diff options
Diffstat (limited to 'Documentation')
0 files changed, 0 insertions, 0 deletions
![]() |
index : libcamera/libcamera.git | |
libcamera official repository | git repository hosting on libcamera.org |
summaryrefslogtreecommitdiff |
/*
* Copyright 2011 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#ifndef DRM_FOURCC_H
#define DRM_FOURCC_H
#include "drm.h"
#if defined(__cplusplus)
extern "C" {
#endif
/**
* DOC: overview
*
* In the DRM subsystem, framebuffer pixel formats are described using the
* fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the
* fourcc code, a Format Modifier may optionally be provided, in order to
* further describe the buffer's format - for example tiling or compression.
*
* Format Modifiers
* ----------------
*
* Format modifiers are used in conjunction with a fourcc code, forming a
* unique fourcc:modifier pair. This format:modifier pair must fully define the
* format and data layout of the buffer, and should be the only way to describe
* that particular buffer.
*
* Having multiple fourcc:modifier pairs which describe the same layout should
* be avoided, as such aliases run the risk of different drivers exposing
* different names for the same data format, forcing userspace to understand
* that they are aliases.
*
* Format modifiers may change any property of the buffer, including the number
* of planes and/or the required allocation size. Format modifiers are
* vendor-namespaced, and as such the relationship between a fourcc code and a
* modifier is specific to the modifer being used. For example, some modifiers
* may preserve meaning - such as number of planes - from the fourcc code,
* whereas others may not.
*
* Modifiers must uniquely encode buffer layout. In other words, a buffer must
* match only a single modifier. A modifier must not be a subset of layouts of
* another modifier. For instance, it's incorrect to encode pitch alignment in
* a modifier: a buffer may match a 64-pixel aligned modifier and a 32-pixel
* aligned modifier. That said, modifiers can have implicit minimal
* requirements.
*
* For modifiers where the combination of fourcc code and modifier can alias,
* a canonical pair needs to be defined and used by all drivers. Preferred
* combinations are also encouraged where all combinations might lead to
* confusion and unnecessarily reduced interoperability. An example for the
* latter is AFBC, where the ABGR layouts are preferred over ARGB layouts.
*
* There are two kinds of modifier users:
*
* - Kernel and user-space drivers: for drivers it's important that modifiers
* don't alias, otherwise two drivers might support the same format but use
* different aliases, preventing them from sharing buffers in an efficient
* format.
* - Higher-level programs interfacing with KMS/GBM/EGL/Vulkan/etc: these users
* see modifiers as opaque tokens they can check for equality and intersect.
* These users musn't need to know to reason about the modifier value
* (i.e. they are not expected to extract information out of the modifier).
*
* Vendors should document their modifier usage in as much detail as
* possible, to ensure maximum compatibility across devices, drivers and
* applications.
*
* The authoritative list of format modifier codes is found in
* `include/uapi/drm/drm_fourcc.h`
*/
#define fourcc_code(a, b, c, d) ((__u32)(a) | ((__u32)(b) << 8) | \
((__u32)(c) << 16) | ((__u32)(d) << 24))
#define DRM_FORMAT_BIG_ENDIAN (1U<<31) /* format is big endian instead of little endian */
/* Reserve 0 for the invalid format specifier */
#define DRM_FORMAT_INVALID 0
/* color index */
#define DRM_FORMAT_C8 fourcc_code('C', '8', ' ', ' ') /* [7:0] C */
/* 8 bpp Red */
#define DRM_FORMAT_R8 fourcc_code('R', '8', ' ', ' ') /* [7:0] R */
/* 10 bpp Red */
#define DRM_FORMAT_R10 fourcc_code('R', '1', '0', ' ') /* [15:0] x:R 6:10 little endian */
/* 12 bpp Red */
#define DRM_FORMAT_R12 fourcc_code('R', '1', '2', ' ') /* [15:0] x:R 4:12 little endian */
/* 16 bpp Red */
#define DRM_FORMAT_R16 fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */
/* 16 bpp RG */
#define DRM_FORMAT_RG88 fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */
#define DRM_FORMAT_GR88 fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */
/* 32 bpp RG */
#define DRM_FORMAT_RG1616 fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */
#define DRM_FORMAT_GR1616 fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */
/* 8 bpp RGB */
#define DRM_FORMAT_RGB332 fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */
#define DRM_FORMAT_BGR233 fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */
/* 16 bpp RGB */
#define DRM_FORMAT_XRGB4444 fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */
#define DRM_FORMAT_XBGR4444 fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */
#define DRM_FORMAT_RGBX4444 fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */
#define DRM_FORMAT_BGRX4444 fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */
