diff options
author | Naushir Patuck <naush@raspberrypi.com> | 2022-07-27 09:55:17 +0100 |
---|---|---|
committer | Laurent Pinchart <laurent.pinchart@ideasonboard.com> | 2022-07-27 18:12:12 +0300 |
commit | 177df04d2b7f357ebe41f1a9809ab68b6f948082 (patch) | |
tree | 062bc7f480d96629461487c63b4762936a7dcb22 /src/ipa/raspberrypi/controller/rpi | |
parent | b4a3eb6b98ce65a6c9323368fa0afcb887739628 (diff) |
ipa: raspberrypi: Code refactoring to match style guidelines
Refactor all the source files in src/ipa/raspberrypi/ to match the recommended
formatting guidelines for the libcamera project. The vast majority of changes
in this commit comprise of switching from snake_case to CamelCase, and starting
class member functions with a lower case character.
Signed-off-by: Naushir Patuck <naush@raspberrypi.com>
Reviewed-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Diffstat (limited to 'src/ipa/raspberrypi/controller/rpi')
26 files changed, 1412 insertions, 1485 deletions
diff --git a/src/ipa/raspberrypi/controller/rpi/agc.cpp b/src/ipa/raspberrypi/controller/rpi/agc.cpp index f6a9cb0a..52a41a55 100644 --- a/src/ipa/raspberrypi/controller/rpi/agc.cpp +++ b/src/ipa/raspberrypi/controller/rpi/agc.cpp @@ -30,7 +30,7 @@ LOG_DEFINE_CATEGORY(RPiAgc) #define PIPELINE_BITS 13 // seems to be a 13-bit pipeline -void AgcMeteringMode::Read(boost::property_tree::ptree const ¶ms) +void AgcMeteringMode::read(boost::property_tree::ptree const ¶ms) { int num = 0; for (auto &p : params.get_child("weights")) { @@ -43,265 +43,260 @@ void AgcMeteringMode::Read(boost::property_tree::ptree const ¶ms) } static std::string -read_metering_modes(std::map<std::string, AgcMeteringMode> &metering_modes, - boost::property_tree::ptree const ¶ms) +readMeteringModes(std::map<std::string, AgcMeteringMode> &meteringModes, + boost::property_tree::ptree const ¶ms) { std::string first; for (auto &p : params) { - AgcMeteringMode metering_mode; - metering_mode.Read(p.second); - metering_modes[p.first] = std::move(metering_mode); + AgcMeteringMode meteringMode; + meteringMode.read(p.second); + meteringModes[p.first] = std::move(meteringMode); if (first.empty()) first = p.first; } return first; } -static int read_list(std::vector<double> &list, - boost::property_tree::ptree const ¶ms) +static int readList(std::vector<double> &list, + boost::property_tree::ptree const ¶ms) { for (auto &p : params) list.push_back(p.second.get_value<double>()); return list.size(); } -static int read_list(std::vector<Duration> &list, - boost::property_tree::ptree const ¶ms) +static int readList(std::vector<Duration> &list, + boost::property_tree::ptree const ¶ms) { for (auto &p : params) list.push_back(p.second.get_value<double>() * 1us); return list.size(); } -void AgcExposureMode::Read(boost::property_tree::ptree const ¶ms) +void AgcExposureMode::read(boost::property_tree::ptree const ¶ms) { - int num_shutters = read_list(shutter, params.get_child("shutter")); - int num_ags = read_list(gain, params.get_child("gain")); - if (num_shutters < 2 || num_ags < 2) + int numShutters = readList(shutter, params.get_child("shutter")); + int numAgs = readList(gain, params.get_child("gain")); + if (numShutters < 2 || numAgs < 2) throw std::runtime_error( "AgcConfig: must have at least two entries in exposure profile"); - if (num_shutters != num_ags) + if (numShutters != numAgs) throw std::runtime_error( "AgcConfig: expect same number of exposure and gain entries in exposure profile"); } static std::string -read_exposure_modes(std::map<std::string, AgcExposureMode> &exposure_modes, - boost::property_tree::ptree const ¶ms) +readExposureModes(std::map<std::string, AgcExposureMode> &exposureModes, + boost::property_tree::ptree const ¶ms) { std::string first; for (auto &p : params) { - AgcExposureMode exposure_mode; - exposure_mode.Read(p.second); - exposure_modes[p.first] = std::move(exposure_mode); + AgcExposureMode exposureMode; + exposureMode.read(p.second); + exposureModes[p.first] = std::move(exposureMode); if (first.empty()) first = p.first; } return first; } -void AgcConstraint::Read(boost::property_tree::ptree const ¶ms) +void AgcConstraint::read(boost::property_tree::ptree const ¶ms) { - std::string bound_string = params.get<std::string>("bound", ""); - transform(bound_string.begin(), bound_string.end(), - bound_string.begin(), ::toupper); - if (bound_string != "UPPER" && bound_string != "LOWER") + std::string boundString = params.get<std::string>("bound", ""); + transform(boundString.begin(), boundString.end(), + boundString.begin(), ::toupper); + if (boundString != "UPPER" && boundString != "LOWER") throw std::runtime_error( "AGC constraint type should be UPPER or LOWER"); - bound = bound_string == "UPPER" ? Bound::UPPER : Bound::LOWER; - q_lo = params.get<double>("q_lo"); - q_hi = params.get<double>("q_hi"); - Y_target.Read(params.get_child("y_target")); + bound = boundString == "UPPER" ? Bound::UPPER : Bound::LOWER; + qLo = params.get<double>("q_lo"); + qHi = params.get<double>("q_hi"); + yTarget.read(params.get_child("y_target")); } static AgcConstraintMode -read_constraint_mode(boost::property_tree::ptree const ¶ms) +readConstraintMode(boost::property_tree::ptree const ¶ms) { AgcConstraintMode mode; for (auto &p : params) { AgcConstraint constraint; - constraint.Read(p.second); + constraint.read(p.second); mode.push_back(std::move(constraint)); } return mode; } -static std::string read_constraint_modes( - std::map<std::string, AgcConstraintMode> &constraint_modes, - boost::property_tree::ptree const ¶ms) +static std::string readConstraintModes(std::map<std::string, AgcConstraintMode> &constraintModes, + boost::property_tree::ptree const ¶ms) { std::string first; for (auto &p : params) { - constraint_modes[p.first] = read_constraint_mode(p.second); + constraintModes[p.first] = readConstraintMode(p.second); if (first.empty()) first = p.first; } return first; } -void AgcConfig::Read(boost::property_tree::ptree const ¶ms) +void AgcConfig::read(boost::property_tree::ptree const ¶ms) { LOG(RPiAgc, Debug) << "AgcConfig"; - default_metering_mode = read_metering_modes( - metering_modes, params.get_child("metering_modes")); - default_exposure_mode = read_exposure_modes( - exposure_modes, params.get_child("exposure_modes")); - default_constraint_mode = read_constraint_modes( - constraint_modes, params.get_child("constraint_modes")); - Y_target.Read(params.get_child("y_target")); + defaultMeteringMode = readMeteringModes(meteringModes, params.get_child("metering_modes")); + defaultExposureMode = readExposureModes(exposureModes, params.get_child("exposure_modes")); + defaultConstraintMode = readConstraintModes(constraintModes, params.get_child("constraint_modes")); + yTarget.read(params.get_child("y_target")); speed = params.get<double>("speed", 0.2); - startup_frames = params.get<uint16_t>("startup_frames", 10); - convergence_frames = params.get<unsigned int>("convergence_frames", 6); - fast_reduce_threshold = - params.get<double>("fast_reduce_threshold", 0.4); - base_ev = params.get<double>("base_ev", 1.0); + startupFrames = params.get<uint16_t>("startup_frames", 10); + convergenceFrames = params.get<unsigned int>("convergence_frames", 6); + fastReduceThreshold = params.get<double>("fast_reduce_threshold", 0.4); + baseEv = params.get<double>("base_ev", 1.0); // Start with quite a low value as ramping up is easier than ramping down. - default_exposure_time = params.get<double>("default_exposure_time", 1000) * 1us; - default_analogue_gain = params.get<double>("default_analogue_gain", 1.0); + defaultExposureTime = params.get<double>("default_exposure_time", 1000) * 1us; + defaultAnalogueGain = params.get<double>("default_analogueGain", 1.0); } Agc::ExposureValues::ExposureValues() - : shutter(0s), analogue_gain(0), - total_exposure(0s), total_exposure_no_dg(0s) + : shutter(0s), analogueGain(0), + totalExposure(0s), totalExposureNoDG(0s) { } Agc::Agc(Controller *controller) - : AgcAlgorithm(controller), metering_mode_(nullptr), - exposure_mode_(nullptr), constraint_mode_(nullptr), - frame_count_(0), lock_count_(0), - last_target_exposure_(0s), last_sensitivity_(0.0), - ev_(1.0), flicker_period_(0s), - max_shutter_(0s), fixed_shutter_(0s), fixed_analogue_gain_(0.0) + : AgcAlgorithm(controller), meteringMode_(nullptr), + exposureMode_(nullptr), constraintMode_(nullptr), + frameCount_(0), lockCount_(0), + lastTargetExposure_(0s), lastSensitivity_(0.0), + ev_(1.0), flickerPeriod_(0s), + maxShutter_(0s), fixedShutter_(0s), fixedAnalogueGain_(0.0) { memset(&awb_, 0, sizeof(awb_)); - // Setting status_.total_exposure_value_ to zero initially tells us + // Setting status_.totalExposureValue_ to zero initially tells us // it's not been calculated yet (i.e. Process hasn't yet run). memset(&status_, 0, sizeof(status_)); status_.ev = ev_; } -char const *Agc::Name() const +char const *Agc::name() const { return NAME; } -void Agc::Read(boost::property_tree::ptree const ¶ms) +void Agc::read(boost::property_tree::ptree const ¶ms) { LOG(RPiAgc, Debug) << "Agc"; - config_.Read(params); + config_.read(params); // Set the config's defaults (which are the first ones it read) as our // current modes, until someone changes them. (they're all known to // exist at this point) - metering_mode_name_ = config_.default_metering_mode; - metering_mode_ = &config_.metering_modes[metering_mode_name_]; - exposure_mode_name_ = config_.default_exposure_mode; - exposure_mode_ = &config_.exposure_modes[exposure_mode_name_]; - constraint_mode_name_ = config_.default_constraint_mode; - constraint_mode_ = &config_.constraint_modes[constraint_mode_name_]; + meteringModeName_ = config_.defaultMeteringMode; + meteringMode_ = &config_.meteringModes[meteringModeName_]; + exposureModeName_ = config_.defaultExposureMode; + exposureMode_ = &config_.exposureModes[exposureModeName_]; + constraintModeName_ = config_.defaultConstraintMode; + constraintMode_ = &config_.constraintModes[constraintModeName_]; // Set up the "last shutter/gain" values, in case AGC starts "disabled". - status_.shutter_time = config_.default_exposure_time; - status_.analogue_gain = config_.default_analogue_gain; + status_.shutterTime = config_.defaultExposureTime; + status_.analogueGain = config_.defaultAnalogueGain; } -bool Agc::IsPaused() const +bool Agc::isPaused() const { return false; } -void Agc::Pause() +void Agc::pause() { - fixed_shutter_ = status_.shutter_time; - fixed_analogue_gain_ = status_.analogue_gain; + fixedShutter_ = status_.shutterTime; + fixedAnalogueGain_ = status_.analogueGain; } -void Agc::Resume() +void Agc::resume() { - fixed_shutter_ = 0s; - fixed_analogue_gain_ = 0; + fixedShutter_ = 0s; + fixedAnalogueGain_ = 0; } -unsigned int Agc::GetConvergenceFrames() const +unsigned int Agc::getConvergenceFrames() const { // If shutter and gain have been explicitly set, there is no // convergence to happen, so no need to drop any frames - return zero. - if (fixed_shutter_ && fixed_analogue_gain_) + if (fixedShutter_ && fixedAnalogueGain_) return 0; else - return config_.convergence_frames; + return config_.convergenceFrames; } -void Agc::SetEv(double ev) +void Agc::setEv(double ev) { ev_ = ev; } -void Agc::SetFlickerPeriod(Duration flicker_period) +void Agc::setFlickerPeriod(Duration flickerPeriod) { - flicker_period_ = flicker_period; + flickerPeriod_ = flickerPeriod; } -void Agc::SetMaxShutter(Duration max_shutter) +void Agc::setMaxShutter(Duration maxShutter) { - max_shutter_ = max_shutter; + maxShutter_ = maxShutter; } -void Agc::SetFixedShutter(Duration fixed_shutter) +void Agc::setFixedShutter(Duration fixedShutter) { - fixed_shutter_ = fixed_shutter; + fixedShutter_ = fixedShutter; // Set this in case someone calls Pause() straight after. - status_.shutter_time = clipShutter(fixed_shutter_); + status_.shutterTime = clipShutter(fixedShutter_); } -void Agc::SetFixedAnalogueGain(double fixed_analogue_gain) +void Agc::setFixedAnalogueGain(double fixedAnalogueGain) { - fixed_analogue_gain_ = fixed_analogue_gain; + fixedAnalogueGain_ = fixedAnalogueGain; // Set this in case someone calls Pause() straight after. - status_.analogue_gain = fixed_analogue_gain; + status_.analogueGain = fixedAnalogueGain; } -void Agc::SetMeteringMode(std::string const &metering_mode_name) +void Agc::setMeteringMode(std::string const &meteringModeName) { - metering_mode_name_ = metering_mode_name; + meteringModeName_ = meteringModeName; } -void Agc::SetExposureMode(std::string const &exposure_mode_name) +void Agc::setExposureMode(std::string const &exposureModeName) { - exposure_mode_name_ = exposure_mode_name; + exposureModeName_ = exposureModeName; } -void Agc::SetConstraintMode(std::string const &constraint_mode_name) +void Agc::setConstraintMode(std::string const &constraintModeName) { - constraint_mode_name_ = constraint_mode_name; + constraintModeName_ = constraintModeName; } -void Agc::SwitchMode(CameraMode const &camera_mode, +void Agc::switchMode(CameraMode const &cameraMode, Metadata *metadata) { /* AGC expects the mode sensitivity always to be non-zero. */ - ASSERT(camera_mode.sensitivity); + ASSERT(cameraMode.sensitivity); housekeepConfig(); - Duration fixed_shutter = clipShutter(fixed_shutter_); - if (fixed_shutter && fixed_analogue_gain_) { + Duration fixedShutter = clipShutter(fixedShutter_); + if (fixedShutter && fixedAnalogueGain_) { // We're going to reset the algorithm here with these fixed values. fetchAwbStatus(metadata); - double min_colour_gain = std::min({ awb_.gain_r, awb_.gain_g, awb_.gain_b, 1.0 }); - ASSERT(min_colour_gain != 0.0); + double minColourGain = std::min({ awb_.gainR, awb_.gainG, awb_.gainB, 1.0 }); + ASSERT(minColourGain != 0.0); // This is the equivalent of computeTargetExposure and applyDigitalGain. - target_.total_exposure_no_dg = fixed_shutter * fixed_analogue_gain_; - target_.total_exposure = target_.total_exposure_no_dg / min_colour_gain; + target_.totalExposureNoDG = fixedShutter_ * fixedAnalogueGain_; + target_.totalExposure = target_.totalExposureNoDG / minColourGain; // Equivalent of filterExposure. This resets any "history". filtered_ = target_; // Equivalent of divideUpExposure. - filtered_.shutter = fixed_shutter; - filtered_.analogue_gain = fixed_analogue_gain_; - } else if (status_.total_exposure_value) { + filtered_.shutter = fixedShutter; + filtered_.analogueGain = fixedAnalogueGain_; + } else if (status_.totalExposureValue) { // On a mode switch, various things could happen: // - the exposure profile might change // - a fixed exposure or gain might be set @@ -310,11 +305,11 @@ void Agc::SwitchMode(CameraMode const &camera_mode, // that we just need to re-divide the exposure/gain according to the // current exposure profile, which takes care of everything else. - double ratio = last_sensitivity_ / camera_mode.sensitivity; - target_.total_exposure_no_dg *= ratio; - target_.total_exposure *= ratio; - filtered_.total_exposure_no_dg *= ratio; - filtered_.total_exposure *= ratio; + double ratio = lastSensitivity_ / cameraMode.sensitivity; + target_.totalExposureNoDG *= ratio; + target_.totalExposure *= ratio; + filtered_.totalExposureNoDG *= ratio; + filtered_.totalExposure *= ratio; divideUpExposure(); } else { @@ -324,114 +319,110 @@ void Agc::SwitchMode(CameraMode const &camera_mode, // for any that weren't set. // Equivalent of divideUpExposure. - filtered_.shutter = fixed_shutter ? fixed_shutter : config_.default_exposure_time; - filtered_.analogue_gain = fixed_analogue_gain_ ? fixed_analogue_gain_ : config_.default_analogue_gain; + filtered_.shutter = fixedShutter ? fixedShutter : config_.defaultExposureTime; + filtered_.analogueGain = fixedAnalogueGain_ ? fixedAnalogueGain_ : config_.defaultAnalogueGain; } writeAndFinish(metadata, false); // We must remember the sensitivity of this mode for the next SwitchMode. - last_sensitivity_ = camera_mode.sensitivity; + lastSensitivity_ = cameraMode.sensitivity; } -void Agc::Prepare(Metadata *image_metadata) +void Agc::prepare(Metadata *imageMetadata) { - status_.digital_gain = 1.0; - fetchAwbStatus(image_metadata); // always fetch it so that Process knows it's been done + status_.digitalGain = 