diff options
-rw-r--r-- | utils/tuning/libtuning/ctt_ccm.py | 27 | ||||
-rw-r--r-- | utils/tuning/libtuning/generators/yaml_output.py | 5 | ||||
-rw-r--r-- | utils/tuning/libtuning/image.py | 7 | ||||
-rw-r--r-- | utils/tuning/libtuning/libtuning.py | 21 | ||||
-rw-r--r-- | utils/tuning/libtuning/macbeth.py | 13 | ||||
-rw-r--r-- | utils/tuning/libtuning/modules/lsc/raspberrypi.py | 12 | ||||
-rw-r--r-- | utils/tuning/libtuning/utils.py | 17 | ||||
-rw-r--r-- | utils/tuning/requirements.txt | 1 | ||||
-rwxr-xr-x | utils/tuning/rkisp1.py | 5 |
9 files changed, 62 insertions, 46 deletions
diff --git a/utils/tuning/libtuning/ctt_ccm.py b/utils/tuning/libtuning/ctt_ccm.py index f37adaf4..c4362756 100644 --- a/utils/tuning/libtuning/ctt_ccm.py +++ b/utils/tuning/libtuning/ctt_ccm.py @@ -4,6 +4,8 @@ # # camera tuning tool for CCM (colour correction matrix) +import logging + import numpy as np from scipy.optimize import minimize @@ -12,6 +14,8 @@ from .image import Image from .ctt_awb import get_alsc_patches from .utils import visualise_macbeth_chart +logger = logging.getLogger(__name__) + """ takes 8-bit macbeth chart values, degammas and returns 16 bit """ @@ -129,7 +133,7 @@ def ccm(Cam, cal_cr_list, cal_cb_list): """ ccm_tab = {} for Img in imgs: - Cam.log += '\nProcessing image: ' + Img.name + logger.info('Processing image: ' + Img.name) """ get macbeth patches with alsc applied if alsc enabled. Note: if alsc is disabled then colour_cals will be set to None and no @@ -154,7 +158,7 @@ def ccm(Cam, cal_cr_list, cal_cb_list): each channel for each patch """ gain = np.mean(m_srgb) / np.mean((r, g, b)) - Cam.log += '\nGain with respect to standard colours: {:.3f}'.format(gain) + logger.info(f'Gain with respect to standard colours: {gain:.3f}') r = np.mean(gain * r, axis=1) b = np.mean(gain * b, axis=1) g = np.mean(gain * g, axis=1) @@ -192,15 +196,13 @@ def ccm(Cam, cal_cr_list, cal_cb_list): zero since the input data is imperfect ''' - Cam.log += ("\n \n Optimised Matrix Below: \n \n") [r1, r2, g1, g2, b1, b2] = result.x # The new, optimised color correction matrix values + # This is the optimised Color Matrix (preserving greys by summing rows up to 1) optimised_ccm = [r1, r2, (1 - r1 - r2), g1, g2, (1 - g1 - g2), b1, b2, (1 - b1 - b2)] - # This is the optimised Color Matrix (preserving greys by summing rows up to 1) - Cam.log += str(optimised_ccm) - Cam.log += "\n Old Color Correction Matrix Below \n" - Cam.log += str(ccm) + logger.info(f'Optimized Matrix: {np.round(optimised_ccm, 4)}') + logger.info(f'Old Matrix: {np.round(ccm, 4)}') formatted_ccm = np.array(original_ccm).reshape((3, 3)) @@ -229,7 +231,7 @@ def ccm(Cam, cal_cr_list, cal_cb_list): We now want to spit out some data that shows how the optimisation has improved the color matrices ''' - Cam.log += "Here are the Improvements" + logger.info("Here are the Improvements") # CALCULATE WORST CASE delta e old_worst_delta_e = 0 @@ -244,8 +246,8 @@ def ccm(Cam, cal_cr_list, cal_cb_list): if new_delta_e > new_worst_delta_e: new_worst_delta_e = new_delta_e - Cam.log += "Before color correction matrix was optimised, we got an average delta E of " + str(before_average) + " and a maximum delta E of " + str(old_worst_delta_e) - Cam.log += "After color correction matrix was optimised, we got an average delta E of " + str(after_average) + " and a maximum delta E of " + str(new_worst_delta_e) + logger.info(f'delta E optimized: average: {after_average:.2f} max:{new_worst_delta_e:.2f}') + logger.info(f'delta E old: average: {before_average:.2f} max:{old_worst_delta_e:.2f}') visualise_macbeth_chart(m_rgb, optimised_ccm_rgb, after_gamma_rgb, str(Img.col) + str(matrix_selection_types[typenum])) ''' @@ -262,9 +264,8 @@ def