#define DRM_FORMAT_ARGB4444 fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */
#define DRM_FORMAT_ABGR4444 fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */
#define DRM_FORMAT_RGBA4444 fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */
#define DRM_FORMAT_BGRA4444 fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */
#define DRM_FORMAT_XRGB1555 fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */
#define DRM_FORMAT_XBGR1555 fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */
#define DRM_FORMAT_RGBX5551 fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */
#define DRM_FORMAT_BGRX5551 fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */
#define DRM_FORMAT_ARGB1555 fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */
#define DRM_FORMAT_ABGR1555 fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */
#define DRM_FORMAT_RGBA5551 fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */
#define DRM_FORMAT_BGRA5551 fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */
#define DRM_FORMAT_RGB565 fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */
#define DRM_FORMAT_BGR565 fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */
/* 24 bpp RGB */
#define DRM_FORMAT_RGB888 fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */
#define DRM_FORMAT_BGR888 fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */
/* 32 bpp RGB */
#define DRM_FORMAT_XRGB8888 fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */
#define DRM_FORMAT_XBGR8888 fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */
#define DRM_FORMAT_RGBX8888 fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */
#define DRM_FORMAT_BGRX8888 fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */
#define DRM_FORMAT_ARGB8888 fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */
#define DRM_FORMAT_ABGR8888 fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */
#define DRM_FORMAT_RGBA8888 fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */
#define DRM_FORMAT_BGRA8888 fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */
#define DRM_FORMAT_XRGB2101010 fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */
#define DRM_FORMAT_XBGR2101010 fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */
#define DRM_FORMAT_RGBX1010102 fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */
#define DRM_FORMAT_BGRX1010102 fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */
#define DRM_FORMAT_ARGB2101010 fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */
#define DRM_FORMAT_ABGR2101010 fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */
#define DRM_FORMAT_RGBA1010102 fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */
#define DRM_FORMAT_BGRA1010102 fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */
/* 64 bpp RGB */
#define DRM_FORMAT_XRGB16161616 fourcc_code('X', 'R', '4', '8') /* [63:0] x:R:G:B 16:16:16:16 little endian */
#define DRM_FORMAT_XBGR16161616 fourcc_code('X', 'B', '4', '8') /* [63:0] x:B:G:R 16:16:16:16 little endian */
#define DRM_FORMAT_ARGB16161616 fourcc_code('A', 'R', '4', '8') /* [63:0] A:R:G:B 16:16:16:16 little endian */
#define DRM_FORMAT_ABGR16161616 fourcc_code('A', 'B', '4', '8') /* [63:0] A:B:G:R 16:16:16:16 little endian */
/*
* Floating point 64bpp RGB
* IEEE 754-2008 binary16 half-precision float
* [15:0] sign:exponent:mantissa 1:5:10
*/
#define DRM_FORMAT_XRGB16161616F fourcc_code('X', 'R', '4', 'H') /* [63:0] x:R:G:B 16:16:16:16 little endian */
#define DRM_FORMAT_XBGR16161616F fourcc_code('X', 'B', '4', 'H') /* [63:0] x:B:G:R 16:16:16:16 little endian */
#define DRM_FORMAT_ARGB16161616F fourcc_code('A', 'R', '4', 'H') /* [63:0] A:R:G:B 16:16:16:16 little endian */
#define DRM_FORMAT_ABGR16161616F fourcc_code('A', 'B', '4', 'H') /* [63:0] A:B:G:R 16:16:16:16 little endian */
/*
* RGBA format with 10-bit components packed in 64-bit per pixel, with 6 bits
* of unused padding per component:
*/
#define DRM_FORMAT_AXBXGXRX106106106106 fourcc_code('A', 'B', '1', '0') /* [63:0] A:x:B:x:G:x:R:x 10:6:10:6:10:6:10:6 little endian */
/* packed YCbCr */
#define DRM_FORMAT_YUYV fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */
#define DRM_FORMAT_YVYU fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */
#define DRM_FORMAT_UYVY fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */
#define DRM_FORMAT_VYUY fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */
#define DRM_FORMAT_AYUV fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */
#define DRM_FORMAT_AVUY8888 fourcc_code('A', 'V', 'U', 'Y') /* [31:0] A:Cr:Cb:Y 8:8:8:8 little endian */
#define DRM_FORMAT_XYUV8888 fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */
#define DRM_FORMAT_XVUY8888 fourcc_code('X', 'V', 'U', 'Y') /* [31:0] X:Cr:Cb:Y 8:8:8:8 little endian */
#define DRM_FORMAT_VUY888 fourcc_code('V', 'U', '2', '4') /* [23:0] Cr:Cb:Y 8:8:8 little endian */
#define DRM_FORMAT_VUY101010 fourcc_code('V', 'U', '3', '0') /* Y followed by U then V, 10:10:10. Non-linear modifier only */
/*