1.0; + fetchAwbStatus(imageMetadata); // always fetch it so that Process knows it's been done - if (status_.total_exposure_value) { + if (status_.totalExposureValue) { // Process has run, so we have meaningful values. - DeviceStatus device_status; - if (image_metadata->Get("device.status", device_status) == 0) { - Duration actual_exposure = device_status.shutter_speed * - device_status.analogue_gain; - if (actual_exposure) { - status_.digital_gain = - status_.total_exposure_value / - actual_exposure; - LOG(RPiAgc, Debug) << "Want total exposure " << status_.total_exposure_value; + DeviceStatus deviceStatus; + if (imageMetadata->get("device.status", deviceStatus) == 0) { + Duration actualExposure = deviceStatus.shutterSpeed * + deviceStatus.analogueGain; + if (actualExposure) { + status_.digitalGain = status_.totalExposureValue / actualExposure; + LOG(RPiAgc, Debug) << "Want total exposure " << status_.totalExposureValue; // Never ask for a gain < 1.0, and also impose // some upper limit. Make it customisable? - status_.digital_gain = std::max( - 1.0, - std::min(status_.digital_gain, 4.0)); - LOG(RPiAgc, Debug) << "Actual exposure " << actual_exposure; - LOG(RPiAgc, Debug) << "Use digital_gain " << status_.digital_gain; + status_.digitalGain = std::max(1.0, std::min(status_.digitalGain, 4.0)); + LOG(RPiAgc, Debug) << "Actual exposure " << actualExposure; + LOG(RPiAgc, Debug) << "Use digitalGain " << status_.digitalGain; LOG(RPiAgc, Debug) << "Effective exposure " - << actual_exposure * status_.digital_gain; + << actualExposure * status_.digitalGain; // Decide whether AEC/AGC has converged. - updateLockStatus(device_status); + updateLockStatus(deviceStatus); } } else - LOG(RPiAgc, Warning) << Name() << ": no device metadata"; - image_metadata->Set("agc.status", status_); + LOG(RPiAgc, Warning) << name() << ": no device metadata"; + imageMetadata->set("agc.status", status_); } } -void Agc::Process(StatisticsPtr &stats, Metadata *image_metadata) +void Agc::process(StatisticsPtr &stats, Metadata *imageMetadata) { - frame_count_++; + frameCount_++; // First a little bit of housekeeping, fetching up-to-date settings and // configuration, that kind of thing. housekeepConfig(); // Get the current exposure values for the frame that's just arrived. - fetchCurrentExposure(image_metadata); + fetchCurrentExposure(imageMetadata); // Compute the total gain we require relative to the current exposure. - double gain, target_Y; - computeGain(stats.get(), image_metadata, gain, target_Y); + double gain, targetY; + computeGain(stats.get(), imageMetadata, gain, targetY); // Now compute the target (final) exposure which we think we want. computeTargetExposure(gain); // Some of the exposure has to be applied as digital gain, so work out // what that is. This function also tells us whether it's decided to // "desaturate" the image more quickly. - bool desaturate = applyDigitalGain(gain, target_Y); + bool desaturate = applyDigitalGain(gain, targetY); // The results have to be filtered so as not to change too rapidly. filterExposure(desaturate); // The last thing is to divide up the exposure value into a shutter time - // and analogue_gain, according to the current exposure mode. + // and analogue gain, according to the current exposure mode. divideUpExposure(); // Finally advertise what we've done. - writeAndFinish(image_metadata, desaturate); + writeAndFinish(imageMetadata, desaturate); } -void Agc::updateLockStatus(DeviceStatus const &device_status) +void Agc::updateLockStatus(DeviceStatus const &deviceStatus) { - const double ERROR_FACTOR = 0.10; // make these customisable? - const int MAX_LOCK_COUNT = 5; - // Reset "lock count" when we exceed this multiple of ERROR_FACTOR - const double RESET_MARGIN = 1.5; + const double errorFactor = 0.10; // make these customisable? + const int maxLockCount = 5; + // Reset "lock count" when we exceed this multiple of errorFactor + const double resetMargin = 1.5; // Add 200us to the exposure time error to allow for line quantisation. - Duration exposure_error = last_device_status_.shutter_speed * ERROR_FACTOR + 200us; - double gain_error = last_device_status_.analogue_gain * ERROR_FACTOR; - Duration target_error = last_target_exposure_ * ERROR_FACTOR; + Duration exposureError = lastDeviceStatus_.shutterSpeed * errorFactor + 200us; + double gainError = lastDeviceStatus_.analogueGain * errorFactor; + Duration targetError = lastTargetExposure_ * errorFactor; // Note that we don't know the exposure/gain limits of the sensor, so // the values we keep requesting may be unachievable. For this reason // we only insist that we're close to values in the past few frames. - if (device_status.shutter_speed > last_device_status_.shutter_speed - exposure_error && - device_status.shutter_speed < last_device_status_.shutter_speed + exposure_error && - device_status.analogue_gain > last_device_status_.analogue_gain - gain_error && - device_status.analogue_gain < last_device_status_.analogue_gain + gain_error && - status_.target_exposure_value > last_target_exposure_ - target_error && - status_.target_exposure_value < last_target_exposure_ + target_error) - lock_count_ = std::min(lock_count_ + 1, MAX_LOCK_COUNT); - else if (device_status.shutter_speed < last_device_status_.shutter_speed - RESET_MARGIN * exposure_error || - device_status.shutter_speed > last_device_status_.shutter_speed + RESET_MARGIN * exposure_error || - device_status.analogue_gain < last_device_status_.analogue_gain - RESET_MARGIN * gain_error || - device_status.analogue_gain > last_device_status_.analogue_gain + RESET_MARGIN * gain_error || - status_.target_exposure_value < last_target_exposure_ - RESET_MARGIN * target_error || - status_.target_exposure_value > last_target_exposure_ + RESET_MARGIN * target_error) - lock_count_ = 0; - - last_device_status_ = device_status; - last_target_exposure_ = status_.target_exposure_value; - - LOG(RPiAgc, Debug) << "Lock count updated to " << lock_count_; - status_.locked = lock_count_ == MAX_LOCK_COUNT; -} - -static void copy_string(std::string const &s, char *d, size_t size) + if (deviceStatus.shutterSpeed > lastDeviceStatus_.shutterSpeed - exposureError && + deviceStatus.shutterSpeed < lastDeviceStatus_.shutterSpeed + exposureError && + deviceStatus.analogueGain > lastDeviceStatus_.analogueGain - gainError && + deviceStatus.analogueGain < lastDeviceStatus_.analogueGain + gainError && + status_.targetExposureValue > lastTargetExposure_ - targetError && + status_.targetExposureValue < lastTargetExposure_ + targetError) + lockCount_ = std::min(lockCount_ + 1, maxLockCount); + else if (deviceStatus.shutterSpeed < lastDeviceStatus_.shutterSpeed - resetMargin * exposureError || + deviceStatus.shutterSpeed > lastDeviceStatus_.shutterSpeed + resetMargin * exposureError || + deviceStatus.analogueGain < lastDeviceStatus_.analogueGain - resetMargin * gainError || + deviceStatus.analogueGain > lastDeviceStatus_.analogueGain + resetMargin * gainError || + status_.targetExposureValue < lastTargetExposure_ - resetMargin * targetError || + status_.targetExposureValue > lastTargetExposure_ + resetMargin * targetError) + lockCount_ = 0; + + lastDeviceStatus_ = deviceStatus; + lastTargetExposure_ = status_.targetExposureValue; + + LOG(RPiAgc, Debug) << "Lock count updated to " << lockCount_; + status_.locked = lockCount_ == maxLockCount; +} + +static void copyString(std::string const &s, char *d, size_t size) { size_t length = s.copy(d, size - 1); d[length] = '\0'; @@ -441,97 +432,97 @@ void Agc::housekeepConfig() { // First fetch all the up-to-date settings, so no one else has to do it. status_.ev = ev_; - status_.fixed_shutter = clipShutter(fixed_shutter_); - status_.fixed_analogue_gain = fixed_analogue_gain_; - status_.flicker_period = flicker_period_; - LOG(RPiAgc, Debug) << "ev " << status_.ev << " fixed_shutter " - << status_.fixed_shutter << " fixed_analogue_gain " - << status_.fixed_analogue_gain; + status_.fixedShutter = clipShutter(fixedShutter_); + status_.fixedAnalogueGain = fixedAnalogueGain_; + status_.flickerPeriod = flickerPeriod_; + LOG(RPiAgc, Debug) << "ev " << status_.ev << " fixedShutter " + << status_.fixedShutter << " fixedAnalogueGain " + << status_.fixedAnalogueGain; // Make sure the "mode" pointers point to the up-to-date things, if // they've changed. - if (strcmp(metering_mode_name_.c_str(), status_.metering_mode)) { - auto it = config_.metering_modes.find(metering_mode_name_); - if (it == config_.metering_modes.end()) + if (strcmp(meteringModeName_.c_str(), status_.meteringMode)) { + auto it = config_.meteringModes.find(meteringModeName_); + if (it == config_.meteringModes.end()) throw std::runtime_error("Agc: no metering mode " + - metering_mode_name_); - metering_mode_ = &it->second; - copy_string(metering_mode_name_, status_.metering_mode, - sizeof(status_.metering_mode)); + meteringModeName_); + meteringMode_ = &it->second; + copyString(meteringModeName_, status_.meteringMode, + sizeof(status_.meteringMode)); } - if (strcmp(exposure_mode_name_.c_str(), status_.exposure_mode)) { - auto it = config_.exposure_modes.find(exposure_mode_name_); - if (it == config_.exposure_modes.end()) + if (strcmp(exposureModeName_.c_str(), status_.exposureMode)) { + auto it = config_.exposureModes.find(exposureModeName_); + if (it == config_.exposureModes.end()) throw std::runtime_error("Agc: no exposure profile " + - exposure_mode_name_); - exposure_mode_ = &it->second; - copy_string(exposure_mode_name_, status_.exposure_mode, - sizeof(status_.exposure_mode)); + exposureModeName_); + exposureMode_ = &it->second; + copyString(exposureModeName_, status_.exposureMode, + sizeof(status_.exposureMode)); } - if (strcmp(constraint_mode_name_.c_str(), status_.constraint_mode)) { + if (strcmp(constraintModeName_.c_str(), status_.constraintMode)) { auto it = - config_.constraint_modes.find(constraint_mode_name_); - if (it == config_.constraint_modes.end()) + config_.constraintModes.find(constraintModeName_); + if (it == config_.constraintModes.end()) throw std::runtime_error("Agc: no constraint list " + - constraint_mode_name_); - constraint_mode_ = &it->second; - copy_string(constraint_mode_name_, status_.constraint_mode, - sizeof(status_.constraint_mode)); + constraintModeName_); + constraintMode_ = &it->second; + copyString(constraintModeName_, status_.constraintMode, + sizeof(status_.constraintMode)); } - LOG(RPiAgc, Debug) << "exposure_mode " - << exposure_mode_name_ << " constraint_mode " - << constraint_mode_name_ << " metering_mode " - << metering_mode_name_; + LOG(RPiAgc, Debug) << "exposureMode " + << exposureModeName_ << " constraintMode " + << constraintModeName_ << " meteringMode " + << meteringModeName_; } -void Agc::fetchCurrentExposure(Metadata *image_metadata) +void Agc::fetchCurrentExposure(Metadata *imageMetadata) { - std::unique_lock<Metadata> lock(*image_metadata); - DeviceStatus *device_status = - image_metadata->GetLocked<DeviceStatus>("device.status"); - if (!device_status) + std::unique_lock<Metadata> lock(*imageMetadata); + DeviceStatus *deviceStatus = + imageMetadata->getLocked<DeviceStatus>("device.status"); + if (!deviceStatus) throw std::runtime_error("Agc: no device metadata"); - current_.shutter = device_status->shutter_speed; - current_.analogue_gain = device_status->analogue_gain; - AgcStatus *agc_status = - image_metadata->GetLocked<AgcStatus>("agc.status"); - current_.total_exposure = agc_status ? agc_status->total_exposure_value : 0s; - current_.total_exposure_no_dg = current_.shutter * current_.analogue_gain; + current_.shutter = deviceStatus->shutterSpeed; + current_.analogueGain = deviceStatus->analogueGain; + AgcStatus *agcStatus = + imageMetadata->getLocked<AgcStatus>("agc.status"); + current_.totalExposure = agcStatus ? agcStatus->totalExposureValue : 0s; + current_.totalExposureNoDG = current_.shutter * current_.analogueGain; } -void Agc::fetchAwbStatus(Metadata *image_metadata) +void Agc::fetchAwbStatus(Metadata *imageMetadata) { - awb_.gain_r = 1.0; // in case not found in metadata - awb_.gain_g = 1.0; - awb_.gain_b = 1.0; - if (image_metadata->Get("awb.status", awb_) != 0) + awb_.gainR = 1.0; // in case not found in metadata + awb_.gainG = 1.0; + awb_.gainB = 1.0; + if (imageMetadata->get("awb.status", awb_) != 0) LOG(RPiAgc, Debug) << "Agc: no AWB status found"; } -static double compute_initial_Y(bcm2835_isp_stats *stats, AwbStatus const &awb, - double weights[], double gain) +static double computeInitialY(bcm2835_isp_stats *stats, AwbStatus const &awb, + double weights[], double gain) { bcm2835_isp_stats_region *regions = stats->agc_stats; // Note how the calculation below means that equal weights give you // "average" metering (i.e. all pixels equally important). - double R_sum = 0, G_sum = 0, B_sum = 0, pixel_sum = 0; + double rSum = 0, gSum = 0, bSum = 0, pixelSum = 0; for (int i = 0; i < AGC_STATS_SIZE; i++) { double counted = regions[i].counted; - double r_sum = std::min(regions[i].r_sum * gain, ((1 << PIPELINE_BITS) - 1) * counted); - double g_sum = std::min(regions[i].g_sum * gain, ((1 << PIPELINE_BITS) - 1) * counted); - double b_sum = std::min(regions[i].b_sum * gain, ((1 << PIPELINE_BITS) - 1) * counted); - R_sum += r_sum * weights[i]; - G_sum += g_sum * weights[i]; - B_sum += b_sum * weights[i]; - pixel_sum += counted * weights[i]; + double rAcc = std::min(regions[i].r_sum * gain, ((1 << PIPELINE_BITS) - 1) * counted); + double gAcc = std::min(regions[i].g_sum * gain, ((1 << PIPELINE_BITS) - 1) * counted); + double bAcc = std::min(regions[i].b_sum * gain, ((1 << PIPELINE_BITS) - 1) * counted); + rSum += rAcc * weights[i]; + gSum += gAcc * weights[i]; + bSum += bAcc * weights[i]; + pixelSum += counted * weights[i]; } - if (pixel_sum == 0.0) { - LOG(RPiAgc, Warning) << "compute_initial_Y: pixel_sum is zero"; + if (pixelSum == 0.0) { + LOG(RPiAgc, Warning) << "computeInitialY: pixelSum is zero"; return 0; } - double Y_sum = R_sum * awb.gain_r * .299 + - G_sum * awb.gain_g * .587 + - B_sum * awb.gain_b * .114; - return Y_sum / pixel_sum / (1 << PIPELINE_BITS); + double ySum = rSum * awb.gainR * .299 + + gSum * awb.gainG * .587 + + bSum * awb.gainB * .114; + return ySum / pixelSum / (1 << PIPELINE_BITS); } // We handle extra gain through EV by adjusting our Y targets. However, you @@ -542,108 +533,102 @@ static double compute_initial_Y(bcm2835_isp_stats *stats, AwbStatus const &awb, #define EV_GAIN_Y_TARGET_LIMIT 0.9 -static double constraint_compute_gain(AgcConstraint &c, Histogram &h, - double lux, double ev_gain, - double &target_Y) +static double constraintComputeGain(AgcConstraint &c, Histogram &h, double lux, + double evGain, double &targetY) { - target_Y = c.Y_target.Eval(c.Y_target.Domain().Clip(lux)); - target_Y = std::min(EV_GAIN_Y_TARGET_LIMIT, target_Y * ev_gain); - double iqm = h.InterQuantileMean(c.q_lo, c.q_hi); - return (target_Y * NUM_HISTOGRAM_BINS) / iqm; + targetY = c.yTarget.eval(c.yTarget.domain().clip(lux)); + targetY = std::min(EV_GAIN_Y_TARGET_LIMIT, targetY * evGain); + double iqm = h.interQuantileMean(c.qLo, c.qHi); + return (targetY * NUM_HISTOGRAM_BINS) / iqm; } -void Agc::computeGain(bcm2835_isp_stats *statistics, Metadata *image_metadata, - double &gain, double &target_Y) +void Agc::computeGain(bcm2835_isp_stats *statistics, Metadata *imageMetadata, + double &gain, double &targetY) { struct LuxStatus lux = {}; lux.lux = 400; // default lux level to 400 in case no metadata found - if (image_metadata->Get("lux.status", lux) != 0) + if (imageMetadata->get("lux.status", lux) != 0) LOG(RPiAgc, Warning) << "Agc: no lux level found"; Histogram h(statistics->hist[0].g_hist, NUM_HISTOGRAM_BINS); - double ev_gain = status_.ev * config_.base_ev; + double evGain = status_.ev * config_.baseEv; // The initial gain and target_Y come from some of the regions. After // that we consider the histogram constraints. - target_Y = - config_.Y_target.Eval(config_.Y_target.Domain().Clip(lux.lux)); - target_Y = std::min(EV_GAIN_Y_TARGET_LIMIT, target_Y * ev_gain); + targetY = config_.yTarget.eval(config_.yTarget.domain().clip(lux.lux)); + targetY = std::min(EV_GAIN_Y_TARGET_LIMIT, targetY * evGain); // Do