ccm(Cam, cal_cr_list, cal_cb_list): ccm_tab[Img.col].append(optimised_ccm) else: ccm_tab[Img.col] = [optimised_ccm] - Cam.log += '\n' - Cam.log += '\nFinished processing images' + logger.info('Finished processing images') """ average any ccms that share a colour temperature """ @@ -273,7 +274,7 @@ def ccm(Cam, cal_cr_list, cal_cb_list): tab = np.where((10000 * tab) % 1 <= 0.05, tab + 0.00001, tab) tab = np.where((10000 * tab) % 1 >= 0.95, tab - 0.00001, tab) ccm_tab[k] = list(np.round(tab, 5)) - Cam.log += '\nMatrix calculated for colour temperature of {} K'.format(k) + logger.info(f'Matrix calculated for colour temperature of {k} K') """ return all ccms with respective colour temperature in the correct format, diff --git a/utils/tuning/libtuning/generators/yaml_output.py b/utils/tuning/libtuning/generators/yaml_output.py index 8f22d386..31e265df 100644 --- a/utils/tuning/libtuning/generators/yaml_output.py +++ b/utils/tuning/libtuning/generators/yaml_output.py @@ -9,8 +9,9 @@ from .generator import Generator from numbers import Number from pathlib import Path -import libtuning.utils as utils +import logging +logger = logging.getLogger(__name__) class YamlOutput(Generator): def __init__(self): @@ -112,7 +113,7 @@ class YamlOutput(Generator): continue if not isinstance(output_dict[module], dict): - utils.eprint(f'Error: Output of {module.type} is not a dictionary') + logger.error(f'Error: Output of {module.type} is not a dictionary') continue lines = self._stringify_dict(output_dict[module]) diff --git a/utils/tuning/libtuning/image.py b/utils/tuning/libtuning/image.py index 6ff60ec1..2c4d774f 100644 --- a/utils/tuning/libtuning/image.py +++ b/utils/tuning/libtuning/image.py @@ -13,6 +13,9 @@ import re import libtuning as lt import libtuning.utils as utils +import logging + +logger = logging.getLogger(__name__) class Image: @@ -25,13 +28,13 @@ class Image: try: self._load_metadata_exif() except Exception as e: - utils.eprint(f'Failed to load metadata from {self.path}: {e}') + logger.error(f'Failed to load metadata from {self.path}: {e}') raise e try: self._read_image_dng() except Exception as e: - utils.eprint(f'Failed to load image data from {self.path}: {e}') + logger.error(f'Failed to load image data from {self.path}: {e}') raise e @property diff --git a/utils/tuning/libtuning/libtuning.py b/utils/tuning/libtuning/libtuning.py index 5e22288d..5342e5d6 100644 --- a/utils/tuning/libtuning/libtuning.py +++ b/utils/tuning/libtuning/libtuning.py @@ -5,13 +5,14 @@ # An infrastructure for camera tuning tools import argparse +import logging import libtuning as lt import libtuning.utils as utils -from libtuning.utils import eprint from enum import Enum, IntEnum +logger = logging.getLogger(__name__) class Color(IntEnum): R = 0 @@ -112,10 +113,10 @@ class Tuner(object): for module_type in output_order: modules = [module for module in self.modules if module.type == module_type.type] if len(modules) > 1: - eprint(f'Multiple modules found for module type "{module_type.type}"') + logger.error(f'Multiple modules found for module type "{module_type.type}"') return False if len(modules) < 1: - eprint(f'No module found for module type "{module_type.type}"') + logger.error(f'No module found for module type "{module_type.type}"') return False self.output_order.append(modules[0]) @@ -124,19 +125,19 @@ class Tuner(object): # \todo Validate parser and generator at Tuner construction time? def _validate_settings(self): if self.parser is None: - eprint('Missing parser') + logger.error('Missing parser') return False if self.generator is None: - eprint('Missing generator') + logger.error('Missing generator') return False if len(self.modules) == 0: - eprint('No modules added') + logger.error('No modules