* packed Y2xx indicate for each component, xx valid data occupy msb
* 16-xx padding occupy lsb
*/
#define DRM_FORMAT_Y210 fourcc_code('Y', '2', '1', '0') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 10:6:10:6:10:6:10:6 little endian per 2 Y pixels */
#define DRM_FORMAT_Y212 fourcc_code('Y', '2', '1', '2') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 12:4:12:4:12:4:12:4 little endian per 2 Y pixels */
#define DRM_FORMAT_Y216 fourcc_code('Y', '2', '1', '6') /* [63:0] Cr0:Y1:Cb0:Y0 16:16:16:16 little endian per 2 Y pixels */
/*
* packed Y4xx indicate for each component, xx valid data occupy msb
* 16-xx padding occupy lsb except Y410
*/
#define DRM_FORMAT_Y410 fourcc_code('Y', '4', '1', '0') /* [31:0] A:Cr:Y:Cb 2:10:10:10 little endian */
#define DRM_FORMAT_Y412 fourcc_code('Y', '4', '1', '2') /* [63:0] A:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
#define DRM_FORMAT_Y416 fourcc_code('Y', '4', '1', '6') /* [63:0] A:Cr:Y:Cb 16:16:16:16 little endian */
#define DRM_FORMAT_XVYU2101010 fourcc_code('X', 'V', '3', '0') /* [31:0] X:Cr:Y:Cb 2:10:10:10 little endian */
#define DRM_FORMAT_XVYU12_16161616 fourcc_code('X', 'V', '3', '6') /* [63:0] X:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
#define DRM_FORMAT_XVYU16161616 fourcc_code('X', 'V', '4', '8') /* [63:0] X:Cr:Y:Cb 16:16:16:16 little endian */
/*
* packed YCbCr420 2x2 tiled formats
* first 64 bits will contain Y,Cb,Cr components for a 2x2 tile
*/
/* [63:0] A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0 1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
#define DRM_FORMAT_Y0L0 fourcc_code('Y', '0', 'L', '0')
/* [63:0] X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0 1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
#define DRM_FORMAT_X0L0 fourcc_code('X', '0', 'L', '0')
/* [63:0] A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0 1:1:10:10:10:1:1:10:10:10 little endian */
#define DRM_FORMAT_Y0L2 fourcc_code('Y', '0', 'L', '2')
/* [63:0] X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0 1:1:10:10:10:1:1:10:10:10 little endian */
#define DRM_FORMAT_X0L2 fourcc_code('X', '0', 'L', '2')
/*
* 1-plane YUV 4:2:0
* In these formats, the component ordering is specified (Y, followed by U
* then V), but the exact Linear layout is undefined.
* These formats can only be used with a non-Linear modifier.
*/
#define DRM_FORMAT_YUV420_8BIT fourcc_code('Y', 'U', '0', '8')
#define DRM_FORMAT_YUV420_10BIT fourcc_code('Y', 'U', '1', '0')
/*
* 2 plane RGB + A
* index 0 = RGB plane, same format as the corresponding non _A8 format has
* index 1 = A plane, [7:0] A
*/
#define DRM_FORMAT_XRGB8888_A8 fourcc_code('X', 'R', 'A', '8')
#define DRM_FORMAT_XBGR8888_A8 fourcc_code('X', 'B', 'A', '8')
#define DRM_FORMAT_RGBX8888_A8 fourcc_code('R', 'X', 'A', '8')
#define DRM_FORMAT_BGRX8888_A8 fourcc_code('B', 'X', 'A', '8')
#define DRM_FORMAT_RGB888_A8 fourcc_code('R', '8', 'A', '8')
#define DRM_FORMAT_BGR888_A8 fourcc_code('B', '8', 'A', '8')
#define DRM_FORMAT_RGB565_A8 fourcc_code('R', '5', 'A', '8')
#define DRM_FORMAT_BGR565_A8 fourcc_code('B', '5', 'A', '8')
/*
* 2 plane YCbCr
* index 0 = Y plane, [7:0] Y
* index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian
* or
* index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian
*/
#define DRM_FORMAT_NV12 fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */
#define DRM_FORMAT_NV21 fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */
#define DRM_FORMAT_NV16 fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */
#define DRM_FORMAT_NV61 fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */
#define DRM_FORMAT_NV24 fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */
#define DRM_FORMAT_NV42 fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */
/*
* 2 plane YCbCr
* index 0 = Y plane, [39:0] Y3:Y2:Y1:Y0 little endian
* index 1 = Cr:Cb plane, [39:0] Cr1:Cb1:Cr0:Cb0 little endian
*/
#define DRM_FORMAT_NV15 fourcc_code('N', 'V', '1', '5') /* 2x2 subsampled Cr:Cb plane */
/*
* 2 plane YCbCr MSB aligned
* index 0 = Y plane, [15:0] Y:x [10:6] little endian
* index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
*/
#define DRM_FORMAT_P210 fourcc_code('P', '2', '1', '0') /* 2x1 subsampled Cr:Cb plane, 10 bit per channel */
/*
* 2 plane YCbCr MSB aligned
* index 0 = Y plane, [15:0] Y:x [10:6] little endian
* index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
*/
#define DRM_FORMAT_P010 fourcc_code('P', '0', '1', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel */
/*
* 2 plane YCbCr MSB aligned
* index 0 = Y plane, [15:0] Y:x [12:4] little endian
* index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian
*/
#define DRM_FORMAT_P012 fourcc_code('P', '0', '1', '2') /* 2x2 subsampled Cr:Cb plane 12 bits per channel */
/*
* 2 plane YCbCr MSB aligned
* index 0 = Y plane, [15:0] Y little endian
* index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian
*/
#define DRM_FORMAT_P016 fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per channel */
/* 2 plane YCbCr420.