this calculation a few times as brightness increase can be // non-linear when there are saturated regions. gain = 1.0; for (int i = 0; i < 8; i++) { - double initial_Y = compute_initial_Y(statistics, awb_, - metering_mode_->weights, gain); - double extra_gain = std::min(10.0, target_Y / (initial_Y + .001)); - gain *= extra_gain; - LOG(RPiAgc, Debug) << "Initial Y " << initial_Y << " target " << target_Y + double initialY = computeInitialY(statistics, awb_, meteringMode_->weights, gain); + double extraGain = std::min(10.0, targetY / (initialY + .001)); + gain *= extraGain; + LOG(RPiAgc, Debug) << "Initial Y " << initialY << " target " << targetY << " gives gain " << gain; - if (extra_gain < 1.01) // close enough + if (extraGain < 1.01) // close enough break; } - for (auto &c : *constraint_mode_) { - double new_target_Y; - double new_gain = - constraint_compute_gain(c, h, lux.lux, ev_gain, - new_target_Y); + for (auto &c : *constraintMode_) { + double newTargetY; + double newGain = constraintComputeGain(c, h, lux.lux, evGain, newTargetY); LOG(RPiAgc, Debug) << "Constraint has target_Y " - << new_target_Y << " giving gain " << new_gain; - if (c.bound == AgcConstraint::Bound::LOWER && - new_gain > gain) { + << newTargetY << " giving gain " << newGain; + if (c.bound == AgcConstraint::Bound::LOWER && newGain > gain) { LOG(RPiAgc, Debug) << "Lower bound constraint adopted"; - gain = new_gain, target_Y = new_target_Y; - } else if (c.bound == AgcConstraint::Bound::UPPER && - new_gain < gain) { + gain = newGain; + targetY = newTargetY; + } else if (c.bound == AgcConstraint::Bound::UPPER && newGain < gain) { LOG(RPiAgc, Debug) << "Upper bound constraint adopted"; - gain = new_gain, target_Y = new_target_Y; + gain = newGain; + targetY = newTargetY; } } - LOG(RPiAgc, Debug) << "Final gain " << gain << " (target_Y " << target_Y << " ev " - << status_.ev << " base_ev " << config_.base_ev + LOG(RPiAgc, Debug) << "Final gain " << gain << " (target_Y " << targetY << " ev " + << status_.ev << " base_ev " << config_.baseEv << ")"; } void Agc::computeTargetExposure(double gain) { - if (status_.fixed_shutter && status_.fixed_analogue_gain) { + if (status_.fixedShutter && status_.fixedAnalogueGain) { // When ag and shutter are both fixed, we need to drive the // total exposure so that we end up with a digital gain of at least - // 1/min_colour_gain. Otherwise we'd desaturate channels causing + // 1/minColourGain. Otherwise we'd desaturate channels causing // white to go cyan or magenta. - double min_colour_gain = std::min({ awb_.gain_r, awb_.gain_g, awb_.gain_b, 1.0 }); - ASSERT(min_colour_gain != 0.0); - target_.total_exposure = - status_.fixed_shutter * status_.fixed_analogue_gain / min_colour_gain; + double minColourGain = std::min({ awb_.gainR, awb_.gainG, awb_.gainB, 1.0 }); + ASSERT(minColourGain != 0.0); + target_.totalExposure = + status_.fixedShutter * status_.fixedAnalogueGain / minColourGain; } else { // The statistics reflect the image without digital gain, so the final // total exposure we're aiming for is: - target_.total_exposure = current_.total_exposure_no_dg * gain; + target_.totalExposure = current_.totalExposureNoDG * gain; // The final target exposure is also limited to what the exposure // mode allows. - Duration max_shutter = status_.fixed_shutter - ? status_.fixed_shutter - : exposure_mode_->shutter.back(); - max_shutter = clipShutter(max_shutter); - Duration max_total_exposure = - max_shutter * - (status_.fixed_analogue_gain != 0.0 - ? status_.fixed_analogue_gain - : exposure_mode_->gain.back()); - target_.total_exposure = std::min(target_.total_exposure, - max_total_exposure); + Duration maxShutter = status_.fixedShutter + ? status_.fixedShutter + : exposureMode_->shutter.back(); + maxShutter = clipShutter(maxShutter); + Duration maxTotalExposure = + maxShutter * + (status_.fixedAnalogueGain != 0.0 + ? status_.fixedAnalogueGain + : exposureMode_->gain.back()); + target_.totalExposure = std::min(target_.totalExposure, maxTotalExposure); } - LOG(RPiAgc, Debug) << "Target total_exposure " << target_.total_exposure; + LOG(RPiAgc, Debug) << "Target totalExposure " << target_.totalExposure; } -bool Agc::applyDigitalGain(double gain, double target_Y) +bool Agc::applyDigitalGain(double gain, double targetY) { - double min_colour_gain = std::min({ awb_.gain_r, awb_.gain_g, awb_.gain_b, 1.0 }); - ASSERT(min_colour_gain != 0.0); - double dg = 1.0 / min_colour_gain; + double minColourGain = std::min({ awb_.gainR, awb_.gainG, awb_.gainB, 1.0 }); + ASSERT(minColourGain != 0.0); + double dg = 1.0 / minColourGain; // I think this pipeline subtracts black level and rescales before we // get the stats, so no need to worry about it. LOG(RPiAgc, Debug) << "after AWB, target dg " << dg << " gain " << gain - << " target_Y " << target_Y; + << " target_Y " << targetY; // Finally, if we're trying to reduce exposure but the target_Y is // "close" to 1.0, then the gain computed for that constraint will be // only slightly less than one, because the measured Y can never be @@ -651,13 +636,13 @@ bool Agc::applyDigitalGain(double gain, double target_Y) // that the exposure can be reduced, de-saturating the image much more // quickly (and we then approach the correct value more quickly from // below). - bool desaturate = target_Y > config_.fast_reduce_threshold && - gain < sqrt(target_Y); + bool desaturate = targetY > config_.fastReduceThreshold && + gain < sqrt(targetY); if (desaturate) - dg /= config_.fast_reduce_threshold; + dg /= config_.fastReduceThreshold; LOG(RPiAgc, Debug) << "Digital gain " << dg << " desaturate? " << desaturate; - target_.total_exposure_no_dg = target_.total_exposure / dg; - LOG(RPiAgc, Debug) << "Target total_exposure_no_dg " << target_.total_exposure_no_dg; + target_.totalExposureNoDG = target_.totalExposure / dg; + LOG(RPiAgc, Debug) << "Target totalExposureNoDG " << target_.totalExposureNoDG; return desaturate; } @@ -666,39 +651,38 @@ void Agc::filterExposure(bool desaturate) double speed = config_.speed; // AGC adapts instantly if both shutter and gain are directly specified // or we're in the startup phase. - if ((status_.fixed_shutter && status_.fixed_analogue_gain) || - frame_count_ <= config_.startup_frames) + if ((status_.fixedShutter && status_.fixedAnalogueGain) || + frameCount_ <= config_.startupFrames) speed = 1.0; - if (!filtered_.total_exposure) { - filtered_.total_exposure = target_.total_exposure; - filtered_.total_exposure_no_dg = target_.total_exposure_no_dg; + if (!filtered_.totalExposure) { + filtered_.totalExposure = target_.totalExposure; + filtered_.totalExposureNoDG = target_.totalExposureNoDG; } else { // If close to the result go faster, to save making so many // micro-adjustments on the way. (Make this customisable?) - if (filtered_.total_exposure < 1.2 * target_.total_exposure && - filtered_.total_exposure > 0.8 * target_.total_exposure) + if (filtered_.totalExposure < 1.2 * target_.totalExposure && + filtered_.totalExposure > 0.8 * target_.totalExposure) speed = sqrt(speed); - filtered_.total_exposure = speed * target_.total_exposure + - filtered_.total_exposure * (1.0 - speed); - // When desaturing, take a big jump down in exposure_no_dg, + filtered_.totalExposure = speed * target_.totalExposure + + filtered_.totalExposure * (1.0 - speed); + // When desaturing, take a big jump down in totalExposureNoDG, // which we'll hide with digital gain. if (desaturate) - filtered_.total_exposure_no_dg = - target_.total_exposure_no_dg; + filtered_.totalExposureNoDG = + target_.totalExposureNoDG; else - filtered_.total_exposure_no_dg = - speed * target_.total_exposure_no_dg + - filtered_.total_exposure_no_dg * (1.0 - speed); + filtered_.totalExposureNoDG = + speed * target_.totalExposureNoDG + + filtered_.totalExposureNoDG * (1.0 - speed); } - // We can't let the no_dg exposure deviate too far below the + // We can't let the totalExposureNoDG exposure deviate too far below the // total exposure, as there might not be enough digital gain available // in the ISP to hide it (which will cause nasty oscillation). - if (filtered_.total_exposure_no_dg < - filtered_.total_exposure * config_.fast_reduce_threshold) - filtered_.total_exposure_no_dg = filtered_.total_exposure * - config_.fast_reduce_threshold; - LOG(RPiAgc, Debug) << "After filtering, total_exposure " << filtered_.total_exposure - << " no dg " << filtered_.total_exposure_no_dg; + if (filtered_.totalExposureNoDG < + filtered_.totalExposure * config_.fastReduceThreshold) + filtered_.totalExposureNoDG = filtered_.totalExposure * config_.fastReduceThreshold; + LOG(RPiAgc, Debug) << "After filtering, totalExposure " << filtered_.totalExposure + << " no dg " << filtered_.totalExposureNoDG; } void Agc::divideUpExposure() @@ -706,92 +690,84 @@ void Agc::divideUpExposure() // Sending the fixed shutter/gain cases through the same code may seem // unnecessary, but it will make more sense when extend this to cover // variable aperture. - Duration exposure_value = filtered_.total_exposure_no_dg; - Duration shutter_time; - double analogue_gain; - shutter_time = status_.fixed_shutter - ? status_.fixed_shutter - : exposure_mode_->shutter[0]; - shutter_time = clipShutter(shutter_time); - analogue_gain = status_.fixed_analogue_gain != 0.0 - ? status_.fixed_analogue_gain - : exposure_mode_->gain[0]; - if (shutter_time * analogue_gain < exposure_value) { + Duration exposureValue = filtered_.totalExposureNoDG; + Duration shutterTime; + double analogueGain; + shutterTime = status_.fixedShutter ? status_.fixedShutter + : exposureMode_->shutter[0]; + shutterTime = clipShutter(shutterTime); + analogueGain = status_.fixedAnalogueGain != 0.0 ? status_.fixedAnalogueGain + : exposureMode_->gain[0]; + if (shutterTime * analogueGain < exposureValue) { for (unsigned int stage = 1; - stage < exposure_mode_->gain.size(); stage++) { - if (!status_.fixed_shutter) { - Duration stage_shutter = - clipShutter(exposure_mode_->shutter[stage]); - if (stage_shutter * analogue_gain >= - exposure_value) { - shutter_time = - exposure_value / analogue_gain; + stage < exposureMode_->gain.size(); stage++) { + if (!status_.fixedShutter) { + Duration stageShutter = + clipShutter(exposureMode_->shutter[stage]); + if (stageShutter * analogueGain >= exposureValue) { + shutterTime = exposureValue / analogueGain; break; } - shutter_time = stage_shutter; + shutterTime = stageShutter; } - if (status_.fixed_analogue_gain == 0.0) { - if (exposure_mode_->gain[stage] * - shutter_time >= - exposure_value) { - analogue_gain = - exposure_value / shutter_time; + if (status_.fixedAnalogueGain == 0.0) { + if (exposureMode_->gain[stage] * shutterTime >= exposureValue) { + analogueGain = exposureValue / shutterTime; break; } - analogue_gain = exposure_mode_->gain[stage]; + analogueGain = exposureMode_->gain[stage]; } } } - LOG(RPiAgc, Debug) << "Divided up shutter and gain are " << shutter_time << " and " - << analogue_gain; + LOG(RPiAgc, Debug) << "Divided up shutter and gain are " << shutterTime << " and " + << analogueGain; // Finally adjust shutter time for flicker avoidance (require both // shutter and gain not to be fixed). - if (!status_.fixed_shutter && !status_.fixed_analogue_gain && - status_.flicker_period) { - int flicker_periods = shutter_time / status_.flicker_period; - if (flicker_periods) { - Duration new_shutter_time = flicker_periods * status_.flicker_period; - analogue_gain *= shutter_time / new_shutter_time; + if (!status_.fixedShutter && !status_.fixedAnalogueGain && + status_.flickerPeriod) { + int flickerPeriods = shutterTime / status_.flickerPeriod; + if (flickerPeriods) { + Duration newShutterTime = flickerPeriods * status_.flickerPeriod; + analogueGain *= shutterTime / newShutterTime; // We should still not allow the ag to go over the // largest value in the exposure mode. Note that this // may force more of the total exposure into the digital // gain as a side-effect. - analogue_gain = std::min(analogue_gain, - exposure_mode_->gain.back()); - shutter_time = new_shutter_time; + analogueGain = std::min(analogueGain, exposureMode_->gain.back()); + shutterTime = newShutterTime; } LOG(RPiAgc, Debug) << "After flicker avoidance, shutter " - << shutter_time << " gain " << analogue_gain; + << shutterTime << " gain " << analogueGain; } - filtered_.shutter = shutter_time; - filtered_.analogue_gain = analogue_gain; + filtered_.shutter = shutterTime; + filtered_.analogueGain = analogueGain; } -void Agc::writeAndFinish(Metadata *image_metadata, bool desaturate) +void Agc::writeAndFinish(Metadata *imageMetadata, bool desaturate) { - status_.total_exposure_value = filtered_.total_exposure; - status_.target_exposure_value = desaturate ? 0s : target_.total_exposure_no_dg; - status_.shutter_time = filtered_.shutter; - status_.analogue_gain = filtered_.analogue_gain; + status_.totalExposureValue = filtered_.totalExposure; + status_.targetExposureValue = desaturate ? 0s : target_.totalExposureNoDG; + status_.shutterTime = filtered_.shutter; + status_.analogueGain = filtered_.analogueGain; // Write to metadata as well, in case anyone wants to update the camera // immediately. - image_metadata->Set("agc.status", status_); + imageMetadata->set("agc.status", status_); LOG(RPiAgc, Debug) << "Output written, total exposure requested is " - << filtered_.total_exposure; + << filtered_.totalExposure; LOG(RPiAgc, Debug) << "Camera exposure update: shutter time " << filtered_.shutter - << " analogue gain " << filtered_.analogue_gain; + << " analogue gain " << filtered_.analogueGain; } Duration Agc::clipShutter(Duration shutter) { - if (max_shutter_) - shutter = std::min(shutter, max_shutter_); + if (maxShutter_) + shutter = std::min(shutter, maxShutter_); return shutter; } // Register algorithm with the system. -static Algorithm *Create(Controller *controller) +static Algorithm *create(Controller *controller) { return (Algorithm *)new Agc(controller); } -static RegisterAlgorithm reg(NAME, &Create); +static RegisterAlgorithm reg(NAME, &create); diff --git a/src/ipa/raspberrypi/controller/rpi/agc.hpp b/src/ipa/raspberrypi/controller/rpi/agc.hpp index c100d312..4ed7293b 100644 --- a/src/ipa/raspberrypi/controller/rpi/agc.hpp +++ b/src/ipa/raspberrypi/controller/rpi/agc.hpp @@ -26,114 +26,114 @@ namespace RPiController { struct AgcMeteringMode { double weights[AGC_STATS_SIZE]; - void Read(boost::property_tree::ptree const ¶ms); + void read(boost::property_tree::ptree const ¶ms); }; struct AgcExposureMode { std::vector<libcamera::utils::Duration> shutter; std::vector<double> gain; - void Read(boost::property_tree::ptree const ¶ms); + void read(boost::property_tree::ptree const ¶ms); }; struct AgcConstraint { enum class Bound { LOWER = 0, UPPER = 1 }; Bound bound; - double q_lo; - double q_hi; - Pwl Y_target; - void Read(boost::property_tree::ptree const ¶ms); + double qLo; + double qHi; + Pwl yTarget; + void read(boost::property_tree::ptree const ¶ms); }; typedef std::vector<AgcConstraint> AgcConstraintMode; struct AgcConfig { - void Read(boost::property_tree::ptree const ¶ms); - std::map<std::string, AgcMeteringMode> metering_modes; - std::map<std::string, AgcExposureMode> exposure_modes; - std::map<std::string, AgcConstraintMode> constraint_modes; - Pwl Y_target; + void read(boost::property_tree::ptree const ¶ms); + std::map<std::string, AgcMeteringMode> meteringModes; + std::map<std::string, AgcExposureMode> exposureModes; + std::map<std::string, AgcConstraintMode> constraintModes; + Pwl yTarget; double speed; - uint16_t startup_frames; - unsigned int convergence_frames; - double max_change; - double min_change; - double fast_reduce_threshold; - double speed_up_threshold; - std::string default_metering_mode; - std::string default_exposure_mode; - std::string default_constraint_mode; - double base_ev; - libcamera::utils::Duration default_exposure_time; - double default_analogue_gain; + uint16_t startupFrames; + unsigned int convergenceFrames; + double maxChange; + double minChange; + double fastReduceThreshold; + double speedUpThreshold; + std::string defaultMeteringMode; + std::string defaultExposureMode; + std::string defaultConstraintMode; + double