed * syncResults_[j][i] + (1.0 - speed) * prevSyncResults_[j][i]; - } - /* Put output values into status metadata. */ - AlscStatus status; - status.r = prevSyncResults_[0].data(); - status.g = prevSyncResults_[1].data(); - status.b = prevSyncResults_[2].data(); - imageMetadata->set("alsc.status", status); -} - -void Alsc::process(StatisticsPtr &stats, Metadata *imageMetadata) -{ - /* - * Count frames since we started, and since we last poked the async - * thread. - */ - if (framePhase_ < (int)config_.framePeriod) - framePhase_++; - if (frameCount2_ < (int)config_.startupFrames) - frameCount2_++; - LOG(RPiAlsc, Debug) << "frame_phase " << framePhase_; - if (framePhase_ >= (int)config_.framePeriod || - frameCount2_ < (int)config_.startupFrames) { - if (asyncStarted_ == false) - restartAsync(stats, imageMetadata); - } -} - -void Alsc::asyncFunc() -{ - while (true) { - { - std::unique_lock<std::mutex> lock(mutex_); - asyncSignal_.wait(lock, [&] { - return asyncStart_ || asyncAbort_; - }); - asyncStart_ = false; - if (asyncAbort_) - break; - } - doAlsc(); - { - std::lock_guard<std::mutex> lock(mutex_); - asyncFinished_ = true; - } - syncSignal_.notify_one(); - } -} - -void getCalTable(double ct, std::vector<AlscCalibration> const &calibrations, - Array2D<double> &calTable) -{ - if (calibrations.empty()) { - std::fill(calTable.begin(), calTable.end(), 1.0); - LOG(RPiAlsc, Debug) << "no calibrations found"; - } else if (ct <= calibrations.front().ct) { - calTable = calibrations.front().table; - LOG(RPiAlsc, Debug) << "using calibration for " - << calibrations.front().ct; - } else if (ct >= calibrations.back().ct) { - calTable = calibrations.back().table; - LOG(RPiAlsc, Debug) << "using calibration for " - << calibrations.back().ct; - } else { - int idx = 0; - while (ct > calibrations[idx + 1].ct) - idx++; - double ct0 = calibrations[idx].ct, ct1 = calibrations[idx + 1].ct; - LOG(RPiAlsc, Debug) - << "ct is " << ct << ", interpolating between " - << ct0 << " and " << ct1; - for (unsigned int i = 0; i < calTable.size(); i++) - calTable[i] = - (calibrations[idx].table[i] * (ct1 - ct) + - calibrations[idx + 1].table[i] * (ct - ct0)) / - (ct1 - ct0); - } -} - -void resampleCalTable(const Array2D<double> &calTableIn, - CameraMode const &cameraMode, - Array2D<double> &calTableOut) -{ - int X = calTableIn.dimensions().width; - int Y = calTableIn.dimensions().height; - - /* - * Precalculate and cache the x sampling locations and phases to save - * recomputing them on every row. - */ - int xLo[X], xHi[X]; - double xf[X]; - double scaleX = cameraMode.sensorWidth / - (cameraMode.width * cameraMode.scaleX); - double xOff = cameraMode.cropX / (double)cameraMode.sensorWidth; - double x = .5 / scaleX + xOff * X - .5; - double xInc = 1 / scaleX; - for (int i = 0; i < X; i++, x += xInc) { - xLo[i] = floor(x); - xf[i] = x - xLo[i]; - xHi[i] = std::min(xLo[i] + 1, X - 1); - xLo[i] = std::max(xLo[i], 0); - if (!!(cameraMode.transform & libcamera::Transform::HFlip)) { - xLo[i] = X - 1 - xLo[i]; - xHi[i] = X - 1 - xHi[i]; - } - } - /* Now march over the output table generating the new values. */ - double scaleY = cameraMode.sensorHeight / - (cameraMode.height * cameraMode.scaleY); - double yOff = cameraMode.cropY / (double)cameraMode.sensorHeight; - double y = .5 / scaleY + yOff * Y - .5; - double yInc = 1 / scaleY; - for (int j = 0; j < Y; j++, y += yInc) { - int yLo = floor(y); - double yf = y - yLo; - int yHi = std::min(yLo + 1, Y - 1); - yLo = std::max(yLo, 0); - if (!!