* 3 10 bit components and 2 padding bits packed into 4 bytes.
* index 0 = Y plane, [31:0] x:Y2:Y1:Y0 2:10:10:10 little endian
* index 1 = Cr:Cb plane, [63:0] x:Cr2:Cb2:Cr1:x:Cb1:Cr0:Cb0 [2:10:10:10:2:10:10:10] little endian
*/
#define DRM_FORMAT_P030 fourcc_code('P', '0', '3', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel packed */
/* 3 plane non-subsampled (444) YCbCr
* 16 bits per component, but only 10 bits are used and 6 bits are padded
* index 0: Y plane, [15:0] Y:x [10:6] little endian
* index 1: Cb plane, [15:0] Cb:x [10:6] little endian
* index 2: Cr plane, [15:0] Cr:x [10:6] little endian
*/
#define DRM_FORMAT_Q410 fourcc_code('Q', '4', '1', '0')
/* 3 plane non-subsampled (444) YCrCb
* 16 bits per component, but only 10 bits are used and 6 bits are padded
* index 0: Y plane, [15:0] Y:x [10:6] little endian
* index 1: Cr plane, [15:0] Cr:x [10:6] little endian
* index 2: Cb plane, [15:0] Cb:x [10:6] little endian
*/
#define DRM_FORMAT_Q401 fourcc_code('Q', '4', '0', '1')
/*
* 3 plane YCbCr
* index 0: Y plane, [7:0] Y
* index 1: Cb plane, [7:0] Cb
* index 2: Cr plane, [7:0] Cr
* or
* index 1: Cr plane, [7:0] Cr
* index 2: Cb plane, [7:0] Cb
*/
#define DRM_FORMAT_YUV410 fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */
#define DRM_FORMAT_YVU410 fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */
#define DRM_FORMAT_YUV411 fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */
#define DRM_FORMAT_YVU411 fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */
#define DRM_FORMAT_YUV420 fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */
#define DRM_FORMAT_YVU420 fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */
#define DRM_FORMAT_YUV422 fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */
#define DRM_FORMAT_YVU422 fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */
#define DRM_FORMAT_YUV444 fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */
#define DRM_FORMAT_YVU444 fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */
/* Compressed formats */
#define DRM_FORMAT_MJPEG fourcc_code('M', 'J', 'P', 'G') /* Motion-JPEG */
/*
* Bayer formats
*
* Bayer formats contain green, red and blue components, with alternating lines
* of red and green, and blue and green pixels in different orders. For each
* block of 2x2 pixels there is one pixel with a red filter, two with a green
* filter, and one with a blue filter. The filters can be arranged in different
* patterns.
*
* For example, RGGB:
* row0: RGRGRGRG...
* row1: GBGBGBGB...
* row3: RGRGRGRG...
* row4: GBGBGBGB...
* ...
*
* Vendors have different methods to pack the sampling formats to increase data
* density. For this reason the fourcc only describes pixel sample size and the
* filter pattern for each block of 2x2 pixels. A modifier is needed to
* describe the memory layout.
*
* In addition to vendor modifiers for memory layout DRM_FORMAT_MOD_LINEAR may
* be used to describe a layout where all samples are placed consecutively in
* memory. If the sample does not fit inside a single byte, the sample storage
* is extended to the minimum number of (little endian) bytes that can hold the
* sample and any unused most-significant bits are defined as padding.
*
* For example, SRGGB10:
* Each 10-bit sample is contained in 2 consecutive little endian bytes, where
* the 6 most-significant bits are unused.