added') return False if len(self.output_order) != len(self.modules): - eprint('Number of outputs does not match number of modules') + logger.error('Number of outputs does not match number of modules') return False return True @@ -183,7 +184,7 @@ class Tuner(object): for module in self.modules: if not module.validate_config(self.config): - eprint(f'Config is invalid for module {module.type}') + logger.error(f'Config is invalid for module {module.type}') return -1 has_lsc = any(isinstance(m, lt.modules.lsc.LSC) for m in self.modules) @@ -192,14 +193,14 @@ class Tuner(object): images = utils.load_images(args.input, self.config, not has_only_lsc, has_lsc) if images is None or len(images) == 0: - eprint(f'No images were found, or able to load') + logger.error(f'No images were found, or able to load') return -1 # Do the tuning for module in self.modules: out = module.process(self.config, images, self.output) if out is None: - eprint(f'Module {module.name} failed to process, aborting') + logger.error(f'Module {module.hr_name} failed to process...') break self.output[module] = out diff --git a/utils/tuning/libtuning/macbeth.py b/utils/tuning/libtuning/macbeth.py index 265a33d6..28051de8 100644 --- a/utils/tuning/libtuning/macbeth.py +++ b/utils/tuning/libtuning/macbeth.py @@ -13,12 +13,15 @@ import os from pathlib import Path import numpy as np import warnings +import logging from sklearn import cluster as cluster from .ctt_ransac import get_square_verts, get_square_centres from libtuning.image import Image +logger = logging.getLogger(__name__) + # Reshape image to fixed width without distorting returns image and scale # factor @@ -374,7 +377,7 @@ def get_macbeth_chart(img, ref_data): # Catch macbeth errors and continue with code except MacbethError as error: - eprint(error) + logger.warning(error) return (0, None, None, False) @@ -497,7 +500,7 @@ def find_macbeth(img, mac_config): coords_fit = coords if cor < 0.75: - eprint(f'Warning: Low confidence {cor:.3f} for macbeth chart in {img.path.name}') + logger.warning(f'Low confidence {cor:.3f} for macbeth chart') if show: draw_macbeth_results(img, coords_fit) @@ -510,18 +513,18 @@ def locate_macbeth(image: Image, config: dict): av_chan = (np.mean(np.array(image.channels), axis=0) / (2**16)) av_val = np.mean(av_chan) if av_val < image.blacklevel_16 / (2**16) + 1 / 64: - eprint(f'Image {image.path.name} too dark') + logger.warning(f'Image {image.path.name} too dark') return None macbeth = find_macbeth(av_chan, config['general']['macbeth']) if macbeth is None: - eprint(f'No macbeth chart found in {image.path.name}') + logger.warning(f'No macbeth chart found in {image.path.name}') return None mac_cen_coords = macbeth[1] if not image.get_patches(mac_cen_coords): - eprint(f'Macbeth patches have saturated in {image.path.name}') + logger.warning(f'Macbeth patches have saturated in {image.path.name}') return None return macbeth diff --git a/utils/tuning/libtuning/modules/lsc/raspberrypi.py b/utils/tuning/libtuning/modules/lsc/raspberrypi.py index f19c7163..99bc4fe6 100644 --- a/utils/tuning/libtuning/modules/lsc/raspberrypi.py +++ b/utils/tuning/libtuning/modules/lsc/raspberrypi.py @@ -12,7 +12,9 @@ import libtuning.utils as utils from numbers import Number import numpy as np +import logging +logger = logging.getLogger(__name__) class ALSCRaspberryPi(LSC): # Override the type name so that the parser can match the entry in the @@ -35,7 +37,7 @@ class ALSCRaspberryPi(LSC): def validate_config(self, config: dict) -> bool: if self not in config: - utils.eprint(f'{self.type} not in config') + logger.error(f'{self.type} not in config') return False valid = True @@ -46,14 +48,14 @@ class ALSCRaspberryPi(LSC): color_key = self.do_color.name if lum_key