baseEv; + libcamera::utils::Duration defaultExposureTime; + double defaultAnalogueGain; }; class Agc : public AgcAlgorithm { public: Agc(Controller *controller); - char const *Name() const override; - void Read(boost::property_tree::ptree const ¶ms) override; + char const *name() const override; + void read(boost::property_tree::ptree const ¶ms) override; // AGC handles "pausing" for itself. - bool IsPaused() const override; - void Pause() override; - void Resume() override; - unsigned int GetConvergenceFrames() const override; - void SetEv(double ev) override; - void SetFlickerPeriod(libcamera::utils::Duration flicker_period) override; - void SetMaxShutter(libcamera::utils::Duration max_shutter) override; - void SetFixedShutter(libcamera::utils::Duration fixed_shutter) override; - void SetFixedAnalogueGain(double fixed_analogue_gain) override; - void SetMeteringMode(std::string const &metering_mode_name) override; - void SetExposureMode(std::string const &exposure_mode_name) override; - void SetConstraintMode(std::string const &contraint_mode_name) override; - void SwitchMode(CameraMode const &camera_mode, Metadata *metadata) override; - void Prepare(Metadata *image_metadata) override; - void Process(StatisticsPtr &stats, Metadata *image_metadata) override; + bool isPaused() const override; + void pause() override; + void resume() override; + unsigned int getConvergenceFrames() const override; + void setEv(double ev) override; + void setFlickerPeriod(libcamera::utils::Duration flickerPeriod) override; + void setMaxShutter(libcamera::utils::Duration maxShutter) override; + void setFixedShutter(libcamera::utils::Duration fixedShutter) override; + void setFixedAnalogueGain(double fixedAnalogueGain) override; + void setMeteringMode(std::string const &meteringModeName) override; + void setExposureMode(std::string const &exposureModeName) override; + void setConstraintMode(std::string const &contraintModeName) override; + void switchMode(CameraMode const &cameraMode, Metadata *metadata) override; + void prepare(Metadata *imageMetadata) override; + void process(StatisticsPtr &stats, Metadata *imageMetadata) override; private: - void updateLockStatus(DeviceStatus const &device_status); + void updateLockStatus(DeviceStatus const &deviceStatus); AgcConfig config_; void housekeepConfig(); - void fetchCurrentExposure(Metadata *image_metadata); - void fetchAwbStatus(Metadata *image_metadata); - void computeGain(bcm2835_isp_stats *statistics, Metadata *image_metadata, - double &gain, double &target_Y); + void fetchCurrentExposure(Metadata *imageMetadata); + void fetchAwbStatus(Metadata *imageMetadata); + void computeGain(bcm2835_isp_stats *statistics, Metadata *imageMetadata, + double &gain, double &targetY); void computeTargetExposure(double gain); - bool applyDigitalGain(double gain, double target_Y); + bool applyDigitalGain(double gain, double targetY); void filterExposure(bool desaturate); void divideUpExposure(); - void writeAndFinish(Metadata *image_metadata, bool desaturate); + void writeAndFinish(Metadata *imageMetadata, bool desaturate); libcamera::utils::Duration clipShutter(libcamera::utils::Duration shutter); - AgcMeteringMode *metering_mode_; - AgcExposureMode *exposure_mode_; - AgcConstraintMode *constraint_mode_; - uint64_t frame_count_; + AgcMeteringMode *meteringMode_; + AgcExposureMode *exposureMode_; + AgcConstraintMode *constraintMode_; + uint64_t frameCount_; AwbStatus awb_; struct ExposureValues { ExposureValues(); libcamera::utils::Duration shutter; - double analogue_gain; - libcamera::utils::Duration total_exposure; - libcamera::utils::Duration total_exposure_no_dg; // without digital gain + double analogueGain; + libcamera::utils::Duration totalExposure; + libcamera::utils::Duration totalExposureNoDG; // without digital gain }; ExposureValues current_; // values for the current frame ExposureValues target_; // calculate the values we want here ExposureValues filtered_; // these values are filtered towards target AgcStatus status_; - int lock_count_; - DeviceStatus last_device_status_; - libcamera::utils::Duration last_target_exposure_; - double last_sensitivity_; // sensitivity of the previous camera mode + int lockCount_; + DeviceStatus lastDeviceStatus_; + libcamera::utils::Duration lastTargetExposure_; + double lastSensitivity_; // sensitivity of the previous camera mode // Below here the "settings" that applications can change. - std::string metering_mode_name_; - std::string exposure_mode_name_; - std::string constraint_mode_name_; + std::string meteringModeName_; + std::string exposureModeName_; + std::string constraintModeName_; double ev_; - libcamera::utils::Duration flicker_period_; - libcamera::utils::Duration max_shutter_; - libcamera::utils::Duration fixed_shutter_; - double fixed_analogue_gain_; + libcamera::utils::Duration flickerPeriod_; + libcamera::utils::Duration maxShutter_; + libcamera::utils::Duration fixedShutter_; + double fixedAnalogueGain_; }; } // namespace RPiController diff --git a/src/ipa/raspberrypi/controller/rpi/alsc.cpp b/src/ipa/raspberrypi/controller/rpi/alsc.cpp index e575c14a..98b77154 100644 --- a/src/ipa/raspberrypi/controller/rpi/alsc.cpp +++ b/src/ipa/raspberrypi/controller/rpi/alsc.cpp @@ -26,31 +26,31 @@ LOG_DEFINE_CATEGORY(RPiAlsc) static const int X = ALSC_CELLS_X; static const int Y = ALSC_CELLS_Y; static const int XY = X * Y; -static const double INSUFFICIENT_DATA = -1.0; +static const double InsufficientData = -1.0; Alsc::Alsc(Controller *controller) : Algorithm(controller) { - async_abort_ = async_start_ = async_started_ = async_finished_ = false; - async_thread_ = std::thread(std::bind(&Alsc::asyncFunc, this)); + asyncAbort_ = asyncStart_ = asyncStarted_ = asyncFinished_ = false; + asyncThread_ = std::thread(std::bind(&Alsc::asyncFunc, this)); } Alsc::~Alsc() { { std::lock_guard<std::mutex> lock(mutex_); - async_abort_ = true; + asyncAbort_ = true; } - async_signal_.notify_one(); - async_thread_.join(); + asyncSignal_.notify_one(); + asyncThread_.join(); } -char const *Alsc::Name() const +char const *Alsc::name() const { return NAME; } -static void generate_lut(double *lut, boost::property_tree::ptree const ¶ms) +static void generateLut(double *lut, boost::property_tree::ptree const ¶ms) { double cstrength = params.get<double>("corner_strength", 2.0); if (cstrength <= 1.0) @@ -73,34 +73,34 @@ static void generate_lut(double *lut, boost::property_tree::ptree const ¶ms) } } -static void read_lut(double *lut, boost::property_tree::ptree const ¶ms) +static void readLut(double *lut, boost::property_tree::ptree const ¶ms) { int num = 0; - const int max_num = XY; + const int maxNum = XY; for (auto &p : params) { - if (num == max_num) + if (num == maxNum) throw std::runtime_error( "Alsc: too many entries in LSC table"); lut[num++] = p.second.get_value<double>(); } - if (num < max_num) + if (num < maxNum) throw std::runtime_error("Alsc: too few entries in LSC table"); } -static void read_calibrations(std::vector<AlscCalibration> &calibrations, - boost::property_tree::ptree const ¶ms, - std::string const &name) +static void readCalibrations(std::vector<AlscCalibration> &calibrations, + boost::property_tree::ptree const ¶ms, + std::string const &name) { if (params.get_child_optional(name)) { - double last_ct = 0; + double lastCt = 0; for (auto &p : params.get_child(name)) { double ct = p.second.get<double>("ct"); - if (ct <= last_ct) + if (ct <= lastCt) throw std::runtime_error( "Alsc: entries in " + name + " must be in increasing ct order"); AlscCalibration calibration; - calibration.ct = last_ct = ct; + calibration.ct = lastCt = ct; boost::property_tree::ptree const &table = p.second.get_child("table"); int num = 0; @@ -124,249 +124,239 @@ static void read_calibrations(std::vector<AlscCalibration> &calibrations, } } -void Alsc::Read(boost::property_tree::ptree const ¶ms) +void Alsc::read(boost::property_tree::ptree const ¶ms) { - config_.frame_period = params.get<uint16_t>("frame_period", 12); - config_.startup_frames = params.get<uint16_t>("startup_frames", 10); + config_.framePeriod = params.get<uint16_t>("frame_period", 12); + config_.startupFrames = params.get<uint16_t>("startup_frames", 10); config_.speed = params.get<double>("speed", 0.05); double sigma = params.get<double>("sigma", 0.01); - config_.sigma_Cr = params.get<double>("sigma_Cr", sigma); - config_.sigma_Cb = params.get<double>("sigma_Cb", sigma); - config_.min_count = params.get<double>("min_count", 10.0); - config_.min_G = params.get<uint16_t>("min_G", 50); + config_.sigmaCr = params.get<double>("sigma_Cr", sigma); + config_.sigmaCb = params.get<double>("sigma_Cb", sigma); + config_.minCount = params.get<double>("min_count", 10.0); + config_.minG = params.get<uint16_t>("min_G", 50); config_.omega = params.get<double>("omega", 1.3); - config_.n_iter = params.get<uint32_t>("n_iter", X + Y); - config_.luminance_strength = + config_.nIter = params.get<uint32_t>("n_iter", X + Y); + config_.luminanceStrength = params.get<double>("luminance_strength", 1.0); for (int i = 0; i < XY; i++) - config_.luminance_lut[i] = 1.0; + config_.luminanceLut[i] = 1.0; if (params.get_child_optional("corner_strength")) - generate_lut(config_.luminance_lut, params); + generateLut(config_.luminanceLut, params); else if (params.get_child_optional("luminance_lut")) - read_lut(config_.luminance_lut, - params.get_child("luminance_lut")); + readLut(config_.luminanceLut, + params.get_child("luminance_lut")); else LOG(RPiAlsc, Warning) << "no luminance table - assume unity everywhere"; - read_calibrations(config_.calibrations_Cr, params, "calibrations_Cr"); - read_calibrations(config_.calibrations_Cb, params, "calibrations_Cb"); - config_.default_ct = params.get<double>("default_ct", 4500.0); + readCalibrations(config_.calibrationsCr, params, "calibrations_Cr"); + readCalibrations(config_.calibrationsCb, params, "calibrations_Cb"); + config_.defaultCt = params.get<double>("default_ct", 4500.0); config_.threshold = params.get<double>("threshold", 1e-3); - config_.lambda_bound = params.get<double>("lambda_bound", 0.05); -} - -static double get_ct(Metadata *metadata, double default_ct); -static void get_cal_table(double ct, - std::vector<AlscCalibration> const &calibrations, - double cal_table[XY]); -static void resample_cal_table(double const cal_table_in[XY], - CameraMode const &camera_mode, - double cal_table_out[XY]); -static void compensate_lambdas_for_cal(double const cal_table[XY], - double const old_lambdas[XY], - double new_lambdas[XY]); -static void add_luminance_to_tables(double results[3][Y][X], - double const lambda_r[XY], double lambda_g, - double const lambda_b[XY], - double const luminance_lut[XY], - double luminance_strength); - -void Alsc::Initialise() -{ - frame_count2_ = frame_count_ = frame_phase_ = 0; - first_time_ = true; - ct_ = config_.default_ct; + config_.lambdaBound = params.get<double>("lambda_bound", 0.05); +} + +static double getCt(Metadata *metadata, double defaultCt); +static void getCalTable(double ct, std::vector<AlscCalibration> const &calibrations, + double calTable[XY]); +static void resampleCalTable(double const calTableIn[XY], CameraMode const &cameraMode, + double calTableOut[XY]); +static void compensateLambdasForCal(double const calTable[XY], double const oldLambdas[XY], + double newLambdas[XY]); +static void addLuminanceToTables(double results[3][Y][X], double const lambdaR[XY], double lambdaG, + double const lambdaB[XY], double const luminanceLut[XY], + double luminanceStrength); + +void Alsc::initialise() +{ + frameCount2_ = frameCount_ = framePhase_ = 0; + firstTime_ = true; + ct_ = config_.defaultCt; // The lambdas are initialised in the SwitchMode. } void Alsc::waitForAysncThread() { - if (async_started_) { - async_started_ = false; + if (asyncStarted_) { + asyncStarted_ = false; std::unique_lock<std::mutex> lock(mutex_); - sync_signal_.wait(lock, [&] { - return async_finished_; + syncSignal_.wait(lock, [&] { + return asyncFinished_; }); - async_finished_ = false; + asyncFinished_ = false; } } -static bool compare_modes(CameraMode const &cm0, CameraMode const &cm1) +static bool compareModes(CameraMode const &cm0, CameraMode const &cm1) { // Return true if the modes crop from the sensor significantly differently, // or if the user transform has changed. if (cm0.transform != cm1.transform) return true; - int left_diff = abs(cm0.crop_x - cm1.crop_x); - int top_diff = abs(cm0.crop_y - cm1.crop_y); - int right_diff = fabs(cm0.crop_x + cm0.scale_x * cm0.width - - cm1.crop_x - cm1.scale_x * cm1.width); - int bottom_diff = fabs(cm0.crop_y + cm0.scale_y * cm0.height - - cm1.crop_y - cm1.scale_y * cm1.height); + int leftDiff = abs(cm0.cropX - cm1.cropX); + int topDiff = abs(cm0.cropY - cm1.cropY); + int rightDiff = fabs(cm0.cropX + cm0.scaleX * cm0.width - + cm1.cropX - cm1.scaleX * cm1.width); + int bottomDiff = fabs(cm0.cropY + cm0.scaleY * cm0.height - + cm1.cropY - cm1.scaleY * cm1.height); // These thresholds are a rather arbitrary amount chosen to trigger // when carrying on with the previously calculated tables might be // worse than regenerating them (but without the adaptive algorithm). - int threshold_x = cm0.sensor_width >> 4; - int threshold_y = cm0.sensor_height >> 4; - return left_diff > threshold_x || right_diff > threshold_x || - top_diff > threshold_y || bottom_diff > threshold_y; + int thresholdX = cm0.sensorWidth >> 4; + int thresholdY = cm0.sensorHeight >> 4; + return leftDiff > thresholdX || rightDiff > thresholdX || + topDiff > thresholdY || bottomDiff > thresholdY; } -void Alsc::SwitchMode(CameraMode const &camera_mode, +void Alsc::switchMode(CameraMode const &cameraMode, [[maybe_unused]] Metadata *metadata) { // We're going to start over with the tables if there's any "significant" // change. - bool reset_tables = first_time_ || compare_modes(camera_mode_, camera_mode); + bool resetTables = firstTime_ || compareModes(cameraMode_, cameraMode); // Believe the colour temperature from the AWB, if there is one. - ct_ = get_ct(metadata, ct_); + ct_ = getCt(metadata, ct_); // Ensure the other thread isn't running while we do this. waitForAysncThread(); - camera_mode_ = camera_mode; + cameraMode_ = cameraMode; // We must resample the luminance table like we do the others, but it's // fixed so we can simply do it up front here. - resample_cal_table(config_.luminance_lut, camera_mode_, luminance_table_); + resampleCalTable(config_.luminanceLut, cameraMode_, luminanceTable_); - if (reset_tables) { + if (resetTables) { // Upon every "table reset", arrange for something sensible to be // generated. Construct the tables for the previous recorded colour // temperature. In order to start over from scratch we initialise // the lambdas, but the rest of this code then echoes the code in // doAlsc, without the adaptive algorithm. for (int i = 0; i < XY; i++) - lambda_r_[i] = lambda_b_[i] = 1.0; - double cal_table_r[XY], cal_table_b[XY], cal_table_tmp[XY]; - get_cal_table(ct_, config_.calibrations_Cr, cal_table_tmp); - resample_cal_table(cal_table_tmp, camera_mode_, cal_table_r); - get_cal_table(ct_, config_.calibrations_Cb, cal_table_tmp); - resample_cal_table(cal_table_tmp, camera_mode_, cal_table_b); - compensate_lambdas_for_cal(cal_table_r, lambda_r_, - async_lambda_r_); - compensate_lambdas_for_cal(cal_table_b, lambda_b_, - async_lambda_b_); - add_luminance_to_tables(sync_results_, async_lambda_r_, 1.0, - async_lambda_b_, luminance_table_, - config_.luminance_strength); - memcpy(prev_sync_results_, sync_results_, - sizeof(prev_sync_results_)); - frame_phase_ = config_.frame_period; // run the algo again asap - first_time_ = false; + lambdaR_[i] = lambdaB_[i] = 1.0; + double calTableR[XY], calTableB[XY], calTableTmp[XY]; + getCalTable(ct_, config_.calibrationsCr, calTableTmp); + resampleCalTable(calTableTmp, cameraMode_, calTableR); + getCalTable(ct_, config_.calibrationsCb, calTableTmp); + resampleCalTable(calTableTmp, cameraMode_, calTableB); + compensateLambdasForCal(calTableR, lambdaR_, asyncLambdaR_); + compensateLambdasForCal(calTableB, lambdaB_, asyncLambdaB_); + addLuminanceToTables(syncResults_, asyncLambdaR_, 