summaryrefslogtreecommitdiff
path: root/src
diff options
context:
space:
mode:
authorUmang Jain <umang.jain@ideasonboard.com>2022-05-17 23:42:13 +0530
committerKieran Bingham <kieran.bingham@ideasonboard.com>2022-05-18 15:27:33 +0100
commitf4783e689918abf6f470f4bcaaadaf3c2400dff4 (patch)
tree5fefd11654b09050dac8274a70607c7f107ee8af /src
parent8b291bce82f7cc8307e8ef55ff20e3f41462fa3f (diff)
ipa: ipu3: Put IPAFrameContext(s) in a ring buffer
Instead of having one frame context constantly being updated, this patch aims to introduce per-frame IPAFrameContext which are stored in a ring buffer. Whenever a request is queued, a new IPAFrameContext is created and inserted into the ring buffer. The IPAFrameContext structure itself has been slightly extended to store a frame id and a ControlList for incoming frame controls (sent in by the application). The next step would be to read and set these controls whenever the request is actually queued to the hardware. Since now we are working in multiples of IPAFrameContext, the Algorithm::process() will actually take in a IPAFrameContext pointer (as opposed to a nullptr while preparing for this change). Signed-off-by: Umang Jain <umang.jain@ideasonboard.com> Reviewed-by: Jacopo Mondi <jacopo@jmondi.org> Reviewed-by: Jean-Michel Hautbois <jeanmichel.hautbois@ideasonboard.com> Reviewed-by: Kieran Bingham <kieran.bingham@ideasonboard.com> Signed-off-by: Kieran Bingham <kieran.bingham@ideasonboard.com>
Diffstat (limited to 'src')
-rw-r--r--src/ipa/ipu3/algorithms/agc.cpp11
-rw-r--r--src/ipa/ipu3/algorithms/agc.h4
-rw-r--r--src/ipa/ipu3/ipa_context.cpp26
-rw-r--r--src/ipa/ipu3/ipa_context.h14
-rw-r--r--src/ipa/ipu3/ipu3.cpp24
5 files changed, 57 insertions, 22 deletions
diff --git a/src/ipa/ipu3/algorithms/agc.cpp b/src/ipa/ipu3/algorithms/agc.cpp
index 383a8deb..f16be534 100644
--- a/src/ipa/ipu3/algorithms/agc.cpp
+++ b/src/ipa/ipu3/algorithms/agc.cpp
@@ -183,14 +183,13 @@ utils::Duration Agc::filterExposure(utils::Duration exposureValue)
* \param[in] yGain The gain calculated based on the relative luminance target
* \param[in] iqMeanGain The gain calculated based on the relative luminance target
*/
-void Agc::computeExposure(IPAContext &context, double yGain,
- double iqMeanGain)
+void Agc::computeExposure(IPAContext &context, IPAFrameContext *frameContext,
+ double yGain, double iqMeanGain)
{
const IPASessionConfiguration &configuration = context.configuration;
- IPAFrameContext &frameContext = context.frameContext;
/* Get the effective exposure and gain applied on the sensor. */
- uint32_t exposure = frameContext.sensor.exposure;
- double analogueGain = frameContext.sensor.gain;
+ uint32_t exposure = frameContext->sensor.exposure;
+ double analogueGain = frameContext->sensor.gain;
/* Use the highest of the two gain estimates. */
double evGain = std::max(yGain, iqMeanGain);
@@ -360,7 +359,7 @@ void Agc::process(IPAContext &context, [[maybe_unused]] IPAFrameContext *frameCo
break;
}
- computeExposure(context, yGain, iqMeanGain);
+ computeExposure(context, frameContext, yGain, iqMeanGain);
frameCount_++;
}
diff --git a/src/ipa/ipu3/algorithms/agc.h b/src/ipa/ipu3/algorithms/agc.h
index 219a1a96..105ae0f2 100644
--- a/src/ipa/ipu3/algorithms/agc.h
+++ b/src/ipa/ipu3/algorithms/agc.h
@@ -35,8 +35,8 @@ private:
double measureBrightness(const ipu3_uapi_stats_3a *stats,
const ipu3_uapi_grid_config &grid) const;
utils::Duration filterExposure(utils::Duration currentExposure);
- void computeExposure(IPAContext &context, double yGain,
- double iqMeanGain);
+ void computeExposure(IPAContext &context, IPAFrameContext *frameContext,
+ double yGain, double iqMeanGain);
double estimateLuminance(IPAActiveState &activeState,
const ipu3_uapi_grid_config &grid,
const ipu3_uapi_stats_3a *stats,
diff --git a/src/ipa/ipu3/ipa_context.cpp b/src/ipa/ipu3/ipa_context.cpp
index 383c2e37..13cdb835 100644
--- a/src/ipa/ipu3/ipa_context.cpp
+++ b/src/ipa/ipu3/ipa_context.cpp
@@ -58,13 +58,11 @@ namespace libcamera::ipa::ipu3 {
* \var IPAContext::configuration
* \brief The IPA session configuration, immutable during the session
*
- * \var IPAContext::frameContext
- * \brief The frame context for the frame being processed
+ * \var IPAContext::frameContexts
+ * \brief Ring buffer of the IPAFrameContext(s)
*
* \var IPAContext::activeState
* \brief The current state of IPA algorithms
- *
- * \todo The frame context needs to be turned into real per-frame data storage.
*/
/**
@@ -183,6 +181,26 @@ namespace libcamera::ipa::ipu3 {
*/
/**
+ * \brief Default constructor for IPAFrameContext
+ */
+IPAFrameContext::IPAFrameContext() = default;
+
+/**
+ * \brief Construct a IPAFrameContext instance
+ */
+IPAFrameContext::IPAFrameContext(uint32_t id, const ControlList &reqControls)