not in conf and self.luminance_strength.required: - utils.eprint(f'{lum_key} is not in config') + logger.error(f'{lum_key} is not in config') valid = False if lum_key in conf and (conf[lum_key] < 0 or conf[lum_key] > 1): - utils.eprint(f'Warning: {lum_key} is not in range [0, 1]; defaulting to 0.5') + logger.warning(f'{lum_key} is not in range [0, 1]; defaulting to 0.5') if color_key not in conf and self.do_color.required: - utils.eprint(f'{color_key} is not in config') + logger.error(f'{color_key} is not in config') valid = False return valid @@ -235,7 +237,7 @@ class ALSCRaspberryPi(LSC): if count == 1: output['sigma'] = 0.005 output['sigma_Cb'] = 0.005 - utils.eprint('Warning: Only one alsc calibration found; standard sigmas used for adaptive algorithm.') + logger.warning('Only one alsc calibration found; standard sigmas used for adaptive algorithm.') return output # Obtain worst-case scenario residual sigmas diff --git a/utils/tuning/libtuning/utils.py b/utils/tuning/libtuning/utils.py index f099c0ed..87234140 100644 --- a/utils/tuning/libtuning/utils.py +++ b/utils/tuning/libtuning/utils.py @@ -12,16 +12,15 @@ import os from pathlib import Path import re import sys +import logging import libtuning as lt from libtuning.image import Image from libtuning.macbeth import locate_macbeth -# Utility functions - +logger = logging.getLogger(__name__) -def eprint(*args, **kwargs): - print(*args, file=sys.stderr, **kwargs) +# Utility functions def get_module_by_type_name(modules, name): @@ -45,7 +44,7 @@ def _list_image_files(directory): def _parse_image_filename(fn: Path): result = re.search(r'^(alsc_)?(\d+)[kK]_(\d+)?[lLuU]?.\w{3,4}$', fn.name) if result is None: - eprint(f'The file name of {fn.name} is incorrectly formatted') + logger.error(f'The file name of {fn.name} is incorrectly formatted') return None, None, None color = int(result.group(2)) @@ -72,7 +71,7 @@ def _validate_images(images): def load_images(input_dir: str, config: dict, load_nonlsc: bool, load_lsc: bool) -> list: files = _list_image_files(input_dir) if len(files) == 0: - eprint(f'No images found in {input_dir}') + logger.error(f'No images found in {input_dir}') return None images = [] @@ -83,19 +82,19 @@ def load_images(input_dir: str, config: dict, load_nonlsc: bool, load_lsc: bool) # Skip lsc image if we don't need it if lsc_only and not load_lsc: - eprint(f'Skipping {f.name} as this tuner has no LSC module') + logger.warning(f'Skipping {f.name} as this tuner has no LSC module') continue # Skip non-lsc image if we don't need it if not lsc_only and not load_nonlsc: - eprint(f'Skipping {f.name} as this tuner only has an LSC module') + logger.warning(f'Skipping {f.name} as this tuner only has an LSC module') continue # Load image try: image = Image(f) except Exception as e: - eprint(f'Failed to load image {f.name}: {e}') + logger.error(f'Failed to load image {f.name}: {e}') continue # Populate simple fields diff --git a/utils/tuning/requirements.txt b/utils/tuning/requirements.txt index b2875524..3705769b 100644 --- a/utils/tuning/requirements.txt +++ b/utils/tuning/requirements.txt @@ -1,3 +1,4 @@ +coloredlogs matplotlib numpy opencv-python diff --git a/utils/tuning/rkisp1.py b/utils/tuning/rkisp1.py index d0ce15d5..2606e07a 100755 --- a/utils/tuning/rkisp1.py +++ b/utils/tuning/rkisp1.py @@ -5,6 +5,8 @@ # # Tuning script for rkisp1 +import coloredlogs +import logging import sys import libtuning as lt @@ -13,6 +15,9 @@ from libtuning.generators import YamlOutput from libtuning.modules.lsc import LSCRkISP1 from libtuning.modules.agc import AGCRkISP1 + +coloredlogs.install(level=logging.INFO, fmt='%(name)s %(levelname)s %(message)s') + tuner = lt.Tuner('RkISP1') tuner.add(LSCRkISP1( debug=[lt.Debug.Plot], |