1.0, asyncLambdaB_, + luminanceTable_, config_.luminanceStrength); + memcpy(prevSyncResults_, syncResults_, sizeof(prevSyncResults_)); + framePhase_ = config_.framePeriod; // run the algo again asap + firstTime_ = false; } } void Alsc::fetchAsyncResults() { LOG(RPiAlsc, Debug) << "Fetch ALSC results"; - async_finished_ = false; - async_started_ = false; - memcpy(sync_results_, async_results_, sizeof(sync_results_)); + asyncFinished_ = false; + asyncStarted_ = false; + memcpy(syncResults_, asyncResults_, sizeof(syncResults_)); } -double get_ct(Metadata *metadata, double default_ct) +double getCt(Metadata *metadata, double defaultCt) { - AwbStatus awb_status; - awb_status.temperature_K = default_ct; // in case nothing found - if (metadata->Get("awb.status", awb_status) != 0) + AwbStatus awbStatus; + awbStatus.temperatureK = defaultCt; // in case nothing found + if (metadata->get("awb.status", awbStatus) != 0) LOG(RPiAlsc, Debug) << "no AWB results found, using " - << awb_status.temperature_K; + << awbStatus.temperatureK; else LOG(RPiAlsc, Debug) << "AWB results found, using " - << awb_status.temperature_K; - return awb_status.temperature_K; + << awbStatus.temperatureK; + return awbStatus.temperatureK; } -static void copy_stats(bcm2835_isp_stats_region regions[XY], StatisticsPtr &stats, - AlscStatus const &status) +static void copyStats(bcm2835_isp_stats_region regions[XY], StatisticsPtr &stats, + AlscStatus const &status) { - bcm2835_isp_stats_region *input_regions = stats->awb_stats; - double *r_table = (double *)status.r; - double *g_table = (double *)status.g; - double *b_table = (double *)status.b; + bcm2835_isp_stats_region *inputRegions = stats->awb_stats; + double *rTable = (double *)status.r; + double *gTable = (double *)status.g; + double *bTable = (double *)status.b; for (int i = 0; i < XY; i++) { - regions[i].r_sum = input_regions[i].r_sum / r_table[i]; - regions[i].g_sum = input_regions[i].g_sum / g_table[i]; - regions[i].b_sum = input_regions[i].b_sum / b_table[i]; - regions[i].counted = input_regions[i].counted; + regions[i].r_sum = inputRegions[i].r_sum / rTable[i]; + regions[i].g_sum = inputRegions[i].g_sum / gTable[i]; + regions[i].b_sum = inputRegions[i].b_sum / bTable[i]; + regions[i].counted = inputRegions[i].counted; // (don't care about the uncounted value) } } -void Alsc::restartAsync(StatisticsPtr &stats, Metadata *image_metadata) +void Alsc::restartAsync(StatisticsPtr &stats, Metadata *imageMetadata) { LOG(RPiAlsc, Debug) << "Starting ALSC calculation"; // Get the current colour temperature. It's all we need from the // metadata. Default to the last CT value (which could be the default). - ct_ = get_ct(image_metadata, ct_); + ct_ = getCt(imageMetadata, ct_); // We have to copy the statistics here, dividing out our best guess of // the LSC table that the pipeline applied to them. - AlscStatus alsc_status; - if (image_metadata->Get("alsc.status", alsc_status) != 0) { + AlscStatus alscStatus; + if (imageMetadata->get("alsc.status", alscStatus) != 0) { LOG(RPiAlsc, Warning) << "No ALSC status found for applied gains!"; for (int y = 0; y < Y; y++) for (int x = 0; x < X; x++) { - alsc_status.r[y][x] = 1.0; - alsc_status.g[y][x] = 1.0; - alsc_status.b[y][x] = 1.0; + alscStatus.r[y][x] = 1.0; + alscStatus.g[y][x] = 1.0; + alscStatus.b[y][x] = 1.0; } } - copy_stats(statistics_, stats, alsc_status); - frame_phase_ = 0; - async_started_ = true; + copyStats(statistics_, stats, alscStatus); + framePhase_ = 0; + asyncStarted_ = true; { std::lock_guard<std::mutex> lock(mutex_); - async_start_ = true; + asyncStart_ = true; } - async_signal_.notify_one(); + asyncSignal_.notify_one(); } -void Alsc::Prepare(Metadata *image_metadata) +void Alsc::prepare(Metadata *imageMetadata) { // Count frames since we started, and since we last poked the async // thread. - if (frame_count_ < (int)config_.startup_frames) - frame_count_++; - double speed = frame_count_ < (int)config_.startup_frames + if (frameCount_ < (int)config_.startupFrames) + frameCount_++; + double speed = frameCount_ < (int)config_.startupFrames ? 1.0 : config_.speed; LOG(RPiAlsc, Debug) - << "frame_count " << frame_count_ << " speed " << speed; + << "frame count " << frameCount_ << " speed " << speed; { std::unique_lock<std::mutex> lock(mutex_); - if (async_started_ && async_finished_) + if (asyncStarted_ && asyncFinished_) fetchAsyncResults(); } // Apply IIR filter to results and program into the pipeline. - double *ptr = (double *)sync_results_, - *pptr = (double *)prev_sync_results_; - for (unsigned int i = 0; - i < sizeof(sync_results_) / sizeof(double); i++) + double *ptr = (double *)syncResults_, + *pptr = (double *)prevSyncResults_; + for (unsigned int i = 0; i < sizeof(syncResults_) / sizeof(double); i++) pptr[i] = speed * ptr[i] + (1.0 - speed) * pptr[i]; // Put output values into status metadata. AlscStatus status; - memcpy(status.r, prev_sync_results_[0], sizeof(status.r)); - memcpy(status.g, prev_sync_results_[1], sizeof(status.g)); - memcpy(status.b, prev_sync_results_[2], sizeof(status.b)); - image_metadata->Set("alsc.status", status); + memcpy(status.r, prevSyncResults_[0], sizeof(status.r)); + memcpy(status.g, prevSyncResults_[1], sizeof(status.g)); + memcpy(status.b, prevSyncResults_[2], sizeof(status.b)); + imageMetadata->set("alsc.status", status); } -void Alsc::Process(StatisticsPtr &stats, Metadata *image_metadata) +void Alsc::process(StatisticsPtr &stats, Metadata *imageMetadata) { // Count frames since we started, and since we last poked the async // thread. - if (frame_phase_ < (int)config_.frame_period) - frame_phase_++; - if (frame_count2_ < (int)config_.startup_frames) - frame_count2_++; - LOG(RPiAlsc, Debug) << "frame_phase " << frame_phase_; - if (frame_phase_ >= (int)config_.frame_period || - frame_count2_ < (int)config_.startup_frames) { - if (async_started_ == false) - restartAsync(stats, image_metadata); + if (framePhase_ < (int)config_.framePeriod) + framePhase_++; + if (frameCount2_ < (int)config_.startupFrames) + frameCount2_++; + LOG(RPiAlsc, Debug) << "frame_phase " << framePhase_; + if (framePhase_ >= (int)config_.framePeriod || + frameCount2_ < (int)config_.startupFrames) { + if (asyncStarted_ == false) + restartAsync(stats, imageMetadata); } } @@ -375,143 +365,140 @@ void Alsc::asyncFunc() while (true) { { std::unique_lock<std::mutex> lock(mutex_); - async_signal_.wait(lock, [&] { - return async_start_ || async_abort_; + asyncSignal_.wait(lock, [&] { + return asyncStart_ || asyncAbort_; }); - async_start_ = false; - if (async_abort_) + asyncStart_ = false; + if (asyncAbort_) break; } doAlsc(); { std::lock_guard<std::mutex> lock(mutex_); - async_finished_ = true; + asyncFinished_ = true; } - sync_signal_.notify_one(); + syncSignal_.notify_one(); } } -void get_cal_table(double ct, std::vector<AlscCalibration> const &calibrations, - double cal_table[XY]) +void getCalTable(double ct, std::vector<AlscCalibration> const &calibrations, + double calTable[XY]) { if (calibrations.empty()) { for (int i = 0; i < XY; i++) - cal_table[i] = 1.0; + calTable[i] = 1.0; LOG(RPiAlsc, Debug) << "no calibrations found"; } else if (ct <= calibrations.front().ct) { - memcpy(cal_table, calibrations.front().table, - XY * sizeof(double)); + memcpy(calTable, calibrations.front().table, XY * sizeof(double)); LOG(RPiAlsc, Debug) << "using calibration for " << calibrations.front().ct; } else if (ct >= calibrations.back().ct) { - memcpy(cal_table, calibrations.back().table, - XY * sizeof(double)); + memcpy(calTable, calibrations.back().table, XY * sizeof(double)); LOG(RPiAlsc, Debug) << "using calibration for " << calibrations.back().ct; } else { int idx = 0; while (ct > calibrations[idx + 1].ct) idx++; - double ct0 = calibrations[idx].ct, - ct1 = calibrations[idx + 1].ct; + double ct0 = calibrations[idx].ct, ct1 = calibrations[idx + 1].ct; LOG(RPiAlsc, Debug) << "ct is " << ct << ", interpolating between " << ct0 << " and " << ct1; for (int i = 0; i < XY; i++) - cal_table[i] = + calTable[i] = (calibrations[idx].table[i] * (ct1 - ct) + calibrations[idx + 1].table[i] * (ct - ct0)) / (ct1 - ct0); } } -void resample_cal_table(double const cal_table_in[XY], - CameraMode const &camera_mode, double cal_table_out[XY]) +void resampleCalTable(double const calTableIn[XY], + CameraMode const &cameraMode, double calTableOut[XY]) { // Precalculate and cache the x sampling locations and phases to save // recomputing them on every row. - int x_lo[X], x_hi[X]; + int xLo[X], xHi[X]; double xf[X]; - double scale_x = camera_mode.sensor_width / - (camera_mode.width * camera_mode.scale_x); - double x_off = camera_mode.crop_x / (double)camera_mode.sensor_width; - double x = .5 / scale_x + x_off * X - .5; - double x_inc = 1 / scale_x; - for (int i = 0; i < X; i++, x += x_inc) { - x_lo[i] = floor(x); - xf[i] = x - x_lo[i]; - x_hi[i] = std::min(x_lo[i] + 1, X - 1); - x_lo[i] = std::max(x_lo[i], 0); - if (!!(camera_mode.transform & libcamera::Transform::HFlip)) { - x_lo[i] = X - 1 - x_lo[i]; - x_hi[i] = X - 1 - x_hi[i]; + double scaleX = cameraMode.sensorWidth / + (cameraMode.width * cameraMode.scaleX); + double xOff = cameraMode.cropX / (double)cameraMode.sensorWidth; + double x = .5 / scaleX + xOff * X - .5; + double xInc = 1 / scaleX; + for (int i = 0; i < X; i++, x += xInc) { + xLo[i] = floor(x); + xf[i] = x - xLo[i]; + xHi[i] = std::min(xLo[i] + 1, X - 1); + xLo[i] = std::max(xLo[i], 0); + if (!!(cameraMode.transform & libcamera::Transform::HFlip)) { + xLo[i] = X - 1 - xLo[i]; + xHi[i] = X - 1 - xHi[i]; } } // Now march over the output table generating the new values. - double scale_y = camera_mode.sensor_height / - (camera_mode.height * camera_mode.scale_y); - double y_off = camera_mode.crop_y / (double)camera_mode.sensor_height; - double y = .5 / scale_y + y_off * Y - .5; - double y_inc = 1 / scale_y; - for (int j = 0; j < Y; j++, y += y_inc) { - int y_lo = floor(y); - double yf = y - y_lo; - int y_hi = std::min(y_lo + 1, Y - 1); - y_lo = std::max(y_lo, 0); - if (!!(camera_mode.transform & libcamera::Transform::VFlip)) { - y_lo = Y - 1 - y_lo; - y_hi = Y - 1 - y_hi; + double scaleY = cameraMode.sensorHeight / + (cameraMode.height * cameraMode.scaleY); + double yOff = cameraMode.cropY / (double)cameraMode.sensorHeight; + double y = .5 / scaleY + yOff * Y - .5; + double yInc = 1 / scaleY; + for (int j = 0; j < Y; j++, y += yInc) { + int yLo = floor(y); + double yf = y - yLo; + int yHi = std::min(yLo + 1, Y - 1); + yLo = std::max(yLo, 0); + if (!!(cameraMode.transform & libcamera::Transform::VFlip)) { + yLo = Y - 1 - yLo; + yHi = Y - 1 - yHi; } - double const *row_above = cal_table_in + X * y_lo; - double const *row_below = cal_table_in + X * y_hi; + double const *rowAbove = calTableIn + X * yLo; + double const *rowBelow = calTableIn + X * yHi; for (int i = 0; i < X; i++) { - double above = row_above[x_lo[i]] * (1 - xf[i]) + - row_above[x_hi[i]] * xf[i]; - double below = row_below[x_lo[i]] * (1 - xf[i]) + - row_below[x_hi[i]] * xf[i]; - *(cal_table_out++) = above * (1 - yf) + below * yf; + double above = rowAbove[xLo[i]] * (1 - xf[i]) + + rowAbove[xHi[i]] * xf[i]; + double below = rowBelow[xLo[i]] * (1 - xf[i]) + + rowBelow[xHi[i]] * xf[i]; + *(calTableOut++) = above * (1 - yf) + below * yf; } } } // Calculate chrominance statistics (R/G and B/G) for each region. static_assert(XY == AWB_REGIONS, "ALSC/AWB statistics region mismatch"); -static void calculate_Cr_Cb(bcm2835_isp_stats_region *awb_region, double Cr[XY], - double Cb[XY], uint32_t min_count, uint16_t min_G) +static void calculateCrCb(bcm2835_isp_stats_region *awbRegion, double cr[XY], + double cb[XY], uint32_t minCount, uint16_t minG) { for (int i = 0; i < XY; i++) { - bcm2835_isp_stats_region &zone = awb_region[i]; - if (zone.counted <= min_count || - zone.g_sum / zone.counted <= min_G) { - Cr[i] = Cb[i] = INSUFFICIENT_DATA; + bcm2835_isp_stats_region &zone = awbRegion[i]; + if (zone.counted <= minCount || + zone.g_sum / zone.counted <= minG) { + cr[i] = cb[i] = InsufficientData; continue; } - Cr[i] = zone.r_sum / (double)zone.g_sum; - Cb[i] = zone.b_sum / (double)zone.g_sum; + cr[i] = zone.r_sum / (double)zone.g_sum; + cb[i] = zone.b_sum / (double)zone.g_sum; } } -static void apply_cal_table(double const cal_table[XY], double C[XY]) +static void applyCalTable(double const calTable[XY], double C[XY]) { for (int i = 0; i < XY; i++) - if (C[i] != INSUFFICIENT_DATA) - C[i] *= cal_table[i]; + if (C[i] != InsufficientData) + C[i] *= calTable[i]; } -void compensate_lambdas_for_cal(double const cal_table[XY], - double const old_lambdas[XY], - double new_lambdas[XY]) +void compensateLambdasForCal(double const calTable[XY], + double const oldLambdas[XY], + double newLambdas[XY]) { - double min_new_lambda = std::numeric_limits<double>::max(); + double minNewLambda = std::numeric_limits<double>::max(); for (int i = 0; i < XY; i++) { - new_lambdas[i] = old_lambdas[i] * cal_table[i]; - min_new_lambda = std::min(min_new_lambda, new_lambdas[i]); + newLambdas[i] = oldLambdas[i] * calTable[i]; + minNewLambda = std::min(minNewLambda, newLambdas[i]); } for (int i = 0; i < XY; i++) - new_lambdas[i] /= min_new_lambda; + newLambdas[i] /= minNewLambda; } -[[maybe_unused]] static void print_cal_table(double const C[XY]) +[[maybe_unused]] static void printCalTable(double const C[XY]) { printf("table: [\n"); for (int j = 0; j < Y; j++) { @@ -527,31 +514,29 @@ void compensate_lambdas_for_cal(double const cal_table[XY], // Compute weight out of 1.0 which reflects how similar we wish to make the // colours of these two regions. -static double compute_weight(double C_i, double C_j, double sigma) +static double computeWeight(double Ci, double Cj, double sigma) { - if (C_i == INSUFFICIENT_DATA || C_j == INSUFFICIENT_DATA) + if (Ci == InsufficientData || Cj == InsufficientData) return 0; - double diff = (C_i - C_j) / sigma; + double diff = (Ci - Cj) / sigma; return exp(-diff * diff / 2); } // Compute all weights. -static void compute_W(double const C[XY], double sigma, double W[XY][4]) +static void computeW(double const C[XY], double sigma, double W[XY][4]) { for (int i = 0; i < XY; i++) { // Start with neighbour above and go clockwise. - W[i][0] = i >= X ? compute_weight(C[i], C[i - X], sigma) : 0; - W[i][1] = i % X < X - 1 ? compute_weight(C[i], C[i + 1], sigma) - : 0; - W[i][2] = - i < XY - X ? compute_weight(C[i], C[i + X], sigma) : 0; - W[i][3] = i % X ? compute_weight(C[i], C[i - 1], sigma) : 0; + W[i][0] = i >= X ? computeWeight(C[i], C[i - X], sigma) : 0; + W[i][1] = i % X < X - 1 ? computeWeight(C[i], C[i + 1], sigma) : 0; + W[i][2] = i < XY - X ? computeWeight(C[i], C[i + X], sigma) : 0; + W[i][3] = i % X ? computeWeight(C[i], C[i - 1], sigma) : 0; } } // Compute M, the large but sparse matrix such that M * lambdas = 0. -static void construct_M(double const C[XY], double const W[XY][4], - double M[XY][4]) +static void constructM(double const C[XY], double const W[XY][4], + double M[XY][4]) { double epsilon = 0.001; for (int i = 0; i < XY; i++) { @@ -560,108 +545,96 @@ static void construct_M(double const C[XY], double const W[XY][4], int m = !!(i >= X) + !!(i % X < X - 1) + !!(i < XY - X) + !!