+ : frame(id), frameControls(reqControls)
+{
+ sensor = {};
+}
+
+/**
+ * \var IPAFrameContext::frame
+ * \brief The frame number
+ *
+ * \var IPAFrameContext::frameControls
+ * \brief Controls sent in by the application while queuing the request
+ *
* \var IPAFrameContext::sensor
* \brief Effective sensor values that were applied for the frame
*
diff --git a/src/ipa/ipu3/ipa_context.h b/src/ipa/ipu3/ipa_context.h
index 8d681131..42e11141 100644
--- a/src/ipa/ipu3/ipa_context.h
+++ b/src/ipa/ipu3/ipa_context.h
@@ -8,16 +8,22 @@
#pragma once
+#include <array>
+
#include <linux/intel-ipu3.h>
#include <libcamera/base/utils.h>
+#include <libcamera/controls.h>
#include <libcamera/geometry.h>
namespace libcamera {
namespace ipa::ipu3 {
+/* Maximum number of frame contexts to be held */
+static constexpr uint32_t kMaxFrameContexts = 16;
+
struct IPASessionConfiguration {
struct {
ipu3_uapi_grid_config bdsGrid;
@@ -71,17 +77,23 @@ struct IPAActiveState {
};
struct IPAFrameContext {
+ IPAFrameContext();
+ IPAFrameContext(uint32_t id, const ControlList &reqControls);
+
struct {
uint32_t exposure;
double gain;
} sensor;
+
+ uint32_t frame;
+ ControlList frameControls;
};
struct IPAContext {
IPASessionConfiguration configuration;
IPAActiveState activeState;
- IPAFrameContext frameContext;
+ std::array<IPAFrameContext, kMaxFrameContexts> frameContexts;
};
} /* namespace ipa::ipu3 */
diff --git a/src/ipa/ipu3/ipu3.cpp b/src/ipa/ipu3/ipu3.cpp
index 16e5028f..2f6bb672 100644
--- a/src/ipa/ipu3/ipu3.cpp
+++ b/src/ipa/ipu3/ipu3.cpp
@@ -313,7 +313,7 @@ int IPAIPU3::init(const IPASettings &settings,
}
/* Clean context */
- context_ = {};
+ context_.configuration = {};
context_.configuration.sensor.lineDuration = sensorInfo.lineLength * 1.0s / sensorInfo.pixelRate;
/* Construct our Algorithms */
@@ -456,7 +456,8 @@ int IPAIPU3::configure(const IPAConfigInfo &configInfo,
/* Clean IPAActiveState at each reconfiguration. */
context_.activeState = {};
- context_.frameContext = {};
+ IPAFrameContext initFrameContext;
+ context_.frameContexts.fill(initFrameContext);
if (!validateSensorControls()) {
LOG(IPAIPU3, Error) << "Sensor control validation failed.";
@@ -568,15 +569,20 @@ void IPAIPU3::processStatsBuffer(const uint32_t frame,
const ipu3_uapi_stats_3a *stats =
reinterpret_cast<ipu3_uapi_stats_3a *>(mem.data());
- context_.frameContext.sensor.exposure = sensorControls.get(V4L2_CID_EXPOSURE).get<int32_t>();
- context_.frameContext.sensor.gain = camHelper_->gain(sensorControls.get(V4L2_CID_ANALOGUE_GAIN).get<int32_t>());
+ IPAFrameContext &frameContext = context_.frameContexts[frame % kMaxFrameContexts];
+
+ if (frameContext.frame != frame)
+ LOG(IPAIPU3, Warning) << "Frame " << frame << " does not match its frame context";
+
+ frameContext.sensor.exposure = sensorControls.get(V4L2_CID_EXPOSURE).get<int32_t>();
+ frameContext.sensor.gain = camHelper_->gain(sensorControls.get(V4L2_CID_ANALOGUE_GAIN).get<int32_t>());
double lineDuration = context_.configuration.sensor.lineDuration.get<std::micro>();
int32_t vBlank = context_.configuration.sensor.defVBlank;
ControlList ctrls(controls::controls);
for (auto const &algo : algorithms_)
- algo->process(context_, nullptr, stats);
+ algo->process(context_, &frameContext, stats);
setControls(frame);
@@ -584,11 +590,11 @@ void IPAIPU3::processStatsBuffer(const uint32_t frame,
int64_t frameDuration = (vBlank + sensorInfo_.outputSize.height) * lineDuration;
ctrls.set(controls::FrameDuration, frameDuration);
- ctrls.set(controls::AnalogueGain, context_.frameContext.sensor.gain);
+ ctrls.set(controls::AnalogueGain, frameContext.sensor.gain);
ctrls.set(controls::ColourTemperature, context_.activeState.awb.temperatureK);
- ctrls.set(controls::ExposureTime, context_.frameContext.sensor.exposure * lineDuration);
+ ctrls.set(controls::ExposureTime, frameContext.sensor.exposure * lineDuration);
/*
* \todo The Metadata provides a path to getting extended data
@@ -609,10 +615,10 @@ void IPAIPU3::processStatsBuffer(const uint32_t frame,
* Parse the request to handle any IPA-managed controls that were set from the
* application such as manual sensor settings.
*/
-void IPAIPU3::queueRequest([[maybe_unused]] const uint32_t frame,
- [[maybe_unused]] const ControlList &controls)
+void IPAIPU3::queueRequest(const uint32_t frame, const ControlList &controls)
{
/* \todo Start processing for 'frame' based on 'controls'. */
+ context_.frameContexts[frame % kMaxFrameContexts] = { frame, controls };
}
/**
href='#n576'>576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
/* SPDX-License-Identifier: BSD-2-Clause */
/*
 * Copyright (C) 2019, Raspberry Pi (Trading) Limited
 *
 * agc.cpp - AGC/AEC control algorithm
 */