(cameraMode.transform & libcamera::Transform::VFlip)) { - yLo = Y - 1 - yLo; - yHi = Y - 1 - yHi; - } - double const *rowAbove = calTableIn.ptr() + X * yLo; - double const *rowBelow = calTableIn.ptr() + X * yHi; - double *out = calTableOut.ptr() + X * j; - for (int i = 0; i < X; i++) { - double above = rowAbove[xLo[i]] * (1 - xf[i]) + - rowAbove[xHi[i]] * xf[i]; - double below = rowBelow[xLo[i]] * (1 - xf[i]) + - rowBelow[xHi[i]] * xf[i]; - *(out++) = above * (1 - yf) + below * yf; - } - } -} - -/* Calculate chrominance statistics (R/G and B/G) for each region. */ -static void calculateCrCb(const RgbyRegions &awbRegion, Array2D<double> &cr, - Array2D<double> &cb, uint32_t minCount, uint16_t minG) -{ - for (unsigned int i = 0; i < cr.size(); i++) { - auto s = awbRegion.get(i); - - if (s.counted <= minCount || s.val.gSum / s.counted <= minG) { - cr[i] = cb[i] = InsufficientData; - continue; - } - - cr[i] = s.val.rSum / (double)s.val.gSum; - cb[i] = s.val.bSum / (double)s.val.gSum; - } -} - -static void applyCalTable(const Array2D<double> &calTable, Array2D<double> &C) -{ - for (unsigned int i = 0; i < C.size(); i++) - if (C[i] != InsufficientData) - C[i] *= calTable[i]; -} - -void compensateLambdasForCal(const Array2D<double> &calTable, - const Array2D<double> &oldLambdas, - Array2D<double> &newLambdas) -{ - double minNewLambda = std::numeric_limits<double>::max(); - for (unsigned int i = 0; i < newLambdas.size(); i++) { - newLambdas[i] = oldLambdas[i] * calTable[i]; - minNewLambda = std::min(minNewLambda, newLambdas[i]); - } - for (unsigned int i = 0; i < newLambdas.size(); i++) - newLambdas[i] /= minNewLambda; -} - -[[maybe_unused]] static void printCalTable(const Array2D<double> &C) -{ - const Size &size = C.dimensions(); - printf("table: [\n"); - for (unsigned int j = 0; j < size.height; j++) { - for (unsigned int i = 0; i < size.width; i++) { - printf("%5.3f", 1.0 / C[j * size.width + i]); - if (i != size.width - 1 || j != size.height - 1) - printf(","); - } - printf("\n"); - } - printf("]\n"); -} - -/* - * Compute weight out of 1.0 which reflects how similar we wish to make the - * colours of these two regions. - */ -static double computeWeight(double Ci, double Cj, double sigma) -{ - if (Ci == InsufficientData || Cj == InsufficientData) - return 0; - double diff = (Ci - Cj) / sigma; - return exp(-diff * diff / 2); -} - -/* Compute all weights. */ -static void computeW(const Array2D<double> &C, double sigma, - SparseArray<double> &W) -{ - size_t XY = C.size(); - size_t X = C.dimensions().width; - - for (unsigned int i = 0; i < XY; i++) { - /* Start with neighbour above and go clockwise. */ - W[i][0] = i >= X ? computeWeight(C[i], C[i - X], sigma) : 0; - W[i][1] = i % X < X - 1 ? computeWeight(C[i], C[i + 1], sigma) : 0; - W[i][2] = i < XY - X ? computeWeight(C[i], C[i + X], sigma) : 0; - W[i][3] = i % X ? computeWeight(C[i], C[i - 1], sigma) : 0; - } -} - -/* Compute M, the large but sparse matrix such that M * lambdas = 0. */ -static void constructM(const Array2D<double> &C, - const SparseArray<double> &W, - SparseArray<double> &M) -{ - size_t XY = C.size(); - size_t X = C.dimensions().width; - - double epsilon = 0.001; - for (unsigned int i = 0; i < XY; i++) { - /* - * Note how, if C[i] == INSUFFICIENT_DATA, the weights will all - * be zero so the equation is still set up correctly. - */ - int m = !!(i >= X) + !!(i % X < X - 1) + !!(i < XY - X) + - !!(i % X); /* total number of neighbours */ - /* we'll divide the diagonal out straight away */ - double diagonal = (epsilon + W[i][0] + W[i][1] + W[i][2] + W[i][3]) * C[i]; - M[i][0] = i >= X ? (W[i][0] * C[i - X] + epsilon / m * C[i]) / diagonal : 0; - M[i][1] = i % X < X - 1 ? (W[i][1] * C[i + 1] + epsilon / m * C[i]) / diagonal : 0; - M[i][2] = i < XY - X ? (W[i][2] * C[i + X] + epsilon / m * C[i]) / diagonal : 0; - M[i][3] = i % X ? (W[i][3] * C[i - 1] + epsilon / m * C[i]) / diagonal : 0; - } -} - -/* - * In the compute_lambda_ functions, note that the matrix coefficients for the - * left/right neighbours are zero down the left/right edges, so we don't need - * need to test