*/
/* 8-bit Bayer formats */
#define DRM_FORMAT_SRGGB8 fourcc_code('R', 'G', 'G', 'B')
#define DRM_FORMAT_SGRBG8 fourcc_code('G', 'R', 'B', 'G')
#define DRM_FORMAT_SGBRG8 fourcc_code('G', 'B', 'R', 'G')
#define DRM_FORMAT_SBGGR8 fourcc_code('B', 'A', '8', '1')
/* 10-bit Bayer formats */
#define DRM_FORMAT_SRGGB10 fourcc_code('R', 'G', '1', '0')
#define DRM_FORMAT_SGRBG10 fourcc_code('B', 'A', '1', '0')
#define DRM_FORMAT_SGBRG10 fourcc_code('G', 'B', '1', '0')
#define DRM_FORMAT_SBGGR10 fourcc_code('B', 'G', '1', '0')
/* 12-bit Bayer formats */
#define DRM_FORMAT_SRGGB12 fourcc_code('R', 'G', '1', '2')
#define DRM_FORMAT_SGRBG12 fourcc_code('B', 'A', '1', '2')
#define DRM_FORMAT_SGBRG12 fourcc_code('G', 'B', '1', '2')
#define DRM_FORMAT_SBGGR12 fourcc_code('B', 'G', '1', '2')
/* 14-bit Bayer formats */
#define DRM_FORMAT_SRGGB14 fourcc_code('R', 'G', '1', '4')
#define DRM_FORMAT_SGRBG14 fourcc_code('B', 'A', '1', '4')
#define DRM_FORMAT_SGBRG14 fourcc_code('G', 'B', '1', '4')
#define DRM_FORMAT_SBGGR14 fourcc_code('B', 'G', '1', '4')
/* 16-bit Bayer formats */
#define DRM_FORMAT_SRGGB16 fourcc_code('R', 'G', 'B', '6')
#define DRM_FORMAT_SGRBG16 fourcc_code('G', 'R', '1', '6')
#define DRM_FORMAT_SGBRG16 fourcc_code('G', 'B', '1', '6')
#define DRM_FORMAT_SBGGR16 fourcc_code('B', 'Y', 'R', '2')
/*
* Format Modifiers:
*
* Format modifiers describe, typically, a re-ordering or modification
* of the data in a plane of an FB. This can be used to express tiled/
* swizzled formats, or compression, or a combination of the two.
*
* The upper 8 bits of the format modifier are a vendor-id as assigned
* below. The lower 56 bits are assigned as vendor sees fit.
*/
/* Vendor Ids: */
#define DRM_FORMAT_MOD_VENDOR_NONE 0
#define DRM_FORMAT_MOD_VENDOR_INTEL 0x01
#define DRM_FORMAT_MOD_VENDOR_AMD 0x02
#define DRM_FORMAT_MOD_VENDOR_NVIDIA 0x03
#define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04
#define DRM_FORMAT_MOD_VENDOR_QCOM 0x05
#define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06
#define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07
#define DRM_FORMAT_MOD_VENDOR_ARM 0x08
#define DRM_FORMAT_MOD_VENDOR_ALLWINNER 0x09
#define DRM_FORMAT_MOD_VENDOR_AMLOGIC 0x0a
#define DRM_FORMAT_MOD_VENDOR_MIPI 0x0b
/* add more to the end as needed */
#define DRM_FORMAT_RESERVED ((1ULL << 56) - 1)
#define fourcc_mod_get_vendor(modifier) \
(((modifier) >> 56) & 0xff)
#define fourcc_mod_is_vendor(modifier, vendor) \
(fourcc_mod_get_vendor(modifier) == DRM_FORMAT_MOD_VENDOR_## vendor)
#define fourcc_mod_code(vendor, val) \
((((__u64)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL))
/*
* Format Modifier tokens:
*
* When adding a new token please document the layout with a code comment,
* similar to the fourcc codes above. drm_fourcc.h is considered the
* authoritative source for all of these.
*
* Generic modifier names:
*
* DRM_FORMAT_MOD_GENERIC_* definitions are used to provide vendor-neutral names
* for layouts which are common across multiple vendors. To preserve
* compatibility, in cases where a vendor-specific definition already exists and
* a generic name for it is desired, the common name is a purely symbolic alias
* and must use the same numerical value as the original definition.
*
* Note that generic names should only be used for modifiers which describe
* generic layouts (such as pixel re-ordering), which may have
* independently-developed support across multiple vendors.
*
* In future cases where a generic layout is identified before merging with a
* vendor-specific modifier, a new 'GENERIC' vendor or modifier using vendor
* 'NONE' could be considered. This should only be for obvious, exceptional
* cases to avoid polluting the 'GENERIC' namespace with modifiers which only
* apply to a single vendor.
*
* Generic names should not be used for cases where multiple hardware vendors
* have implementations of the same standardised compression scheme (such as
* AFBC). In those cases, all implementations should use the same format
* modifier(s), reflecting the vendor of the standard.