#include <map>

#include "linux/bcm2835-isp.h"

#include <libcamera/base/log.h>

#include "../awb_status.h"
#include "../device_status.h"
#include "../histogram.hpp"
#include "../lux_status.h"
#include "../metadata.hpp"

#include "agc.hpp"

using namespace RPiController;
using namespace libcamera;
using libcamera::utils::Duration;

LOG_DEFINE_CATEGORY(RPiAgc)

#define NAME "rpi.agc"

#define PIPELINE_BITS 13 // seems to be a 13-bit pipeline

void AgcMeteringMode::Read(boost::property_tree::ptree const &params)
{
	int num = 0;
	for (auto &p : params.get_child("weights")) {
		if (num == AGC_STATS_SIZE)
			throw std::runtime_error("AgcConfig: too many weights");
		weights[num++] = p.second.get_value<double>();
	}
	if (num != AGC_STATS_SIZE)
		throw std::runtime_error("AgcConfig: insufficient weights");
}

static std::string
read_metering_modes(std::map<std::string, AgcMeteringMode> &metering_modes,
		    boost::property_tree::ptree const &params)
{
	std::string first;
	for (auto &p : params) {
		AgcMeteringMode metering_mode;
		metering_mode.Read(p.second);
		metering_modes[p.first] = std::move(metering_mode);
		if (first.empty())
			first = p.first;
	}
	return first;
}

static int read_list(std::vector<double> &list,
		     boost::property_tree::ptree const &params)
{
	for (auto &p : params)
		list.push_back(p.second.get_value<double>());
	return list.size();
}

static int read_list(std::vector<Duration> &list,
		     boost::property_tree::ptree const &params)
{
	for (auto &p : params)
		list.push_back(p.second.get_value<double>() * 1us);
	return list.size();
}

void AgcExposureMode::Read(boost::property_tree::ptree const &params)
{
	int num_shutters = read_list(shutter, params.get_child("shutter"));
	int num_ags = read_list(gain, params.get_child("gain"));
	if (num_shutters < 2 || num_ags < 2)
		throw std::runtime_error(
			"AgcConfig: must have at least two entries in exposure profile");
	if (num_shutters != num_ags)
		throw std::runtime_error(
			"AgcConfig: expect same number of exposure and gain entries in exposure profile");
}

static std::string
read_exposure_modes(std::map<std::string, AgcExposureMode> &exposure_modes,
		    boost::property_tree::ptree const &params)
{
	std::string first;
	for (auto &p : params) {
		AgcExposureMode exposure_mode;
		exposure_mode.Read(p.second);
		exposure_modes[p.first] = std::move(exposure_mode);
		if (first.empty())
			first = p.first;
	}
	return first;
}

void AgcConstraint::Read(boost::property_tree::ptree const &params)
{
	std::string bound_string = params.get<std::string>("bound", "");
	transform(bound_string.begin(), bound_string.end(),
		  bound_string.begin(), ::toupper);
	if (bound_string != "UPPER" && bound_string != "LOWER")
		throw std::runtime_error(
			"AGC constraint type should be UPPER or LOWER");
	bound = bound_string == "UPPER" ? Bound::UPPER : Bound::LOWER;
	q_lo = params.get<double>("q_lo");
	q_hi = params.get<double>("q_hi");
	Y_target.Read(params.get_child("y_target"));
}

static AgcConstraintMode
read_constraint_mode(boost::property_tree::ptree const &params)
{
	AgcConstraintMode mode;
	for (auto &p : params) {
		AgcConstraint constraint;
		constraint.Read(p.second);
		mode.push_back(std::move(constraint));
	}
	return mode;
}

static std::string read_constraint_modes(
	std::map<std::string, AgcConstraintMode> &constraint_modes,
	boost::property_tree::ptree const &params)
{
	std::string first;
	for (auto &p : params) {
		constraint_modes[p.first] = read_constraint_mode(p.second);
		if (first.empty())
			first = p.first;
	}
	return first;
}

void AgcConfig::Read(boost::property_tree::ptree const &params)
{
	LOG(RPiAgc, Debug) << "AgcConfig";
	default_metering_mode = read_metering_modes(
		metering_modes, params.get_child("metering_modes"));
	default_exposure_mode = read_exposure_modes(
		exposure_modes, params.get_child("exposure_modes"));
	default_constraint_mode = read_constraint_modes(
		constraint_modes, params.get_child("constraint_modes"));
	Y_target.Read(params.get_child("y_target"));
	speed = params.get<double>("speed", 0.2);
	startup_frames = params.get<uint16_t>("startup_frames", 10);
	convergence_frames = params.get<unsigned int>("convergence_frames", 6);
	fast_reduce_threshold =
		params.get<double>("fast_reduce_threshold", 0.4);
	base_ev = params.get<double>("base_ev", 1.0);
	// Start with quite a low value as ramping up is easier than ramping down.
	default_exposure_time = params.get<double>("default_exposure_time", 1000) * 1us;
	default_analogue_gain = params.get<double>("default_analogue_gain", 1.0);
}