(i % X); // total number of neighbours // we'll divide the diagonal out straight away - double diagonal = - (epsilon + W[i][0] + W[i][1] + W[i][2] + W[i][3]) * - C[i]; - M[i][0] = i >= X ? (W[i][0] * C[i - X] + epsilon / m * C[i]) / - diagonal - : 0; - M[i][1] = i % X < X - 1 - ? (W[i][1] * C[i + 1] + epsilon / m * C[i]) / - diagonal - : 0; - M[i][2] = i < XY - X - ? (W[i][2] * C[i + X] + epsilon / m * C[i]) / - diagonal - : 0; - M[i][3] = i % X ? (W[i][3] * C[i - 1] + epsilon / m * C[i]) / - diagonal - : 0; + double diagonal = (epsilon + W[i][0] + W[i][1] + W[i][2] + W[i][3]) * C[i]; + M[i][0] = i >= X ? (W[i][0] * C[i - X] + epsilon / m * C[i]) / diagonal : 0; + M[i][1] = i % X < X - 1 ? (W[i][1] * C[i + 1] + epsilon / m * C[i]) / diagonal : 0; + M[i][2] = i < XY - X ? (W[i][2] * C[i + X] + epsilon / m * C[i]) / diagonal : 0; + M[i][3] = i % X ? (W[i][3] * C[i - 1] + epsilon / m * C[i]) / diagonal : 0; } } // In the compute_lambda_ functions, note that the matrix coefficients for the // left/right neighbours are zero down the left/right edges, so we don't need // need to test the i value to exclude them. -static double compute_lambda_bottom(int i, double const M[XY][4], - double lambda[XY]) +static double computeLambdaBottom(int i, double const M[XY][4], + double lambda[XY]) { return M[i][1] * lambda[i + 1] + M[i][2] * lambda[i + X] + M[i][3] * lambda[i - 1]; } -static double compute_lambda_bottom_start(int i, double const M[XY][4], - double lambda[XY]) +static double computeLambdaBottomStart(int i, double const M[XY][4], + double lambda[XY]) { return M[i][1] * lambda[i + 1] + M[i][2] * lambda[i + X]; } -static double compute_lambda_interior(int i, double const M[XY][4], - double lambda[XY]) +static double computeLambdaInterior(int i, double const M[XY][4], + double lambda[XY]) { return M[i][0] * lambda[i - X] + M[i][1] * lambda[i + 1] + M[i][2] * lambda[i + X] + M[i][3] * lambda[i - 1]; } -static double compute_lambda_top(int i, double const M[XY][4], - double lambda[XY]) +static double computeLambdaTop(int i, double const M[XY][4], + double lambda[XY]) { return M[i][0] * lambda[i - X] + M[i][1] * lambda[i + 1] + M[i][3] * lambda[i - 1]; } -static double compute_lambda_top_end(int i, double const M[XY][4], - double lambda[XY]) +static double computeLambdaTopEnd(int i, double const M[XY][4], + double lambda[XY]) { return M[i][0] * lambda[i - X] + M[i][3] * lambda[i - 1]; } // Gauss-Seidel iteration with over-relaxation. -static double gauss_seidel2_SOR(double const M[XY][4], double omega, - double lambda[XY], double lambda_bound) +static double gaussSeidel2Sor(double const M[XY][4], double omega, + double lambda[XY], double lambdaBound) { - const double min = 1 - lambda_bound, max = 1 + lambda_bound; - double old_lambda[XY]; + const double min = 1 - lambdaBound, max = 1 + lambdaBound; + double oldLambda[XY]; int i; for (i = 0; i < XY; i++) - old_lambda[i] = lambda[i]; - lambda[0] = compute_lambda_bottom_start(0, M, lambda); + oldLambda[i] = lambda[i]; + lambda[0] = computeLambdaBottomStart(0, M, lambda); lambda[0] = std::clamp(lambda[0], min, max); for (i = 1; i < X; i++) { - lambda[i] = compute_lambda_bottom(i, M, lambda); + lambda[i] = computeLambdaBottom(i, M, lambda); lambda[i] = std::clamp(lambda[i], min, max); } for (; i < XY - X; i++) { - lambda[i] = compute_lambda_interior(i, M, lambda); + lambda[i] = computeLambdaInterior(i, M, lambda); lambda[i] = std::clamp(lambda[i], min, max); } for (; i < XY - 1; i++) { - lambda[i] = compute_lambda_top(i, M, lambda); + lambda[i] = computeLambdaTop(i, M, lambda); lambda[i] = std::clamp(lambda[i], min, max); } - lambda[i] = compute_lambda_top_end(i, M, lambda); + lambda[i] = computeLambdaTopEnd(i, M, lambda); lambda[i] = std::clamp(lambda[i], min, max); // Also solve the system from bottom to top, to help spread the updates // better. - lambda[i] = compute_lambda_top_end(i, M, lambda); + lambda[i] = computeLambdaTopEnd(i, M, lambda); lambda[i] = std::clamp(lambda[i], min, max); for (i = XY - 2; i >= XY - X; i--) { - lambda[i] = compute_lambda_top(i, M, lambda); + lambda[i] = computeLambdaTop(i, M, lambda); lambda[i] = std::clamp(lambda[i], min, max); } for (; i >= X; i--) { - lambda[i] = compute_lambda_interior(i, M, lambda); + lambda[i] = computeLambdaInterior(i, M, lambda); lambda[i] = std::clamp(lambda[i], min, max); } for (; i >= 1; i--) { - lambda[i] = compute_lambda_bottom(i, M, lambda); + lambda[i] = computeLambdaBottom(i, M, lambda); lambda[i] = std::clamp(lambda[i], min, max); } - lambda[0] = compute_lambda_bottom_start(0, M, lambda); + lambda[0] = computeLambdaBottomStart(0, M, lambda); lambda[0] = std::clamp(lambda[0], min, max); - double max_diff = 0; + double maxDiff = 0; for (i = 0; i < XY; i++) { - lambda[i] = old_lambda[i] + (lambda[i] - old_lambda[i]) * omega; - if (fabs(lambda[i] - old_lambda[i]) > fabs(max_diff)) - max_diff = lambda[i] - old_lambda[i]; + lambda[i] = oldLambda[i] + (lambda[i] - oldLambda[i]) * omega; + if (fabs(lambda[i] - oldLambda[i]) > fabs(maxDiff)) + maxDiff = lambda[i] - oldLambda[i]; } - return max_diff; + return maxDiff; } // Normalise the values so that the smallest value is 1. @@ -683,105 +656,99 @@ static void reaverage(Span<double> data) d *= ratio; } -static void run_matrix_iterations(double const C[XY], double lambda[XY], - double const W[XY][4], double omega, - int n_iter, double threshold, double lambda_bound) +static void runMatrixIterations(double const C[XY], double lambda[XY], + double const W[XY][4], double omega, + int nIter, double threshold, double lambdaBound) { double M[XY][4]; - construct_M(C, W, M); - double last_max_diff = std::numeric_limits<double>::max(); - for (int i = 0; i < n_iter; i++) { - double max_diff = fabs(gauss_seidel2_SOR(M, omega, lambda, lambda_bound)); - if (max_diff < threshold) { + constructM(C, W, M); + double lastMaxDiff = std::numeric_limits<double>::max(); + for (int i = 0; i < nIter; i++) { + double maxDiff = fabs(gaussSeidel2Sor(M, omega, lambda, lambdaBound)); + if (maxDiff < threshold) { LOG(RPiAlsc, Debug) << "Stop after " << i + 1 << " iterations"; break; } // this happens very occasionally (so make a note), though // doesn't seem to matter - if (max_diff > last_max_diff) + if (maxDiff > lastMaxDiff) LOG(RPiAlsc, Debug) - << "Iteration " << i << ": max_diff gone up " - << last_max_diff << " to " << max_diff; - last_max_diff = max_diff; + << "Iteration " << i << ": maxDiff gone up " + << lastMaxDiff << " to " << maxDiff; + lastMaxDiff = maxDiff; } // We're going to normalise the lambdas so the total average is 1. reaverage({ lambda, XY }); } -static void add_luminance_rb(double result[XY], double const lambda[XY], - double const luminance_lut[XY], - double luminance_strength) +static void addLuminanceRb(double result[XY], double const lambda[XY], + double const luminanceLut[XY], + double luminanceStrength) { for (int i = 0; i < XY; i++) - result[i] = lambda[i] * - ((luminance_lut[i] - 1) * luminance_strength + 1); + result[i] = lambda[i] * ((luminanceLut[i] - 1) * luminanceStrength + 1); } -static void add_luminance_g(double result[XY], double lambda, - double const luminance_lut[XY], - double luminance_strength) +static void addLuminanceG(double result[XY], double lambda, + double const luminanceLut[XY], + double luminanceStrength) { for (int i = 0; i < XY; i++) - result[i] = lambda * - ((luminance_lut[i] - 1) * luminance_strength + 1); + result[i] = lambda * ((luminanceLut[i] - 1) * luminanceStrength + 1); } -void add_luminance_to_tables(double results[3][Y][X], double const lambda_r[XY], - double lambda_g, double const lambda_b[XY], - double const luminance_lut[XY], - double luminance_strength) +void addLuminanceToTables(double results[3][Y][X], double const lambdaR[XY], + double lambdaG, double const lambdaB[XY], + double const luminanceLut[XY], + double luminanceStrength) { - add_luminance_rb((double *)results[0], lambda_r, luminance_lut, - luminance_strength); - add_luminance_g((double *)results[1], lambda_g, luminance_lut, - luminance_strength); - add_luminance_rb((double *)results[2], lambda_b, luminance_lut, - luminance_strength); + addLuminanceRb((double *)results[0], lambdaR, luminanceLut, luminanceStrength); + addLuminanceG((double *)results[1], lambdaG, luminanceLut, luminanceStrength); + addLuminanceRb((double *)results[2], lambdaB, luminanceLut, luminanceStrength); normalise((double *)results, 3 * XY); } void Alsc::doAlsc() { - double Cr[XY], Cb[XY], Wr[XY][4], Wb[XY][4], cal_table_r[XY], - cal_table_b[XY], cal_table_tmp[XY]; + double cr[XY], cb[XY], wr[XY][4], wb[XY][4], calTableR[XY], calTableB[XY], calTableTmp[XY]; // Calculate our R/B ("Cr"/"Cb") colour statistics, and assess which are // usable. - calculate_Cr_Cb(statistics_, Cr, Cb, config_.min_count, config_.min_G); + calculateCrCb(statistics_, cr, cb, config_.minCount, config_.minG); // Fetch the new calibrations (if any) for this CT. Resample them in // case the camera mode is not full-frame. - get_cal_table(ct_, config_.calibrations_Cr, cal_table_tmp); - resample_cal_table(cal_table_tmp, camera_mode_, cal_table_r); - get_cal_table(ct_, config_.calibrations_Cb, cal_table_tmp); - resample_cal_table(cal_table_tmp, camera_mode_, cal_table_b); + getCalTable(ct_, config_.calibrationsCr, calTableTmp); + resampleCalTable(calTableTmp, cameraMode_, calTableR); + getCalTable(ct_, config_.calibrationsCb, calTableTmp); + resampleCalTable(calTableTmp, cameraMode_, calTableB); // You could print out the cal tables for this image here, if you're // tuning the algorithm... // Apply any calibration to the statistics, so the adaptive algorithm // makes only the extra adjustments. - apply_cal_table(cal_table_r, Cr); - apply_cal_table(cal_table_b, Cb); + applyCalTable(calTableR, cr); + applyCalTable(calTableB, cb); // Compute weights between zones. - compute_W(Cr, config_.sigma_Cr, Wr); - compute_W(Cb, config_.sigma_Cb, Wb); + computeW(cr, config_.sigmaCr, wr); + computeW(cb, config_.sigmaCb, wb); // Run Gauss-Seidel iterations over the resulting matrix, for R and B. - run_matrix_iterations(Cr, lambda_r_, Wr, config_.omega, config_.n_iter, - config_.threshold, config_.lambda_bound); - run_matrix_iterations(Cb, lambda_b_, Wb, config_.omega, config_.n_iter, - config_.threshold, config_.lambda_bound); + runMatrixIterations(cr, lambdaR_, wr, config_.omega, config_.nIter, + config_.threshold, config_.lambdaBound); + runMatrixIterations(cb, lambdaB_, wb, config_.omega, config_.nIter, + config_.threshold, config_.lambdaBound); // Fold the calibrated gains into our final lambda values. (Note that on // the next run, we re-start with the lambda values that don't have the // calibration gains included.) - compensate_lambdas_for_cal(cal_table_r, lambda_r_, async_lambda_r_); - compensate_lambdas_for_cal(cal_table_b, lambda_b_, async_lambda_b_); + compensateLambdasForCal(calTableR, lambdaR_, asyncLambdaR_); + compensateLambdasForCal(calTableB, lambdaB_, asyncLambdaB_); // Fold in the luminance table at the appropriate strength. - add_luminance_to_tables(async_results_, async_lambda_r_, 1.0, - async_lambda_b_, luminance_table_, - config_.luminance_strength); + addLuminanceToTables(asyncResults_, asyncLambdaR_, 1.0, + asyncLambdaB_, luminanceTable_, + config_.luminanceStrength); } // Register algorithm with the system. -static Algorithm *Create(Controller *controller) +static Algorithm *create(Controller *controller) { return (Algorithm *)new Alsc(controller); } -static RegisterAlgorithm reg(NAME, &Create); +static RegisterAlgorithm reg(NAME, &create); diff --git a/src/ipa/raspberrypi/controller/rpi/alsc.hpp b/src/ipa/raspberrypi/controller/rpi/alsc.hpp index d1dbe0d1..7a0949d1 100644 --- a/src/ipa/raspberrypi/controller/rpi/alsc.hpp +++ b/src/ipa/raspberrypi/controller/rpi/alsc.hpp @@ -24,24 +24,24 @@ struct AlscCalibration { struct AlscConfig { // Only repeat the ALSC calculation every "this many" frames - uint16_t frame_period; + uint16_t framePeriod; // number of initial frames for which speed taken as 1.0 (maximum) - uint16_t startup_frames; + uint16_t startupFrames; // IIR filter speed applied to algorithm results double speed; - double sigma_Cr; - double sigma_Cb; - double min_count; - uint16_t min_G; + double sigmaCr; + double sigmaCb; + double minCount; + uint16_t minG; double omega; - uint32_t n_iter; - double luminance_lut[ALSC_CELLS_X * ALSC_CELLS_Y]; - double luminance_strength; - std::vector<AlscCalibration> calibrations_Cr; - std::vector<AlscCalibration> calibrations_Cb; - double default_ct; // colour temperature if no metadata found + uint32_t nIter; + double luminanceLut[ALSC_CELLS_X * ALSC_CELLS_Y]; + double luminanceStrength; + std::vector<AlscCalibration> calibrationsCr; + std::vector<AlscCalibration> calibrationsCb; + double defaultCt; // colour temperature if no metadata found double threshold; // iteration termination threshold - double lambda_bound; // upper/lower bound for lambda from a value of 1 + double lambdaBound; // upper/lower bound for lambda from a value of 1 }; class Alsc : public Algorithm @@ -49,58 +49,58 @@ class Alsc : public Algorithm public: Alsc(Controller *controller = NULL); ~Alsc(); - char const *Name() const override; - void Initialise() override; - void SwitchMode(CameraMode const &camera_mode, Metadata *metadata) override; - void Read(boost::property_tree::ptree const ¶ms) override; - void Prepare(Metadata *image_metadata) override; - void Process(StatisticsPtr &stats, Metadata *image_metadata) override; + char const *name() const override; + void initialise() override; + void switchMode(CameraMode const &cameraMode, Metadata *metadata) override; + void read(boost::property_tree::ptree const ¶ms) override; + void prepare(Metadata *imageMetadata) override; + void process(StatisticsPtr &stats, Metadata *imageMetadata) override; private: // configuration is read-only, and available to both threads AlscConfig config_; - bool first_time_; - CameraMode camera_mode_; - double luminance_table_[ALSC_CELLS_X * ALSC_CELLS_Y]; - std::thread async_thread_; + bool firstTime_; + CameraMode cameraMode_; + double luminanceTable_[ALSC_CELLS_X * ALSC_CELLS_Y]; + std::thread asyncThread_; void asyncFunc(); // asynchronous thread function std::mutex mutex_; // condvar for async thread to wait on - std::condition_variable async_signal_; + std::condition_variable asyncSignal_; // condvar for synchronous thread to wait on - std::condition_variable sync_signal_; + std::condition_variable syncSignal_; // for sync thread to check if async thread finished (requires mutex) - bool async_finished_; + bool asyncFinished_; // for async thread to check if it's been told to run (requires mutex) - bool async_start_; + bool asyncStart_; // for async thread to check if it's been told to quit (requires mutex) - bool async_abort_; + bool asyncAbort_; // The following are only for the synchronous thread to use: // for sync thread to note its has asked async thread to run - bool async_started_; - // counts up to frame_period before restarting the async thread - int frame_phase_; - // counts up to startup_frames - int frame_count_; - // counts up to startup_frames for Process function - int frame_count2_; - double sync_results_[3][ALSC_CELLS_Y][ALSC_CELLS_X]; - double prev_sync_results_[3][ALSC_CELLS_Y][ALSC_CELLS_X]; + bool asyncStarted_; + // counts up to framePeriod before restarting the async thread + int framePhase_; + // counts up to startupFrames + int frameCount_; + // counts up to startupFrames for Process function + int frameCount2_; + double syncResults_[3][ALSC_CELLS_Y][ALSC_CELLS_X]; + double prevSyncResults_[3][ALSC_CELLS_Y][ALSC_CELLS_X]; void waitForAysncThread(); // The following are for the asynchronous thread to use, though the main // thread can set/reset them if the async thread is known to be idle: - void restartAsync(StatisticsPtr &stats, Metadata *image_metadata); + void restartAsync(StatisticsPtr &stats, Metadata *imageMetadata); // copy out the results from the async thread so that it can be restarted void fetchAsyncResults(); double ct_; bcm2835_isp_stats_region statistics_[ALSC_CELLS_Y * ALSC_CELLS_X]; - double async_results_[3][ALSC_CELLS_Y][ALSC_CELLS_X]; - double async_lambda_r_[ALSC_CELLS_X * ALSC_CELLS_Y]; - double async_lambda_b_[ALSC_CELLS_X * ALSC_CELLS_Y]; + double asyncResults_[3][ALSC_CELLS_Y][ALSC_CELLS_X]; + double asyncLambdaR_[ALSC_CELLS_X * ALSC_CELLS_Y]; + double asyncLambdaB_[ALSC_CELLS_X * ALSC_CELLS_Y]; void doAlsc(); - double lambda_r_[ALSC_CELLS_X * ALSC_CELLS_Y]; - double lambda_b_[ALSC_CELLS_X * ALSC_CELLS_Y]; + double lambdaR_[ALSC_CELLS_X * ALSC_CELLS_Y]; + double lambdaB_[ALSC_CELLS_X * ALSC_CELLS_Y]; }; } // namespace RPiController diff --git a/src/ipa/raspberrypi/controller/rpi/awb.cpp b/src/ipa/raspberrypi/controller/rpi/awb.cpp index d4c93447..07791e8b 100644 --- a/src/ipa/raspberrypi/controller/rpi/awb.cpp +++ b/src/ipa/raspberrypi/controller/rpi/awb.cpp @@ -24,33 +24,33 @@ LOG_DEFINE_CATEGORY(RPiAwb) // todo - the locking in this algorithm needs some tidying up as has been done // elsewhere (ALSC and AGC). -void