*/
#define DRM_FORMAT_MOD_GENERIC_16_16_TILE DRM_FORMAT_MOD_SAMSUNG_16_16_TILE
/*
* Invalid Modifier
*
* This modifier can be used as a sentinel to terminate the format modifiers
* list, or to initialize a variable with an invalid modifier. It might also be
* used to report an error back to userspace for certain APIs.
*/
#define DRM_FORMAT_MOD_INVALID fourcc_mod_code(NONE, DRM_FORMAT_RESERVED)
/*
* Linear Layout
*
* Just plain linear layout. Note that this is different from no specifying any
* modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl),
* which tells the driver to also take driver-internal information into account
* and so might actually result in a tiled framebuffer.
*/
#define DRM_FORMAT_MOD_LINEAR fourcc_mod_code(NONE, 0)
/*
* Deprecated: use DRM_FORMAT_MOD_LINEAR instead
*
* The "none" format modifier doesn't actually mean that the modifier is
* implicit, instead it means that the layout is linear. Whether modifiers are
* used is out-of-band information carried in an API-specific way (e.g. in a
* flag for drm_mode_fb_cmd2).
*/
#define DRM_FORMAT_MOD_NONE 0
/* Intel framebuffer modifiers */
/*
* Intel X-tiling layout
*
* This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
* in row-major layout. Within the tile bytes are laid out row-major, with
* a platform-dependent stride. On top of that the memory can apply
* platform-depending swizzling of some higher address bits into bit6.
*
* Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
* On earlier platforms the is highly platforms specific and not useful for
* cross-driver sharing. It exists since on a given platform it does uniquely
* identify the layout in a simple way for i915-specific userspace, which
* facilitated conversion of userspace to modifiers. Additionally the exact
* format on some really old platforms is not known.
*/
#define I915_FORMAT_MOD_X_TILED fourcc_mod_code(INTEL, 1)
/*
* Intel Y-tiling layout
*
* This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
* in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes)
* chunks column-major, with a platform-dependent height. On top of that the
* memory can apply platform-depending swizzling of some higher address bits
* into bit6.
*
* Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
* On earlier platforms the is highly platforms specific and not useful for
* cross-driver sharing. It exists since on a given platform it does uniquely
* identify the layout in a simple way for i915-specific userspace, which
* facilitated conversion of userspace to modifiers. Additionally the exact
* format on some really old platforms is not known.
*/
#define I915_FORMAT_MOD_Y_TILED fourcc_mod_code(INTEL, 2)
/*
* Intel Yf-tiling layout
*
* This is a tiled layout using 4Kb tiles in row-major layout.
* Within the tile pixels are laid out in 16 256 byte units / sub-tiles which
* are arranged in four groups (two wide, two high) with column-major layout.
* Each group therefore consits out of four 256 byte units, which are also laid
* out as 2x2 column-major.
* 256 byte units are made out of four 64 byte blocks of pixels, producing
* either a square block or a 2:1 unit.
* 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width
* in pixel depends on the pixel depth.
*/
#define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3)
/*
* Intel color control surface (CCS) for render compression
*
* The framebuffer format must be one of the 8:8:8:8 RGB formats.
* The main surface will be plane index 0 and must be Y/Yf-tiled,
* the CCS will be plane index 1.
*
* Each CCS tile matches a 1024x512 pixel area of the main surface.
* To match certain aspects of the 3D hardware the CCS is
* considered to be made up of normal 128Bx32 Y tiles, Thus
* the CCS pitch must be specified in multiples of 128 bytes.
*
* In reality the CCS tile appears to be a 64Bx64 Y tile, composed
* of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks.
* But that fact is not relevant unless the memory is accessed
* directly.
*/
#define I915_FORMAT_MOD_Y_TILED_CCS fourcc_mod_code(INTEL, 4)
#define I915_FORMAT_MOD_Yf_TILED_CCS fourcc_mod_code(INTEL, 5)
/*
* Intel color control surfaces (CCS) for Gen-12 render compression.
*
* The main surface is Y-tiled and at plane index 0, the CCS is linear and
* at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
* main surface. In other words, 4 bits in CCS map to a main surface cache
* line pair. The main surface pitch is required to be a multiple of four
* Y-tile widths.
*/
#define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS fourcc_mod_code(INTEL, 6)
/*
* Intel color control surfaces (CCS) for Gen-12 media compression
*
* The main surface is Y-tiled and at plane index 0, the CCS is linear and
* at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
* main surface. In other words, 4 bits in CCS map to a main surface cache
* line pair. The main surface pitch is required to be a multiple of four
* Y-tile widths. For semi-planar formats like NV12, CCS planes follow the
* Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,
* planes 2 and 3 for the respective CCS.
*/
#define I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS fourcc_mod_code(INTEL, 7)
/*
* Intel Color Control Surface with Clear Color (CCS) for Gen-12 render
* compression.