Agc::Agc(Controller *controller)
	: AgcAlgorithm(controller), metering_mode_(nullptr),
	  exposure_mode_(nullptr), constraint_mode_(nullptr),
	  frame_count_(0), lock_count_(0),
	  last_target_exposure_(0s),
	  ev_(1.0), flicker_period_(0s),
	  max_shutter_(0s), fixed_shutter_(0s), fixed_analogue_gain_(0.0)
{
	memset(&awb_, 0, sizeof(awb_));
	// Setting status_.total_exposure_value_ to zero initially tells us
	// it's not been calculated yet (i.e. Process hasn't yet run).
	memset(&status_, 0, sizeof(status_));
	status_.ev = ev_;
	memset(&last_device_status_, 0, sizeof(last_device_status_));
}

char const *Agc::Name() const
{
	return NAME;
}

void Agc::Read(boost::property_tree::ptree const &params)
{
	LOG(RPiAgc, Debug) << "Agc";
	config_.Read(params);
	// Set the config's defaults (which are the first ones it read) as our
	// current modes, until someone changes them.  (they're all known to
	// exist at this point)
	metering_mode_name_ = config_.default_metering_mode;
	metering_mode_ = &config_.metering_modes[metering_mode_name_];
	exposure_mode_name_ = config_.default_exposure_mode;
	exposure_mode_ = &config_.exposure_modes[exposure_mode_name_];
	constraint_mode_name_ = config_.default_constraint_mode;
	constraint_mode_ = &config_.constraint_modes[constraint_mode_name_];
	// Set up the "last shutter/gain" values, in case AGC starts "disabled".
	status_.shutter_time = config_.default_exposure_time;
	status_.analogue_gain = config_.default_analogue_gain;
}

bool Agc::IsPaused() const
{
	return false;
}

void Agc::Pause()
{
	fixed_shutter_ = status_.shutter_time;
	fixed_analogue_gain_ = status_.analogue_gain;
}

void Agc::Resume()
{
	fixed_shutter_ = 0s;
	fixed_analogue_gain_ = 0;
}

unsigned int Agc::GetConvergenceFrames() const
{
	// If shutter and gain have been explicitly set, there is no
	// convergence to happen, so no need to drop any frames - return zero.
	if (fixed_shutter_ && fixed_analogue_gain_)
		return 0;
	else
		return config_.convergence_frames;
}

void Agc::SetEv(double ev)
{
	ev_ = ev;
}

void Agc::SetFlickerPeriod(Duration flicker_period)
{
	flicker_period_ = flicker_period;
}

void Agc::SetMaxShutter(Duration max_shutter)
{
	max_shutter_ = max_shutter;
}

void Agc::SetFixedShutter(Duration fixed_shutter)
{
	fixed_shutter_ = fixed_shutter;
	// Set this in case someone calls Pause() straight after.
	status_.shutter_time = clipShutter(fixed_shutter_);
}

void Agc::SetFixedAnalogueGain(double fixed_analogue_gain)
{
	fixed_analogue_gain_ = fixed_analogue_gain;
	// Set this in case someone calls Pause() straight after.
	status_.analogue_gain = fixed_analogue_gain;
}

void Agc::SetMeteringMode(std::string const &metering_mode_name)
{
	metering_mode_name_ = metering_mode_name;
}

void Agc::SetExposureMode(std::string const &exposure_mode_name)
{
	exposure_mode_name_ = exposure_mode_name;
}

void Agc::SetConstraintMode(std::string const &constraint_mode_name)
{
	constraint_mode_name_ = constraint_mode_name;
}

void Agc::SwitchMode([[maybe_unused]] CameraMode const &camera_mode,
		     Metadata *metadata)
{
	housekeepConfig();

	Duration fixed_shutter = clipShutter(fixed_shutter_);
	if (fixed_shutter && fixed_analogue_gain_) {
		// We're going to reset the algorithm here with these fixed values.

		fetchAwbStatus(metadata);
		double min_colour_gain = std::min({ awb_.gain_r, awb_.gain_g, awb_.gain_b, 1.0 });
		ASSERT(min_colour_gain != 0.0);

		// This is the equivalent of computeTargetExposure and applyDigitalGain.
		target_.total_exposure_no_dg = fixed_shutter * fixed_analogue_gain_;
		target_.total_exposure = target_.total_exposure_no_dg / min_colour_gain;

		// Equivalent of filterExposure. This resets any "history".
		filtered_ = target_;

		// Equivalent of divideUpExposure.
		filtered_.shutter = fixed_shutter;
		filtered_.analogue_gain = fixed_analogue_gain_;
	} else if (status_.total_exposure_value) {
		// On a mode switch, it's possible the exposure profile could change,
		// or a fixed exposure/gain might be set so we divide up the exposure/
		// gain again, but we don't change any target values.
		divideUpExposure();
	} else {
		// We come through here on startup, when at least one of the shutter
		// or gain has not been fixed. We must still write those values out so
		// that they will be applied immediately. We supply some arbitrary defaults
		// for any that weren't set.