the i value to exclude them. - */ -static double computeLambdaBottom(int i, const SparseArray<double> &M, - Array2D<double> &lambda) -{ - return M[i][1] * lambda[i + 1] + M[i][2] * lambda[i + lambda.dimensions().width] + - M[i][3] * lambda[i - 1]; -} -static double computeLambdaBottomStart(int i, const SparseArray<double> &M, - Array2D<double> &lambda) -{ - return M[i][1] * lambda[i + 1] + M[i][2] * lambda[i + lambda.dimensions().width]; -} -static double computeLambdaInterior(int i, const SparseArray<double> &M, - Array2D<double> &lambda) -{ - return M[i][0] * lambda[i - lambda.dimensions().width] + M[i][1] * lambda[i + 1] + - M[i][2] * lambda[i + lambda.dimensions().width] + M[i][3] * lambda[i - 1]; -} -static double computeLambdaTop(int i, const SparseArray<double> &M, - Array2D<double> &lambda) -{ - return M[i][0] * lambda[i - lambda.dimensions().width] + M[i][1] * lambda[i + 1] + - M[i][3] * lambda[i - 1]; -} -static double computeLambdaTopEnd(int i, const SparseArray<double> &M, - Array2D<double> &lambda) -{ - return M[i][0] * lambda[i - lambda.dimensions().width] + M[i][3] * lambda[i - 1]; -} - -/* Gauss-Seidel iteration with over-relaxation. */ -static double gaussSeidel2Sor(const SparseArray<double> &M, double omega, - Array2D<double> &lambda, double lambdaBound) -{ - int XY = lambda.size(); - int X = lambda.dimensions().width; - const double min = 1 - lambdaBound, max = 1 + lambdaBound; - Array2D<double> oldLambda = lambda; - int i; - lambda[0] = computeLambdaBottomStart(0, M, lambda); - lambda[0] = std::clamp(lambda[0], min, max); - for (i = 1; i < X; i++) { - lambda[i] = computeLambdaBottom(i, M, lambda); - lambda[i] = std::clamp(lambda[i], min, max); - } - for (; i < XY - X; i++) { - lambda[i] = computeLambdaInterior(i, M, lambda); - lambda[i] = std::clamp(lambda[i], min, max); - } - for (; i < XY - 1; i++) { - lambda[i] = computeLambdaTop(i, M, lambda); - lambda[i] = std::clamp(lambda[i], min, max); - } - lambda[i] = computeLambdaTopEnd(i, M, lambda); - lambda[i] = std::clamp(lambda[i], min, max); - /* - * Also solve the system from bottom to top, to help spread the updates - * better. - */ - lambda[i] = computeLambdaTopEnd(i, M, lambda); - lambda[i] = std::clamp(lambda[i], min, max); - for (i = XY - 2; i >= XY - X; i--) { - lambda[i] = computeLambdaTop(i, M, lambda); - lambda[i] = std::clamp(lambda[i], min, max); - } - for (; i >= X; i--) { - lambda[i] = computeLambdaInterior(i, M, lambda); - lambda[i] = std::clamp(lambda[i], min, max); - } - for (; i >= 1; i--) { - lambda[i] = computeLambdaBottom(i, M, lambda); - lambda[i] = std::clamp(lambda[i], min, max); - } - lambda[0] = computeLambdaBottomStart(0, M, lambda); - lambda[0] = std::clamp(lambda[0], min, max); - double maxDiff = 0; - for (i = 0; i < XY; i++) { - lambda[i] = oldLambda[i] + (lambda[i] - oldLambda[i]) * omega; - if (fabs(lambda[i] - oldLambda[i]) > fabs(maxDiff)) - maxDiff = lambda[i] - oldLambda[i]; - } - return maxDiff; -} - -/* Normalise the values so that the smallest value is 1. */ -static void normalise(Array2D<double> &results) -{ - double minval = *std::min_element(results.begin(), results.end()); - std::for_each(results.begin(), results.end(), - [minval](double val) { return val / minval; }); -} - -/* Rescale the values so that the average value is 1. */ -static void reaverage(Array2D<double> &data) -{ - double sum = std::accumulate(data.begin(), data.end(), 0.0); - double ratio = 1 / (sum / data.size()); - std::for_each(data.begin(), data.end(), - [ratio](double val) { return val * ratio; }); -} - -static void runMatrixIterations(const Array2D<double> &C, - Array2D<double> &lambda, - const SparseArray<double> &W, - SparseArray<double> &M, double omega, - unsigned int nIter, double threshold, double lambdaBound) -{ - constructM(C, W, M); - double