*
* The main surface is Y-tiled and is at plane index 0 whereas CCS is linear
* and at index 1. The clear color is stored at index 2, and the pitch should
* be ignored. The clear color structure is 256 bits. The first 128 bits
* represents Raw Clear Color Red, Green, Blue and Alpha color each represented
* by 32 bits. The raw clear color is consumed by the 3d engine and generates
* the converted clear color of size 64 bits. The first 32 bits store the Lower
* Converted Clear Color value and the next 32 bits store the Higher Converted
* Clear Color value when applicable. The Converted Clear Color values are
* consumed by the DE. The last 64 bits are used to store Color Discard Enable
* and Depth Clear Value Valid which are ignored by the DE. A CCS cache line
* corresponds to an area of 4x1 tiles in the main surface. The main surface
* pitch is required to be a multiple of 4 tile widths.
*/
#define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC fourcc_mod_code(INTEL, 8)
/*
* Intel Tile 4 layout
*
* This is a tiled layout using 4KB tiles in a row-major layout. It has the same
* shape as Tile Y at two granularities: 4KB (128B x 32) and 64B (16B x 4). It
* only differs from Tile Y at the 256B granularity in between. At this
* granularity, Tile Y has a shape of 16B x 32 rows, but this tiling has a shape
* of 64B x 8 rows.
*/
#define I915_FORMAT_MOD_4_TILED fourcc_mod_code(INTEL, 9)
/*
* Intel color control surfaces (CCS) for DG2 render compression.
*
* The main surface is Tile 4 and at plane index 0. The CCS data is stored
* outside of the GEM object in a reserved memory area dedicated for the
* storage of the CCS data for all RC/RC_CC/MC compressible GEM objects. The
* main surface pitch is required to be a multiple of four Tile 4 widths.
*/
#define I915_FORMAT_MOD_4_TILED_DG2_RC_CCS fourcc_mod_code(INTEL, 10)
/*
* Intel color control surfaces (CCS) for DG2 media compression.
*
* The main surface is Tile 4 and at plane index 0. For semi-planar formats
* like NV12, the Y and UV planes are Tile 4 and are located at plane indices
* 0 and 1, respectively. The CCS for all planes are stored outside of the
* GEM object in a reserved memory area dedicated for the storage of the
* CCS data for all RC/RC_CC/MC compressible GEM objects. The main surface
* pitch is required to be a multiple of four Tile 4 widths.
*/
#define I915_FORMAT_MOD_4_TILED_DG2_MC_CCS fourcc_mod_code(INTEL, 11)
/*
* Intel Color Control Surface with Clear Color (CCS) for DG2 render compression.
*
* The main surface is Tile 4 and at plane index 0. The CCS data is stored
* outside of the GEM object in a reserved memory area dedicated for the
* storage of the CCS data for all RC/RC_CC/MC compressible GEM objects. The
* main surface pitch is required to be a multiple of four Tile 4 widths. The
* clear color is stored at plane index 1 and the pitch should be ignored. The
* format of the 256 bits of clear color data matches the one used for the
* I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC modifier, see its description
* for details.
*/
#define I915_FORMAT_MOD_4_TILED_DG2_RC_CCS_CC fourcc_mod_code(INTEL, 12)
/*
* IPU3 Bayer packing layout
*
* The IPU3 raw Bayer formats use a custom packing layout where there are no
* gaps between each 10-bit sample. It packs 25 pixels into 32 bytes leaving
* the 6 most significant bits in the last byte unused. The format is little
* endian.
*/
#define IPU3_FORMAT_MOD_PACKED fourcc_mod_code(INTEL, 13)
/*
* Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks
*
* Macroblocks are laid in a Z-shape, and each pixel data is following the
* standard NV12 style.
* As for NV12, an image is the result of two frame buffers: one for Y,
* one for the interleaved Cb/Cr components (1/2 the height of the Y buffer).
* Alignment requirements are (for each buffer):
* - multiple of 128 pixels for the width
* - multiple of 32 pixels for the height
*
* For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html
*/
#define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE fourcc_mod_code(SAMSUNG, 1)
/*
* Tiled, 16 (pixels) x 16 (lines) - sized macroblocks
*
* This is a simple tiled layout using tiles of 16x16 pixels in a row-major
* layout. For YCbCr formats Cb/Cr components are taken in such a way that
* they correspond to their 16x16 luma block.
*/
#define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE fourcc_mod_code(SAMSUNG, 2)
/*
* Qualcomm Compressed Format
*
* Refers to a compressed variant of the base format that is compressed.
* Implementation may be platform and base-format specific.
*
* Each macrotile consists of m x n (mostly 4 x 4) tiles.
* Pixel data pitch/stride is aligned with macrotile width.
* Pixel data height is aligned with macrotile height.