		// Equivalent of divideUpExposure.
		filtered_.shutter = fixed_shutter ? fixed_shutter : config_.default_exposure_time;
		filtered_.analogue_gain = fixed_analogue_gain_ ? fixed_analogue_gain_ : config_.default_analogue_gain;
	}

	writeAndFinish(metadata, false);
}

void Agc::Prepare(Metadata *image_metadata)
{
	status_.digital_gain = 1.0;
	fetchAwbStatus(image_metadata); // always fetch it so that Process knows it's been done

	if (status_.total_exposure_value) {
		// Process has run, so we have meaningful values.
		DeviceStatus device_status;
		if (image_metadata->Get("device.status", device_status) == 0) {
			Duration actual_exposure = device_status.shutter_speed *
						   device_status.analogue_gain;
			if (actual_exposure) {
				status_.digital_gain =
					status_.total_exposure_value /
					actual_exposure;
				LOG(RPiAgc, Debug) << "Want total exposure " << status_.total_exposure_value;
				// Never ask for a gain < 1.0, and also impose
				// some upper limit. Make it customisable?
				status_.digital_gain = std::max(
					1.0,
					std::min(status_.digital_gain, 4.0));
				LOG(RPiAgc, Debug) << "Actual exposure " << actual_exposure;
				LOG(RPiAgc, Debug) << "Use digital_gain " << status_.digital_gain;
				LOG(RPiAgc, Debug) << "Effective exposure "
						   << actual_exposure * status_.digital_gain;
				// Decide whether AEC/AGC has converged.
				updateLockStatus(device_status);
			}
		} else
			LOG(RPiAgc, Warning) << Name() << ": no device metadata";
		image_metadata->Set("agc.status", status_);
	}
}

void Agc::Process(StatisticsPtr &stats, Metadata *image_metadata)
{
	frame_count_++;
	// First a little bit of housekeeping, fetching up-to-date settings and
	// configuration, that kind of thing.
	housekeepConfig();
	// Get the current exposure values for the frame that's just arrived.
	fetchCurrentExposure(image_metadata);
	// Compute the total gain we require relative to the current exposure.
	double gain, target_Y;
	computeGain(stats.get(), image_metadata, gain, target_Y);
	// Now compute the target (final) exposure which we think we want.
	computeTargetExposure(gain);
	// Some of the exposure has to be applied as digital gain, so work out
	// what that is. This function also tells us whether it's decided to
	// "desaturate" the image more quickly.
	bool desaturate = applyDigitalGain(gain, target_Y);
	// The results have to be filtered so as not to change too rapidly.
	filterExposure(desaturate);
	// The last thing is to divide up the exposure value into a shutter time
	// and analogue_gain, according to the current exposure mode.
	divideUpExposure();
	// Finally advertise what we've done.
	writeAndFinish(image_metadata, desaturate);
}

void Agc::updateLockStatus(DeviceStatus const &device_status)
{
	const double ERROR_FACTOR = 0.10; // make these customisable?
	const int MAX_LOCK_COUNT = 5;
	// Reset "lock count" when we exceed this multiple of ERROR_FACTOR
	const double RESET_MARGIN = 1.5;

	// Add 200us to the exposure time error to allow for line quantisation.
	Duration exposure_error = last_device_status_.shutter_speed * ERROR_FACTOR + 200us;
	double gain_error = last_device_status_.analogue_gain * ERROR_FACTOR;
	Duration target_error = last_target_exposure_ * ERROR_FACTOR;

	// Note that we don't know the exposure/gain limits of the sensor, so
	// the values we keep requesting may be unachievable. For this reason
	// we only insist that we're close to values in the past few frames.
	if (device_status.shutter_speed > last_device_status_.shutter_speed - exposure_error &&
	    device_status.shutter_speed < last_device_status_.shutter_speed + exposure_error &&
	    device_status.analogue_gain > last_device_status_.analogue_gain - gain_error &&
	    device_status.analogue_gain < last_device_status_.analogue_gain + gain_error &&
	    status_.target_exposure_value > last_target_exposure_ - target_error &&
	    status_.target_exposure_value < last_target_exposure_ + target_error)
		lock_count_ = std::min(lock_count_ + 1, MAX_LOCK_COUNT);
	else if (device_status.shutter_speed < last_device_status_.shutter_speed - RESET_MARGIN * exposure_error ||
		 device_status.shutter_speed > last_device_status_.shutter_speed + RESET_MARGIN * exposure_error ||
		 device_status.analogue_gain < last_device_status_.analogue_gain - RESET_MARGIN * gain_error ||
		 device_status.analogue_gain > last_device_status_.analogue_gain + RESET_MARGIN * gain_error ||
		 status_.target_exposure_value < last_target_exposure_ - RESET_MARGIN * target_error ||
		 status_.target_exposure_value > last_target_exposure_ + RESET_MARGIN * target_error)
		lock_count_ = 0;

	last_device_status_ = device_status;
	last_target_exposure_ = status_.target_exposure_value;