lastMaxDiff = std::numeric_limits<double>::max(); - for (unsigned int i = 0; i < nIter; i++) { - double maxDiff = fabs(gaussSeidel2Sor(M, omega, lambda, lambdaBound)); - if (maxDiff < threshold) { - LOG(RPiAlsc, Debug) - << "Stop after " << i + 1 << " iterations"; - break; - } - /* - * this happens very occasionally (so make a note), though - * doesn't seem to matter - */ - if (maxDiff > lastMaxDiff) - LOG(RPiAlsc, Debug) - << "Iteration " << i << ": maxDiff gone up " - << lastMaxDiff << " to " << maxDiff; - lastMaxDiff = maxDiff; - } - /* We're going to normalise the lambdas so the total average is 1. */ - reaverage(lambda); -} - -static void addLuminanceRb(Array2D<double> &result, const Array2D<double> &lambda, - const Array2D<double> &luminanceLut, - double luminanceStrength) -{ - for (unsigned int i = 0; i < result.size(); i++) - result[i] = lambda[i] * ((luminanceLut[i] - 1) * luminanceStrength + 1); -} - -static void addLuminanceG(Array2D<double> &result, double lambda, - const Array2D<double> &luminanceLut, - double luminanceStrength) -{ - for (unsigned int i = 0; i < result.size(); i++) - result[i] = lambda * ((luminanceLut[i] - 1) * luminanceStrength + 1); -} - -void addLuminanceToTables(std::array<Array2D<double>, 3> &results, - const Array2D<double> &lambdaR, - double lambdaG, const Array2D<double> &lambdaB, - const Array2D<double> &luminanceLut, - double luminanceStrength) -{ - addLuminanceRb(results[0], lambdaR, luminanceLut, luminanceStrength); - addLuminanceG(results[1], lambdaG, luminanceLut, luminanceStrength); - addLuminanceRb(results[2], lambdaB, luminanceLut, luminanceStrength); - for (auto &r : results) - normalise(r); -} - -void Alsc::doAlsc() -{ - Array2D<double> &cr = tmpC_[0], &cb = tmpC_[1], &calTableR = tmpC_[2], - &calTableB = tmpC_[3], &calTableTmp = tmpC_[4]; - SparseArray<double> &wr = tmpM_[0], &wb = tmpM_[1], &M = tmpM_[2]; - - /* - * Calculate our R/B ("Cr"/"Cb") colour statistics, and assess which are - * usable. - */ - calculateCrCb(statistics_, cr, cb, config_.minCount, config_.minG); - /* - * Fetch the new calibrations (if any) for this CT. Resample them in - * case the camera mode is not full-frame. - */ - getCalTable(ct_, config_.calibrationsCr, calTableTmp); - resampleCalTable(calTableTmp, cameraMode_, calTableR); - getCalTable(ct_, config_.calibrationsCb, calTableTmp); - resampleCalTable(calTableTmp, cameraMode_, calTableB); - /* - * You could print out the cal tables for this image here, if you're - * tuning the algorithm... - * Apply any calibration to the statistics, so the adaptive algorithm - * makes only the extra adjustments. - */ - applyCalTable(calTableR, cr); - applyCalTable(calTableB, cb); - /* Compute weights between zones. */ - computeW(cr, config_.sigmaCr, wr); - computeW(cb, config_.sigmaCb, wb); - /* Run Gauss-Seidel iterations over the resulting matrix, for R and B. */ - runMatrixIterations(cr, lambdaR_, wr, M, config_.omega, config_.nIter, - config_.threshold, config_.lambdaBound); - runMatrixIterations(cb, lambdaB_, wb, M, config_.omega, config_.nIter, - config_.threshold, config_.lambdaBound); - /* - * Fold the calibrated gains into our final lambda values. (Note that on - * the next run, we re-start with the lambda values that don't have the - * calibration gains included.) - */ - compensateLambdasForCal(calTableR, lambdaR_, asyncLambdaR_); - compensateLambdasForCal(calTableB, lambdaB_, asyncLambdaB_); - /* Fold in the luminance table at the appropriate strength. */ - addLuminanceToTables(asyncResults_, asyncLambdaR_, 1.0, - asyncLambdaB_, luminanceTable_, - config_.luminanceStrength); -} - -/* Register algorithm with the system. */ -static Algorithm *create(Controller *controller) -{ - return (Algorithm *)new Alsc(controller); -} -static RegisterAlgorithm reg(NAME, &create); |