* Entire pixel data buffer is aligned with 4k(bytes).
*/
#define DRM_FORMAT_MOD_QCOM_COMPRESSED fourcc_mod_code(QCOM, 1)
/*
* Qualcomm Tiled Format
*
* Similar to DRM_FORMAT_MOD_QCOM_COMPRESSED but not compressed.
* Implementation may be platform and base-format specific.
*
* Each macrotile consists of m x n (mostly 4 x 4) tiles.
* Pixel data pitch/stride is aligned with macrotile width.
* Pixel data height is aligned with macrotile height.
* Entire pixel data buffer is aligned with 4k(bytes).
*/
#define DRM_FORMAT_MOD_QCOM_TILED3 fourcc_mod_code(QCOM, 3)
/*
* Qualcomm Alternate Tiled Format
*
* Alternate tiled format typically only used within GMEM.
* Implementation may be platform and base-format specific.
*/
#define DRM_FORMAT_MOD_QCOM_TILED2 fourcc_mod_code(QCOM, 2)
/* Vivante framebuffer modifiers */
/*
* Vivante 4x4 tiling layout
*
* This is a simple tiled layout using tiles of 4x4 pixels in a row-major
* layout.
*/
#define DRM_FORMAT_MOD_VIVANTE_TILED fourcc_mod_code(VIVANTE, 1)
/*
* Vivante 64x64 super-tiling layout
*
* This is a tiled layout using 64x64 pixel super-tiles, where each super-tile
* contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row-
* major layout.
*
* For more information: see
* https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling
*/
#define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED fourcc_mod_code(VIVANTE, 2)
/*
* Vivante 4x4 tiling layout for dual-pipe
*
* Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a
* different base address. Offsets from the base addresses are therefore halved
* compared to the non-split tiled layout.
*/
#define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED fourcc_mod_code(VIVANTE, 3)
/*
* Vivante 64x64 super-tiling layout for dual-pipe
*
* Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile
* starts at a different base address. Offsets from the base addresses are
* therefore halved compared to the non-split super-tiled layout.
*/
#define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4)
/* NVIDIA frame buffer modifiers */
/*
* Tegra Tiled Layout, used by Tegra 2, 3 and 4.
*
* Pixels are arranged in simple tiles of 16 x 16 bytes.
*/
#define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1)
/*
* Generalized Block Linear layout, used by desktop GPUs starting with NV50/G80,
* and Tegra GPUs starting with Tegra K1.
*
* Pixels are arranged in Groups of Bytes (GOBs). GOB size and layout varies
* based on the architecture generation. GOBs themselves are then arranged in
* 3D blocks, with the block dimensions (in terms of GOBs) always being a power
* of two, and hence expressible as their log2 equivalent (E.g., "2" represents
* a block depth or height of "4").
*
* Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
* in full detail.
*
* Macro
* Bits Param Description
* ---- ----- -----------------------------------------------------------------
*
* 3:0 h log2(height) of each block, in GOBs. Placed here for
* compatibility with the existing
* DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
*
* 4:4 - Must be 1, to indicate block-linear layout. Necessary for
* compatibility with the existing
* DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
*
* 8:5 - Reserved (To support 3D-surfaces with variable log2(depth) block
* size). Must be zero.
*
* Note there is no log2(width) parameter. Some portions of the
* hardware support a block width of two gobs, but it is impractical
* to use due to lack of support elsewhere, and has no known
* benefits.
*
* 11:9 - Reserved (To support 2D-array textures with variable array stride
* in blocks, specified via log2(tile width in blocks)). Must be
* zero.
*
* 19:12 k Page Kind. This value directly maps to a field in the page
* tables of all GPUs >= NV50. It affects the exact layout of bits
* in memory and can be derived from the tuple
*
* (format, GPU model, compression type, samples per pixel)
*
* Where compression type is defined below. If GPU model were
* implied by the format modifier, format, or memory buffer, page
* kind would not need to be included in the modifier itself, but
* since the modifier should define the layout of the associated
* memory buffer independent from any device or other context, it
* must be included here.
*
* 21:20 g GOB Height and Page Kind Generation. The height of a GOB changed
* starting with Fermi GPUs. Additionally, the mapping between page
* kind and bit layout has changed at various points.
*
* 0 = Gob Height 8, Fermi - Volta, Tegra K1+ Page Kind mapping
* 1 = Gob Height 4, G80 - GT2XX Page Kind mapping
* 2 = Gob Height 8, Turing+ Page Kind mapping
* 3 = Reserved for future use.
*
* 22:22 s Sector layout. On Tegra GPUs prior to Xavier, there is a further
* bit remapping step that occurs at an even lower level than the
* page kind and block linear swizzles. This causes the layout of
* surfaces mapped in those SOC's GPUs to be incompatible with the
* equivalent mapping on other GPUs in the same system.
*