	LOG(RPiAgc, Debug) << "Lock count updated to " << lock_count_;
	status_.locked = lock_count_ == MAX_LOCK_COUNT;
}

static void copy_string(std::string const &s, char *d, size_t size)
{
	size_t length = s.copy(d, size - 1);
	d[length] = '\0';
}

void Agc::housekeepConfig()
{
	// First fetch all the up-to-date settings, so no one else has to do it.
	status_.ev = ev_;
	status_.fixed_shutter = clipShutter(fixed_shutter_);
	status_.fixed_analogue_gain = fixed_analogue_gain_;
	status_.flicker_period = flicker_period_;
	LOG(RPiAgc, Debug) << "ev " << status_.ev << " fixed_shutter "
			   << status_.fixed_shutter << " fixed_analogue_gain "
			   << status_.fixed_analogue_gain;
	// Make sure the "mode" pointers point to the up-to-date things, if
	// they've changed.
	if (strcmp(metering_mode_name_.c_str(), status_.metering_mode)) {
		auto it = config_.metering_modes.find(metering_mode_name_);
		if (it == config_.metering_modes.end())
			throw std::runtime_error("Agc: no metering mode " +
						 metering_mode_name_);
		metering_mode_ = &it->second;
		copy_string(metering_mode_name_, status_.metering_mode,
			    sizeof(status_.metering_mode));
	}
	if (strcmp(exposure_mode_name_.c_str(), status_.exposure_mode)) {
		auto it = config_.exposure_modes.find(exposure_mode_name_);
		if (it == config_.exposure_modes.end())
			throw std::runtime_error("Agc: no exposure profile " +
						 exposure_mode_name_);
		exposure_mode_ = &it->second;
		copy_string(exposure_mode_name_, status_.exposure_mode,
			    sizeof(status_.exposure_mode));
	}
	if (strcmp(constraint_mode_name_.c_str(), status_.constraint_mode)) {
		auto it =
			config_.constraint_modes.find(constraint_mode_name_);
		if (it == config_.constraint_modes.end())
			throw std::runtime_error("Agc: no constraint list " +
						 constraint_mode_name_);
		constraint_mode_ = &it->second;
		copy_string(constraint_mode_name_, status_.constraint_mode,
			    sizeof(status_.constraint_mode));
	}
	LOG(RPiAgc, Debug) << "exposure_mode "
			   << exposure_mode_name_ << " constraint_mode "
			   << constraint_mode_name_ << " metering_mode "
			   << metering_mode_name_;
}

void Agc::fetchCurrentExposure(Metadata *image_metadata)
{
	std::unique_lock<Metadata> lock(*image_metadata);
	DeviceStatus *device_status =
		image_metadata->GetLocked<DeviceStatus>("device.status");
	if (!device_status)
		throw std::runtime_error("Agc: no device metadata");
	current_.shutter = device_status->shutter_speed;
	current_.analogue_gain = device_status->analogue_gain;
	AgcStatus *agc_status =
		image_metadata->GetLocked<AgcStatus>("agc.status");
	current_.total_exposure = agc_status ? agc_status->total_exposure_value : 0s;
	current_.total_exposure_no_dg = current_.shutter * current_.analogue_gain;
}

void Agc::fetchAwbStatus(Metadata *image_metadata)
{
	awb_.gain_r = 1.0; // in case not found in metadata
	awb_.gain_g = 1.0;
	awb_.gain_b = 1.0;
	if (image_metadata->Get("awb.status", awb_) != 0)
		LOG(RPiAgc, Debug) << "Agc: no AWB status found";
}

static double compute_initial_Y(bcm2835_isp_stats *stats, AwbStatus const &awb,
				double weights[], double gain)
{
	bcm2835_isp_stats_region *regions = stats->agc_stats;
	// Note how the calculation below means that equal weights give you
	// "average" metering (i.e. all pixels equally important).
	double R_sum = 0, G_sum = 0, B_sum = 0, pixel_sum = 0;
	for (int i = 0; i < AGC_STATS_SIZE; i++) {
		double counted = regions[i].counted;
		double r_sum = std::min(regions[i].r_sum * gain, ((1 << PIPELINE_BITS) - 1) * counted);
		double g_sum = std::min(regions[i].g_sum * gain, ((1 << PIPELINE_BITS) - 1) * counted);
		double b_sum = std::min(regions[i].b_sum * gain, ((1 << PIPELINE_BITS) - 1) * counted);
		R_sum += r_sum * weights[i];
		G_sum += g_sum * weights[i];
		B_sum += b_sum * weights[i];
		pixel_sum += counted * weights[i];
	}
	if (pixel_sum == 0.0) {
		LOG(RPiAgc, Warning) << "compute_initial_Y: pixel_sum is zero";
		return 0;
	}
	double Y_sum = R_sum * awb.gain_r * .299 +
		       G_sum * awb.gain_g * .587 +
		       B_sum * awb.gain_b * .114;
	return Y_sum / pixel_sum / (1 << PIPELINE_BITS);
}

// We handle extra gain through EV by adjusting our Y targets. However, you
// simply can't monitor histograms once they get very close to (or beyond!)
// saturation, so we clamp the Y targets to this value. It does mean that EV
// increases don't necessarily do quite what you might expect in certain
// (contrived) cases.

#define EV_GAIN_Y_TARGET_LIMIT 0.9

static double constraint_compute_gain(AgcConstraint &c, Histogram &h,
				      double lux, double ev_gain,
				      double &target_Y)
{
	target_Y = c.Y_target.Eval(c.Y_target.Domain().Clip(lux));
	target_Y = std::min(EV_GAIN_Y_TARGET_LIMIT, target_Y * ev_gain);
	double iqm = h.InterQuantileMean(c.q_lo, c.q_hi);
	return (target_Y * NUM_HISTOGRAM_BINS) / iqm;
}

void Agc::computeGain(bcm2835_isp_stats *statistics, Metadata *image_metadata,
		      double &gain, double &target_Y)
{
	struct LuxStatus lux = {};
	lux.lux = 400; // default lux level to 400 in case no metadata found
	if (image_metadata->Get("lux.status", lux) != 0)
		LOG(RPiAgc, Warning) << "Agc: no lux level found";
	Histogram h(statistics->hist[0].g_hist, NUM_HISTOGRAM_BINS);
	double ev_gain = status_.ev * config_.base_ev;
	// The initial gain and target_Y come from some of the regions. After
	// that we consider the histogram constraints.
	target_Y =
		config_.Y_target.Eval(config_.Y_target.Domain().Clip(lux.lux));
	target_Y = std::min(EV_GAIN_Y_TARGET_LIMIT, target_Y * ev_gain);

	// Do this calculation a few times as brightness increase can be
	// non-linear when there are saturated regions.
	gain = 1.0;
	for (int i = 0; i < 8; i++) {
		double initial_Y = compute_initial_Y(statistics, awb_,
						     metering_mode_->weights, gain);
		double extra_gain = std::min(10.0, target_Y / (initial_Y + .001));
		gain *= extra_gain;
		LOG(RPiAgc, Debug) << "Initial Y " << initial_Y << " target " << target_Y
				   << " gives gain " << gain;
		if (extra_gain < 1.01) // close enough
			break;
	}

	for (auto &c : *constraint_mode_) {
		double new_target_Y;
		double new_gain =
			constraint_compute_gain(c, h, lux.lux, ev_gain,
						new_target_Y);
		LOG(RPiAgc, Debug) << "Constraint has target_Y "
				   << new_target_Y << " giving gain " << new_gain;
		if (c.bound == AgcConstraint::Bound::LOWER &&
		    new_gain > gain) {
			LOG(RPiAgc, Debug) << "Lower bound constraint adopted";
			gain = new_gain, target_Y = new_target_Y;
		} else if (c.bound == AgcConstraint::Bound::UPPER &&
			   new_gain < gain) {
			LOG(RPiAgc, Debug) << "Upper bound constraint adopted";
			gain = new_gain, target_Y = new_target_Y;
		}
	}
	LOG(RPiAgc, Debug) << "Final gain " << gain << " (target_Y " << target_Y << " ev "
			   << status_.ev << " base_ev " << config_.base_ev
			   << ")";
}

void Agc::computeTargetExposure(double gain)
{
	if (status_.fixed_shutter && status_.fixed_analogue_gain) {
		// When ag and shutter are both fixed, we need to drive the
		// total exposure so that we end up with a digital gain of at least
		// 1/min_colour_gain. Otherwise we'd desaturate channels causing
		// white to go cyan or magenta.
		double min_colour_gain = std::min({ awb_.gain_r, awb_.gain_g, awb_.gain_b, 1.0 });
		ASSERT(min_colour_gain != 0.0);
		target_.total_exposure =
			status_.fixed_shutter * status_.fixed_analogue_gain / min_colour_gain;
	} else {
		// The statistics reflect the image without digital gain, so the final
		// total exposure we're aiming for is:
		target_.total_exposure = current_.total_exposure_no_dg * gain;
		// The final target exposure is also limited to what the exposure
		// mode allows.
		Duration max_shutter = status_.fixed_shutter
				   ? status_.fixed_shutter
				   : exposure_mode_->shutter.back();
		max_shutter = clipShutter(max_shutter);
		Duration max_total_exposure =
			max_shutter *
			(status_.fixed_analogue_gain != 0.0
				 ? status_.fixed_analogue_gain
				 : exposure_mode_->gain.back());
		target_.total_exposure = std::min(target_.total_exposure,
						  max_total_exposure);
	}
	LOG(RPiAgc, Debug) << "Target total_exposure " << target_.total_exposure;
}

bool Agc::applyDigitalGain(double gain, double target_Y)
{
	double min_colour_gain = std::min({ awb_.gain_r, awb_.gain_g, awb_.gain_b, 1.0 });
	ASSERT(min_colour_gain != 0.0);
	double dg = 1.0 / min_colour_gain;
	// I think this pipeline subtracts black level and rescales before we
	// get the stats, so no need to worry about it.
	LOG(RPiAgc, Debug) << "after AWB, target dg " << dg << " gain " << gain
			   << " target_Y " << target_Y;
	// Finally, if we're trying to reduce exposure but the target_Y is
	// "close" to 1.0, then the gain computed for that constraint will be
	// only slightly less than one, because the measured Y can never be
	// larger than 1.0. When this happens, demand a large digital gain so
	// that the exposure can be reduced, de-saturating the image much more
	// quickly (and we then approach the correct value more quickly from
	// below).
	bool desaturate = target_Y > config_.fast_reduce_threshold &&
			  gain < sqrt(target_Y);
	if (desaturate)
		dg /= config_.fast_reduce_threshold;
	LOG(RPiAgc, Debug) << "Digital gain " << dg << " desaturate? " << desaturate;
	target_.total_exposure_no_dg = target_.total_exposure / dg;
	LOG(RPiAgc, Debug) << "Target total_exposure_no_dg " << target_.total_exposure_no_dg;
	return desaturate;
}

void Agc::filterExposure(bool desaturate)
{
	double speed = config_.speed;
	// AGC adapts instantly if both shutter and gain are directly specified
	// or we're in the startup phase.
	if ((status_.fixed_shutter && status_.fixed_analogue_gain) ||
	    frame_count_ <= config_.startup_frames)
		speed = 1.0;
	if (!filtered_.total_exposure) {
		filtered_.total_exposure = target_.total_exposure;
		filtered_.total_exposure_no_dg = target_.total_exposure_no_dg;
	} else {
		// If close to the result go faster, to save making so many
		// micro-adjustments on the way. (Make this customisable?)
		if (filtered_.total_exposure < 1.2 * target_.total_exposure &&
		    filtered_.total_exposure > 0.8 * target_.total_exposure)
			speed = sqrt(speed);
		filtered_.total_exposure = speed * target_.total_exposure +
					   filtered_.total_exposure * (1.0 - speed);
		// When desaturing, take a big jump down in exposure_no_dg,
		// which we'll hide with digital gain.
		if (desaturate)
			filtered_.total_exposure_no_dg =
				target_.total_exposure_no_dg;
		else
			filtered_.total_exposure_no_dg =
				speed * target_.total_exposure_no_dg +
				filtered_.total_exposure_no_dg * (1.0 - speed);
	}
	// We can't let the no_dg exposure deviate too far below the
	// total exposure, as there might not be enough digital gain available
	// in the ISP to hide it (which will cause nasty oscillation).
	if (filtered_.total_exposure_no_dg <
	    filtered_.total_exposure * config_.fast_reduce_threshold)
		filtered_.total_exposure_no_dg = filtered_.total_exposure *
						 config_.fast_reduce_threshold;
	LOG(RPiAgc, Debug) << "After filtering, total_exposure " << filtered_.total_exposure
			   << " no dg " << filtered_.total_exposure_no_dg;
}

void Agc::divideUpExposure()
{
	// Sending the fixed shutter/gain cases through the same code may seem
	// unnecessary, but it will make more sense when extend this to cover
	// variable aperture.
	Duration exposure_value = filtered_.total_exposure_no_dg;
	Duration shutter_time;
	double analogue_gain;
	shutter_time = status_.fixed_shutter
			       ? status_.fixed_shutter
			       : exposure_mode_->shutter[0];
	shutter_time = clipShutter(shutter_time);
	analogue_gain = status_.fixed_analogue_gain != 0.0
				? status_.fixed_analogue_gain
				: exposure_mode_->gain[0];
	if (shutter_time * analogue_gain < exposure_value) {
		for (unsigned int stage = 1;
		     stage < exposure_mode_->gain.size(); stage++) {
			if (!status_.fixed_shutter) {
				Duration stage_shutter =
					clipShutter(exposure_mode_->shutter[stage]);
				if (stage_shutter * analogue_gain >=
				    exposure_value) {
					shutter_time =
						exposure_value / analogue_gain;
					break;
				}
				shutter_time = stage_shutter;
			}
			if (status_.fixed_analogue_gain == 0.0) {
				if (exposure_mode_->gain[stage] *
					    shutter_time >=
				    exposure_value) {
					analogue_gain =
						exposure_value / shutter_time;
					break;
				}
				analogue_gain = exposure_mode_->gain[stage];
			}
		}
	}
	LOG(RPiAgc, Debug) << "Divided up shutter and gain are " << shutter_time << " and "
			   << analogue_gain;
	// Finally adjust shutter time for flicker avoidance (require both
	// shutter and gain not to be fixed).
	if (!status_.fixed_shutter && !status_.fixed_analogue_gain &&
	    status_.flicker_period) {
		int flicker_periods = shutter_time / status_.flicker_period;
		if (flicker_periods) {
			Duration new_shutter_time = flicker_periods * status_.flicker_period;
			analogue_gain *= shutter_time / new_shutter_time;
			// We should still not allow the ag to go over the
			// largest value in the exposure mode. Note that this
			// may force more of the total exposure into the digital
			// gain as a side-effect.
			analogue_gain = std::min(analogue_gain,
						 exposure_mode_->gain.back());
			shutter_time = new_shutter_time;
		}
		LOG(RPiAgc, Debug) << "After flicker avoidance, shutter "
				   << shutter_time << " gain " << analogue_gain;
	}
	filtered_.shutter = shutter_time;
	filtered_.analogue_gain = analogue_gain;
}

void Agc::writeAndFinish(Metadata *image_metadata, bool desaturate)
{
	status_.total_exposure_value = filtered_.total_exposure;
	status_.target_exposure_value = desaturate ? 0s : target_.total_exposure_no_dg;
	status_.shutter_time = filtered_.shutter;
	status_.analogue_gain = filtered_.analogue_gain;
	// Write to metadata as well, in case anyone wants to update the camera
	// immediately.
	image_metadata->Set("agc.status", status_);
	LOG(RPiAgc, Debug) << "Output written, total exposure requested is "
			   << filtered_.total_exposure;
	LOG(RPiAgc, Debug) << "Camera exposure update: shutter time " << filtered_.shutter
			   << " analogue gain " << filtered_.analogue_gain;
}

Duration Agc::clipShutter(Duration shutter)
{
	if (max_shutter_)
		shutter = std::min(shutter, max_shutter_);
	return shutter;
}

// Register algorithm with the system.
static Algorithm *Create(Controller *controller)
{
	return (Algorithm *)new Agc(controller);
}
static RegisterAlgorithm reg(NAME, &Create);