AwbMode::Read(boost::property_tree::ptree const ¶ms) +void AwbMode::read(boost::property_tree::ptree const ¶ms) { - ct_lo = params.get<double>("lo"); - ct_hi = params.get<double>("hi"); + ctLo = params.get<double>("lo"); + ctHi = params.get<double>("hi"); } -void AwbPrior::Read(boost::property_tree::ptree const ¶ms) +void AwbPrior::read(boost::property_tree::ptree const ¶ms) { lux = params.get<double>("lux"); - prior.Read(params.get_child("prior")); + prior.read(params.get_child("prior")); } -static void read_ct_curve(Pwl &ct_r, Pwl &ct_b, - boost::property_tree::ptree const ¶ms) +static void readCtCurve(Pwl &ctR, Pwl &ctB, + boost::property_tree::ptree const ¶ms) { int num = 0; for (auto it = params.begin(); it != params.end(); it++) { double ct = it->second.get_value<double>(); - assert(it == params.begin() || ct != ct_r.Domain().end); + assert(it == params.begin() || ct != ctR.domain().end); if (++it == params.end()) throw std::runtime_error( "AwbConfig: incomplete CT curve entry"); - ct_r.Append(ct, it->second.get_value<double>()); + ctR.append(ct, it->second.get_value<double>()); if (++it == params.end()) throw std::runtime_error( "AwbConfig: incomplete CT curve entry"); - ct_b.Append(ct, it->second.get_value<double>()); + ctB.append(ct, it->second.get_value<double>()); num++; } if (num < 2) @@ -58,22 +58,21 @@ static void read_ct_curve(Pwl &ct_r, Pwl &ct_b, "AwbConfig: insufficient points in CT curve"); } -void AwbConfig::Read(boost::property_tree::ptree const ¶ms) +void AwbConfig::read(boost::property_tree::ptree const ¶ms) { bayes = params.get<int>("bayes", 1); - frame_period = params.get<uint16_t>("frame_period", 10); - startup_frames = params.get<uint16_t>("startup_frames", 10); - convergence_frames = params.get<unsigned int>("convergence_frames", 3); + framePeriod = params.get<uint16_t>("framePeriod", 10); + startupFrames = params.get<uint16_t>("startupFrames", 10); + convergenceFrames = params.get<unsigned int>("convergence_frames", 3); speed = params.get<double>("speed", 0.05); if (params.get_child_optional("ct_curve")) - read_ct_curve(ct_r, ct_b, params.get_child("ct_curve")); + readCtCurve(ctR, ctB, params.get_child("ct_curve")); if (params.get_child_optional("priors")) { for (auto &p : params.get_child("priors")) { AwbPrior prior; - prior.Read(p.second); + prior.read(p.second); if (!priors.empty() && prior.lux <= priors.back().lux) - throw std::runtime_error( - "AwbConfig: Prior must be ordered in increasing lux value"); + throw std::runtime_error("AwbConfig: Prior must be ordered in increasing lux value"); priors.push_back(prior); } if (priors.empty()) @@ -82,177 +81,170 @@ void AwbConfig::Read(boost::property_tree::ptree const ¶ms) } if (params.get_child_optional("modes")) { for (auto &p : params.get_child("modes")) { - modes[p.first].Read(p.second); - if (default_mode == nullptr) - default_mode = &modes[p.first]; + modes[p.first].read(p.second); + if (defaultMode == nullptr) + defaultMode = &modes[p.first]; } - if (default_mode == nullptr) - throw std::runtime_error( - "AwbConfig: no AWB modes configured"); + if (defaultMode == nullptr) + throw std::runtime_error("AwbConfig: no AWB modes configured"); } - min_pixels = params.get<double>("min_pixels", 16.0); - min_G = params.get<uint16_t>("min_G", 32); - min_regions = params.get<uint32_t>("min_regions", 10); - delta_limit = params.get<double>("delta_limit", 0.2); - coarse_step = params.get<double>("coarse_step", 0.2); - transverse_pos = params.get<double>("transverse_pos", 0.01); - transverse_neg = params.get<double>("transverse_neg", 0.01); - if (transverse_pos <= 0 || transverse_neg <= 0) - throw std::runtime_error( - "AwbConfig: transverse_pos/neg must be > 0"); - sensitivity_r = params.get<double>("sensitivity_r", 1.0); - sensitivity_b = params.get<double>("sensitivity_b", 1.0); + minPixels = params.get<double>("min_pixels", 16.0); + minG = params.get<uint16_t>("min_G", 32); + minRegions = params.get<uint32_t>("min_regions", 10); + deltaLimit = params.get<double>("delta_limit", 0.2); + coarseStep = params.get<double>("coarse_step", 0.2); + transversePos = params.get<double>("transverse_pos", 0.01); + transverseNeg = params.get<double>("transverse_neg", 0.01); + if (transversePos <= 0 || transverseNeg <= 0) + throw std::runtime_error("AwbConfig: transverse_pos/neg must be > 0"); + sensitivityR = params.get<double>("sensitivity_r", 1.0); + sensitivityB = params.get<double>("sensitivity_b", 1.0); if (bayes) { - if (ct_r.Empty() || ct_b.Empty() || priors.empty() || - default_mode == nullptr) { + if (ctR.empty() || ctB.empty() || priors.empty() || + defaultMode == nullptr) { LOG(RPiAwb, Warning) << "Bayesian AWB mis-configured - switch to Grey method"; bayes = false; } } - fast = params.get<int>( - "fast", bayes); // default to fast for Bayesian, otherwise slow - whitepoint_r = params.get<double>("whitepoint_r", 0.0); - whitepoint_b = params.get<double>("whitepoint_b", 0.0); + fast = params.get<int>("fast", bayes); // default to fast for Bayesian, otherwise slow + whitepointR = params.get<double>("whitepoint_r", 0.0); + whitepointB = params.get<double>("whitepoint_b", 0.0); if (bayes == false) - sensitivity_r = sensitivity_b = - 1.0; // nor do sensitivities make any sense + sensitivityR = sensitivityB = 1.0; // nor do sensitivities make any sense } Awb::Awb(Controller *controller) : AwbAlgorithm(controller) { - async_abort_ = async_start_ = async_started_ = async_finished_ = false; + asyncAbort_ = asyncStart_ = asyncStarted_ = asyncFinished_ = false; mode_ = nullptr; - manual_r_ = manual_b_ = 0.0; - first_switch_mode_ = true; - async_thread_ = std::thread(std::bind(&Awb::asyncFunc, this)); + manualR_ = manualB_ = 0.0; + firstSwitchMode_ = true; + asyncThread_ = std::thread(std::bind(&Awb::asyncFunc, this)); } Awb::~Awb() { { std::lock_guard<std::mutex> lock(mutex_); - async_abort_ = true; + asyncAbort_ = true; } - async_signal_.notify_one(); - async_thread_.join(); + asyncSignal_.notify_one(); + asyncThread_.join(); } -char const *Awb::Name() const +char const *Awb::name() const { return NAME; } -void Awb::Read(boost::property_tree::ptree const ¶ms) +void Awb::read(boost::property_tree::ptree const ¶ms) { - config_.Read(params); + config_.read(params); } -void Awb::Initialise() +void Awb::initialise() { - frame_count_ = frame_phase_ = 0; + frameCount_ = framePhase_ = 0; // Put something sane into the status that we are filtering towards, // just in case the first few frames don't have anything meaningful in // them. - if (!config_.ct_r.Empty() && !config_.ct_b.Empty()) { - sync_results_.temperature_K = config_.ct_r.Domain().Clip(4000); - sync_results_.gain_r = - 1.0 / config_.ct_r.Eval(sync_results_.temperature_K); - sync_results_.gain_g = 1.0; - sync_results_.gain_b = - 1.0 / config_.ct_b.Eval(sync_results_.temperature_K); + if (!config_.ctR.empty() && !config_.ctB.empty()) { + syncResults_.temperatureK = config_.ctR.domain().clip(4000); + syncResults_.gainR = 1.0 / config_.ctR.eval(syncResults_.temperatureK); + syncResults_.gainG = 1.0; + syncResults_.gainB = 1.0 / config_.ctB.eval(syncResults_.temperatureK); } else { // random values just to stop the world blowing up - sync_results_.temperature_K = 4500; - sync_results_.gain_r = sync_results_.gain_g = - sync_results_.gain_b = 1.0; + syncResults_.temperatureK = 4500; + syncResults_.gainR = syncResults_.gainG = syncResults_.gainB = 1.0; } - prev_sync_results_ = sync_results_; - async_results_ = sync_results_; + prevSyncResults_ = syncResults_; + asyncResults_ = syncResults_; } -bool Awb::IsPaused() const +bool Awb::isPaused() const { return false; } -void Awb::Pause() +void Awb::pause() { // "Pause" by fixing everything to the most recent values. - manual_r_ = sync_results_.gain_r = prev_sync_results_.gain_r; - manual_b_ = sync_results_.gain_b = prev_sync_results_.gain_b; - sync_results_.gain_g = prev_sync_results_.gain_g; - sync_results_.temperature_K = prev_sync_results_.temperature_K; + manualR_ = syncResults_.gainR = prevSyncResults_.gainR; + manualB_ = syncResults_.gainB = prevSyncResults_.gainB; + syncResults_.gainG = prevSyncResults_.gainG; + syncResults_.temperatureK = prevSyncResults_.temperatureK; } -void Awb::Resume() +void Awb::resume() { - manual_r_ = 0.0; - manual_b_ = 0.0; + manualR_ = 0.0; + manualB_ = 0.0; } -unsigned int Awb::GetConvergenceFrames() const +unsigned int Awb::getConvergenceFrames() const { // If not in auto mode, there is no convergence // to happen, so no need to drop any frames - return zero. if (!isAutoEnabled()) return 0; else - return config_.convergence_frames; + return config_.convergenceFrames; } -void Awb::SetMode(std::string const &mode_name) +void Awb::setMode(std::string const &modeName) { - mode_name_ = mode_name; + modeName_ = modeName; } -void Awb::SetManualGains(double manual_r, double manual_b) +void Awb::setManualGains(double manualR, double manualB) { // If any of these are 0.0, we swich back to auto. - manual_r_ = manual_r; - manual_b_ = manual_b; - // If not in auto mode, set these values into the sync_results which + manualR_ = manualR; + manualB_ = manualB; + // If not in auto mode, set these values into the syncResults which // means that Prepare() will adopt them immediately. if (!isAutoEnabled()) { - sync_results_.gain_r = prev_sync_results_.gain_r = manual_r_; - sync_results_.gain_g = prev_sync_results_.gain_g = 1.0; - sync_results_.gain_b = prev_sync_results_.gain_b = manual_b_; + syncResults_.gainR = prevSyncResults_.gainR = manualR_; + syncResults_.gainG = prevSyncResults_.gainG = 1.0; + syncResults_.gainB = prevSyncResults_.gainB = manualB_; } } -void Awb::SwitchMode([[maybe_unused]] CameraMode const &camera_mode, +void Awb::switchMode([[maybe_unused]] CameraMode const &cameraMode, Metadata *metadata) { // On the first mode switch we'll have no meaningful colour // temperature, so try to dead reckon one if in manual mode. - if (!isAutoEnabled() && first_switch_mode_ && config_.bayes) { - Pwl ct_r_inverse = config_.ct_r.Inverse(); - Pwl ct_b_inverse = config_.ct_b.Inverse(); - double ct_r = ct_r_inverse.Eval(ct_r_inverse.Domain().Clip(1 / manual_r_)); - double ct_b = ct_b_inverse.Eval(ct_b_inverse.Domain().Clip(1 / manual_b_)); - prev_sync_results_.temperature_K = (ct_r + ct_b) / 2; - sync_results_.temperature_K = prev_sync_results_.temperature_K; + if (!isAutoEnabled() && firstSwitchMode_ && config_.bayes) { + Pwl ctRInverse = config_.ctR.inverse(); + Pwl ctBInverse = config_.ctB.inverse(); + double ctR = ctRInverse.eval(ctRInverse.domain().clip(1 / manualR_)); + double ctB = ctBInverse.eval(ctBInverse.domain().clip(1 / manualB_)); + prevSyncResults_.temperatureK = (ctR + ctB) / 2; + syncResults_.temperatureK = prevSyncResults_.temperatureK; } // Let other algorithms know the current white balance values. - metadata->Set("awb.status", prev_sync_results_); - first_switch_mode_ = false; + metadata->set("awb.status", prevSyncResults_); + firstSwitchMode_ = false; } bool Awb::isAutoEnabled() const { - return manual_r_ == 0.0 || manual_b_ == 0.0; + return manualR_ == 0.0 || manualB_ == 0.0; } void Awb::fetchAsyncResults() { LOG(RPiAwb, Debug) << "Fetch AWB results"; - async_finished_ = false; - async_started_ = false; + asyncFinished_ = false; + asyncStarted_ = false; // It's possible manual gains could be set even while the async // thread was running, so only copy the results if still in auto mode. if (isAutoEnabled()) - sync_results_ = async_results_; + syncResults_ = asyncResults_; } void Awb::restartAsync(StatisticsPtr &stats, double lux) @@ -261,75 +253,74 @@ void Awb::restartAsync(StatisticsPtr &stats, double lux) // this makes a new reference which belongs to the asynchronous thread statistics_ = stats; // store the mode as it could technically change - auto m = config_.modes.find(mode_name_); + auto m = config_.modes.find(modeName_); mode_ = m != config_.modes.end() ? &m->second - : (mode_ == nullptr ? config_.default_mode : mode_); + : (mode_ == nullptr ? config_.defaultMode : mode_); lux_ = lux; - frame_phase_ = 0; - async_started_ = true; - size_t len = mode_name_.copy(async_results_.mode, - sizeof(async_results_.mode) - 1); - async_results_.mode[len] = '\0'; + framePhase_ = 0; + asyncStarted_ = true; + size_t len = modeName_.copy(asyncResults_.mode, + sizeof(asyncResults_.mode) - 1); + asyncResults_.mode[len] = '\0'; { std::lock_guard<std::mutex> lock(mutex_); - async_start_ = true; + asyncStart_ = true; } - async_signal_.notify_one(); + asyncSignal_.notify_one(); } -void Awb::Prepare(Metadata *image_metadata) +void Awb::prepare(Metadata *imageMetadata) { - if (frame_count_ < (int)config_.startup_frames) - frame_count_++; - double speed = frame_count_ < (int)config_.startup_frames + if (frameCount_ < (int)config_.startupFrames) + frameCount_++; + double speed = frameCount_ < (int)config_.startupFrames ? 1.0 : config_.speed; LOG(RPiAwb, Debug) - << "frame_count " << frame_count_ << " speed " << speed; + << "frame_count " << frameCount_ << " speed " << speed; { std::unique_lock<std::mutex> lock(mutex_); - if (async_started_ && async_finished_) + if (asyncStarted_ && asyncFinished_) fetchAsyncResults(); } // Finally apply IIR filter to results and put into metadata. - memcpy(prev_sync_results_.mode, sync_results_.mode, - sizeof(prev_sync_results_.mode)); - prev_sync_results_.temperature_K = - speed * sync_results_.temperature_K + - (1.0 - speed) * prev_sync_results_.temperature_K; - prev_sync_results_.gain_r = speed * sync_results_.gain_r + - (1.0 - speed) * prev_sync_results_.gain_r; - prev_sync_results_.gain_g = speed * sync_results_.gain_g + - (1.0 - speed) * prev_sync_results_.gain_g; - prev_sync_results_.gain_b = speed * sync_results_.gain_b + - (1.0 - speed) * prev_sync_results_.gain_b; - image_metadata->Set("awb.status", prev_sync_results_); + memcpy(prevSyncResults_.mode, syncResults_.mode, + sizeof(prevSyncResults_.mode)); + prevSyncResults_.temperatureK = speed * syncResults_.temperatureK + + (1.0 - speed) * prevSyncResults_.temperatureK; + prevSyncResults_.gainR = speed * syncResults_.gainR + + (1.0 - speed) * prevSyncResults_.gainR; + prevSyncResults_.gainG = speed * syncResults_.gainG + + (1.0 - speed) * prevSyncResults_.gainG; + prevSyncResults_.gainB = speed * syncResults_.gainB + + (1.0 - speed) * prevSyncResults_.gainB; + imageMetadata->set("awb.status", prevSyncResults_); LOG(RPiAwb, Debug) - << "Using AWB gains r " << prev_sync_results_.gain_r << " g " - << prev_sync_results_.gain_g << " b " - << prev_sync_results_.gain_b; + << "Using AWB gains r " << prevSyncResults_.gainR << " g " + << prevSyncResults_.gainG << " b " + << prevSyncResults_.gainB; } -void Awb::Process(StatisticsPtr &stats, Metadata *image_metadata) +void Awb::process(StatisticsPtr &stats, Metadata *imageMetadata) { // Count frames since we last poked the async thread. - if (frame_phase_ < (int)config_.frame_period) - frame_phase_++; - LOG(RPiAwb, Debug) << "frame_phase " << frame_phase_; + if (framePhase_ < (int)config_.framePeriod) + framePhase_++; + LOG(RPiAwb, Debug) << "frame_phase " << framePhase_; // We do not restart the async thread if we're not in auto mode. if (isAutoEnabled() && - (frame_phase_ >= (int)config_.frame_period || - frame_count_ < (int)config_.startup_frames)) { + (framePhase_ >= (int)config_.framePeriod || + frameCount_ < (int)config_.startupFrames)) { // Update any settings and any image metadata that we need. - struct LuxStatus lux_status = {}; - lux_status.lux = 400; // in case no metadata - if (image_metadata->Get("lux.status", lux_status) != 0) + struct LuxStatus luxStatus = {}; + luxStatus.lux = 400; // in case no metadata + if (imageMetadata->get("lux.status", luxStatus) != 0) LOG(RPiAwb, Debug) << "No lux metadata found"; - LOG(RPiAwb, Debug) << "Awb lux value is " << lux_status.lux; + LOG(RPiAwb, Debug) << "Awb lux value is " << luxStatus.lux; - if (async_started_ == false) - restartAsync(stats, lux_status.lux); + if (asyncStarted_ == false) + restartAsync(stats, luxStatus.lux); } } @@ -338,32 +329,32 @@ void Awb::asyncFunc() while (true) { { std::unique_lock<std::mutex> lock(mutex_); - async_signal_.wait(lock, [&] { - return async_start_ || async_abort_; + asyncSignal_.wait(lock, [&] { + return asyncStart_ || asyncAbort_; }); - async_start_ = false; - if (async_abort_) + asyncStart_ = false; + if (asyncAbort_) break; } doAwb(); { std::lock_guard<std::mutex> lock(mutex_); - async_finished_ = true; + asyncFinished_ = true; } - sync_signal_.notify_one(); + syncSignal_.notify_one(); } } -static void generate_stats(std::vector<Awb::RGB> &zones, - bcm2835_isp_stats_region *stats, double min_pixels, - double min_G) +static void generateStats(std::vector<Awb::RGB> &zones, + bcm2835_isp_stats_region *stats, double minPixels, + double minG) { for (int i = 0; i < AWB_STATS_SIZE_X * AWB_STATS_SIZE_Y; i++) { Awb::RGB zone; double counted = stats[i].counted; - if (counted >= min_pixels) { + if (counted >= minPixels) { zone.G = stats[i].g_sum / counted; - if (zone.G >= min_G) { + if (zone.G >= minG) { zone.R = stats[i].r_sum / counted; zone.B = stats[i].b_sum / counted; zones.push_back(zone); @@ -377,32 +368,33 @@ void Awb::prepareStats() zones_.clear(); // LSC has already been applied to the stats in this pipeline, so stop // any LSC compensation. We also ignore config_.fast in this version. - generate_stats(zones_, statistics_->awb_stats, config_.min_pixels, - config_.min_G); + generateStats(zones_, statistics_->awb_stats, config_.minPixels, + config_.minG); // we're done with these; we may as well relinquish our hold on the // pointer. statistics_.reset(); // apply sensitivities, so values appear to come from our "canonical" // sensor. - for (auto &zone : zones_) - zone.R *= config_.sensitivity_r, - zone.B *= config_.sensitivity_b; + for (auto &zone : zones_) { + zone.R *= config_.sensitivityR; + zone.B *= config_.sensitivityB; + } } -double Awb::computeDelta2Sum(double gain_r, double gain_b) +double Awb::computeDelta2Sum(double gainR, double gainB) { // Compute the sum of the squared colour error (non-greyness) as it // appears in the log likelihood equation. - double delta2_sum = 0; + double delta2Sum = 0; for (auto &z : zones_) { - double delta_r = gain_r * z.R - 1 - config_.whitepoint_r; - double delta_b = gain_b * z.B - 1 - config_.whitepoint_b; - double delta2 = delta_r * delta_r + delta_b * delta_b; - //LOG(RPiAwb, Debug) << "delta_r " << delta_r << " delta_b " << delta_b << " delta2 " << delta2; - delta2 = std::min(delta2, config_.delta_limit); - delta2_sum += delta2; + double deltaR = gainR * z.R - 1 - config_.whitepointR; + double deltaB = gainB * z.B - 1 - config_.whitepointB; + double delta2 = deltaR * deltaR + deltaB * deltaB; + //LOG(RPiAwb, Debug) << "deltaR " << deltaR << " deltaB " << deltaB << " delta2 " << delta2; + delta2 = std::min(delta2, config_.deltaLimit); + delta2Sum += delta2; } - return delta2_sum; + return delta2Sum; } Pwl Awb::interpolatePrior() @@ -420,7 +412,7 @@ Pwl Awb::interpolatePrior() idx++; double lux0 = config_.priors[idx].lux, lux1 = config_.priors[idx + 1].lux; - return Pwl::Combine(config_.priors[idx].prior, + return Pwl::combine(config_.priors[idx].prior, config_.priors[idx + 1].prior, [&](double /*x*/, double y0, double y1) { return y0 + (y1 - y0) * @@ -429,62 +421,60 @@ Pwl Awb::interpolatePrior() } } -static double interpolate_quadatric(Pwl::Point const &A, Pwl::Point const &B, - Pwl::Point const &C) +static double interpolateQuadatric(Pwl::Point const &a, Pwl::Point const &b, + Pwl::Point const &c) { // Given 3 points on a curve, find the extremum of the function in that // interval by fitting a quadratic. const double eps = 1e-3; - Pwl::Point CA = C - A, BA = B - A; - double denominator = 2 * (BA.y * CA.x - CA.y * BA.x); + Pwl::Point ca = c - a, ba = b - a; + double denominator = 2 * (ba.y * ca.x - ca.y * ba.x); if (abs(denominator) > eps) { - double numerator = BA.y * CA.x * CA.x - CA.y * BA.x * BA.x; - double result = numerator / denominator + A.x; - return std::max(A.x, std::min(C.x, result)); + double numerator = ba.y * ca.x * ca.x - ca.y * ba.x * ba.x; + double result = numerator / denominator + a.x; + return std::max(a.x, std::min(c.x, result)); } // has degenerated to straight line segment - return A.y < C.y - eps ? A.x : (C.y < A.y - eps ? C.x : B.x); + return a.y < c.y - eps ? a.x : (c.y < a.y - eps ? c.x : b.x); } double Awb::coarseSearch(Pwl const &prior) { points_.clear(); // assume doesn't deallocate memory - size_t best_point = 0; - double t = mode_->ct_lo; - int span_r = 0, span_b = 0; + size_t bestPoint = 0; + double t = mode_->ctLo; + int spanR = 0, spanB = 0; // Step down the CT curve evaluating log likelihood. while (true) { - double r = config_.ct_r.Eval(t, &span_r); - double b = config_.ct_b.Eval(t, &span_b); - double gain_r = 1 / r, gain_b = 1 / b; - double delta2_sum = computeDelta2Sum(gain_r, gain_b); - double prior_log_likelihood = - prior.Eval(prior.Domain().Clip(t)); - double final_log_likelihood = delta2_sum - prior_log_likelihood; + double r = config_.ctR.eval(t, &spanR); + double b = config_.ctB.eval(t, &spanB); + double gainR = 1 / r, gainB = 1 / b; + double delta2Sum = computeDelta2Sum(gainR, gainB); + double priorLogLikelihood = prior.eval(prior.domain().clip(t)); + double finalLogLikelihood = delta2Sum - priorLogLikelihood; LOG(RPiAwb, Debug) - << "t: " << t << " gain_r " << gain_r << " gain_b " - << gain_b << " delta2_sum " << delta2_sum - << " prior " << prior_log_likelihood << " final " - << final_log_likelihood; - points_.push_back(Pwl::Point(t, final_log_likelihood)); - if (points_.back().y < points_[best_point].y) - best_point = points_.size() - 1; - if (t == mode_->ct_hi) + << "t: " << t << " gain R " << gainR << " gain B " + << gainB << " delta2_sum " << delta2Sum + << " prior " << priorLogLikelihood << " final " + << finalLogLikelihood; + points_.push_back(Pwl::Point(t, finalLogLikelihood)); + if (points_.back().y < points_[bestPoint].y) + bestPoint = points_.size() - 1; + if (t == mode_->ctHi) break; // for even steps along the r/b curve scale them by the current t - t = std::min(t + t / 10 * config_.coarse_step, - mode_->ct_hi); + t = std::min(t + t / 10 * config_.coarseStep, mode_->ctHi); } - t = points_[best_point].x; + t = points_[bestPoint].x; LOG(RPiAwb, Debug) << "Coarse search found CT " << t; // We have the best point of the search, but refine it with a quadratic // interpolation around its neighbours. if (points_.size() > 2) { - unsigned long bp = std::min(best_point, points_.size() - 2); - best_point = std::max(1UL, bp); - t = interpolate_quadatric(points_[best_point - 1], - points_[best_point], - points_[best_point + 1]); + unsigned long bp = std::min(bestPoint, points_.size() - 2); + bestPoint = std::max(1UL, bp); + t = interpolateQuadatric(points_[bestPoint - 1], + points_[bestPoint], + points_[bestPoint + 1]); LOG(RPiAwb, Debug) << "After quadratic refinement, coarse search has CT " << t; @@ -494,80 +484,76 @@ double Awb::coarseSearch(Pwl const &prior) void Awb::fineSearch(double &t, double &r, double &b, Pwl const &prior) { - int span_r = -1, span_b = -1; - config_.ct_r.Eval(t, &span_r); - config_.ct_b.Eval(t, &span_b); - double step = t / 10 * config_.coarse_step * 0.1; + int spanR = -1, spanB = -1; + config_.ctR.eval(t, &spanR); + config_.ctB.eval(t, &spanB); + double step = t / 10 * config_.coarseStep * 0.1; int nsteps = 5; - double r_diff = config_.ct_r.Eval(t + nsteps * step, &span_r) - - config_.ct_r.Eval(t - nsteps * step, &span_r); - double b_diff = config_.ct_b.Eval(t + nsteps * step, &span_b) - - config_.ct_b.Eval(t - nsteps * step, &span_b); - Pwl::Point transverse(b_diff, -r_diff); - if (transverse.Len2() < 1e-6) + double rDiff = config_.ctR.eval(t + nsteps * step, &spanR) - + config_.ctR.eval(t - nsteps * step, &spanR); + double bDiff = config_.ctB.eval(t + nsteps * step, &spanB) - + config_.ctB.eval(t - nsteps * step, &spanB); + Pwl::Point transverse(bDiff, -rDiff); + if (transverse.len2() < 1e-6) return; // unit vector orthogonal to the b vs. r function (pointing outwards // with r and b increasing) - transverse = transverse / transverse.Len(); - double best_log_likelihood = 0, best_t = 0, best_r = 0, best_b = 0; - double transverse_range = - config_.transverse_neg + config_.transverse_pos; - const int MAX_NUM_DELTAS = 12; + transverse = transverse / transverse.len(); + double bestLogLikelihood = 0, bestT = 0, bestR = 0, bestB = 0; + double transverseRange = config_.transverseNeg + config_.transversePos; + const int maxNumDeltas = 12; // a transverse step approximately every 0.01 r/b units - int num_deltas = floor(transverse_range * 100 + 0.5) + 1; - num_deltas = num_deltas < 3 ? 3 : - (num_deltas > MAX_NUM_DELTAS ? MAX_NUM_DELTAS : num_deltas); + int numDeltas = floor(transverseRange * 100 + 0.5) + 1; + numDeltas = numDeltas < 3 ? 3 : (numDeltas > maxNumDeltas ? maxNumDeltas : numDeltas); // Step down CT curve. March a bit further if the transverse range is // large. - nsteps += num_deltas; + nsteps += numDeltas; for (int i = -nsteps; i <= nsteps; i++) { - double t_test = t + i * step; - double prior_log_likelihood = - prior.Eval(prior.Domain().Clip(t_test)); - double r_curve = config_.ct_r.Eval(t_test, &span_r); - double b_curve = config_.ct_b.Eval(t_test, &span_b); + double tTest = t + i * step; + double priorLogLikelihood = + prior.eval(prior.domain().clip(tTest)); + double rCurve = config_.ctR.eval(tTest, &spanR); + double bCurve = config_.ctB.eval(tTest, &spanB); // x will be distance off the curve, y the log likelihood there - Pwl::Point points[MAX_NUM_DELTAS]; - int best_point = 0; + Pwl::Point points[maxNumDeltas]; + int bestPoint = 0; // Take some measurements transversely *off* the CT curve. - for (int j = 0; j < num_deltas; j++) { - points[j].x = -config_.transverse_neg + - (transverse_range * j) / (num_deltas - 1); - Pwl::Point rb_test = Pwl::Point(r_curve, b_curve) + - transverse * points[j].x; - double r_test = rb_test.x, b_test = rb_test.y; - double gain_r = 1 / r_test, gain_b = 1 / b_test; - double delta2_sum = computeDelta2Sum(gain_r, gain_b); - points[j].y = delta2_sum - prior_log_likelihood; + for (int j = 0; j < numDeltas; j++) { + points[j].x = -config_.transverseNeg + + (transverseRange * j) / (numDeltas - 1); + Pwl::Point rbTest = Pwl::Point(rCurve, bCurve) + + transverse * points[j].x; + double rTest = rbTest.x, bTest = rbTest.y; + double gainR = 1 / rTest, gainB = 1 / bTest; + double delta2Sum = computeDelta2Sum(gainR, gainB); + points[j].y = delta2Sum - priorLogLikelihood; LOG(RPiAwb, Debug) - << "At t " << t_test << " r " << r_test << " b " - << b_test << ": " << points[j].y; - if (points[j].y < points[best_point].y) - best_point = j; + << "At t " << tTest << " r " << rTest << " b " + << bTest << ": " << points[j].y; + if (points[j].y < points[bestPoint].y) + bestPoint = j; } // We have NUM_DELTAS points transversely across the CT curve, // now let's do a quadratic interpolation for the best result. - best_point = std::max(1, std::min(best_point, num_deltas - 2)); - Pwl::Point rb_test = - Pwl::Point(r_curve, b_curve) + - transverse * - interpolate_quadatric(points[best_point - 1], - points[best_point], - points[best_point + 1]); - double r_test = rb_test.x, b_test = rb_test.y; - double gain_r = 1 / r_test, gain_b = 1 / b_test; - double delta2_sum = computeDelta2Sum(gain_r, gain_b); - double final_log_likelihood = delta2_sum - prior_log_likelihood; + bestPoint = std::max(1, std::min(bestPoint, numDeltas - 2)); + Pwl::Point rbTest = Pwl::Point(rCurve, bCurve) + + transverse * interpolateQuadatric(points[bestPoint - 1], + points[bestPoint], + points[bestPoint + 1]); + double rTest = rbTest.x, bTest = rbTest.y; + double gainR = 1 / rTest, gainB = 1 / bTest; + double delta2Sum = computeDelta2Sum(gainR, gainB); + double finalLogLikelihood = delta2Sum - priorLogLikelihood; LOG(RPiAwb, Debug) << "Finally " - << t_test << " r " << r_test << " b " << b_test << ": " - << final_log_likelihood - << (final_log_likelihood < best_log_likelihood ? " BEST" : ""); - if (best_t == 0 || final_log_likelihood < best_log_likelihood) - best_log_likelihood = final_log_likelihood, - best_t = t_test, best_r = r_test, best_b = b_test; + << tTest << " r " << rTest << " b " << bTest << ": " + << finalLogLikelihood + << (finalLogLikelihood < bestLogLikelihood ? " BEST" : ""); + if (bestT == 0 || finalLogLikelihood < bestLogLikelihood) + bestLogLikelihood = finalLogLikelihood, + bestT = tTest, bestR = rTest, bestB = bTest; } - t = best_t, r = best_r, b = best_b; + t = bestT, r = bestR, b = bestB; LOG(RPiAwb, Debug) << "Fine search found t " << t << " r " << r << " b " << b; } @@ -582,12 +568,12 @@ void Awb::awbBayes() // valid... not entirely sure about this. Pwl prior = interpolatePrior(); prior *= zones_.size() / (double)(AWB_STATS_SIZE_X * AWB_STATS_SIZE_Y); - prior.Map([](double x, double y) { + prior.map([](double x, double y) { LOG(RPiAwb, Debug) << "(" << x << "," << y << ")"; }); double t = coarseSearch(prior); - double r = config_.ct_r.Eval(t); - double b = config_.ct_b.Eval(t); + double r = config_.ctR.eval(t); + double b = config_.ctB.eval(t); LOG(RPiAwb, Debug) << "After coarse search: r " << r << " b " << b << " (gains r " << 1 / r << " b " << 1 / b << ")"; @@ -604,10 +590,10 @@ void Awb::awbBayes() // Write results out for the main thread to pick up. Remember to adjust // the gains from the ones that the "canonical sensor" would require to // the ones needed by *this* sensor. - async_results_.temperature_K = t; - async_results_.gain_r = 1.0 / r * config_.sensitivity_r; - async_results_.gain_g = 1.0; - async_results_.gain_b = 1.0 / b * config_.sensitivity_b; + asyncResults_.temperatureK = t; + asyncResults_.gainR = 1.0 / r * config_.sensitivityR; + asyncResults_.gainG = 1.0; + asyncResults_.gainB = 1.0 / b * config_.sensitivityB; } void Awb::awbGrey() @@ -617,51 +603,51 @@ void Awb::awbGrey() // that we can sort them to exclude the extreme gains. We could // consider some variations, such as normalising all the zones first, or // doing an L2 average etc. - std::vector<RGB> &derivs_R(zones_); - std::vector<RGB> derivs_B(derivs_R); - std::sort(derivs_R.begin(), derivs_R.end(), + std::vector<RGB> &derivsR(zones_); + std::vector<RGB> derivsB(derivsR); + std::sort(derivsR.begin(), derivsR.end(), [](RGB const &a, RGB const &b) { return a.G * b.R < b.G * a.R; }); - std::sort(derivs_B.begin(), derivs_B.end(), + std::sort(derivsB.begin(), derivsB.end(), [](RGB const &a, RGB const &b) { return a.G * b.B < b.G * a.B; }); // Average the middle half of the values. - int discard = derivs_R.size() / 4; - RGB sum_R(0, 0, 0), sum_B(0, 0, 0); - for (auto ri = derivs_R.begin() + discard, - bi = derivs_B.begin() + discard; - ri != derivs_R.end() - discard; ri++, bi++) - sum_R += *ri, sum_B += *bi; - double gain_r = sum_R.G / (sum_R.R + 1), - gain_b = sum_B.G / (sum_B.B + 1); - async_results_.temperature_K = 4500; // don't know what it is - async_results_.gain_r = gain_r; - async_results_.gain_g = 1.0; - async_results_.gain_b = gain_b; + int discard = derivsR.size() / 4; + RGB sumR(0, 0, 0), sumB(0, 0, 0); + for (auto ri = derivsR.begin() + discard, + bi = derivsB.begin() + discard; + ri != derivsR.end() - discard; ri++, bi++) + sumR += *ri, sumB += *bi; + double gainR = sumR.G / (sumR.R + 1), + gainB = sumB.G / (sumB.B + 1); + asyncResults_.temperatureK = 4500; // don't know what it is + asyncResults_.gainR = gainR; + asyncResults_.gainG = 1.0; + asyncResults_.gainB = gainB; } void Awb::doAwb() { prepareStats(); LOG(RPiAwb, Debug) << "Valid zones: " << zones_.size(); - if (zones_.size() > config_.min_regions) { + if (zones_.size() > config_.minRegions) { if (config_.bayes) awbBayes(); else awbGrey(); LOG(RPiAwb, Debug) << "CT found is " - << async_results_.temperature_K - << " with gains r " << async_results_.gain_r - << " and b " << async_results_.gain_b; + << asyncResults_.temperatureK + << " with gains r " << asyncResults_.gainR + << " and b " << asyncResults_.gainB; } } // Register algorithm with the system. -static Algorithm *Create(Controller *controller) +static Algorithm *create(Controller *controller) { return (Algorithm *)new Awb(controller); } -static RegisterAlgorithm reg(NAME, &Create); +static RegisterAlgorithm reg(NAME, &create); diff --git a/src/ipa/raspberrypi/controller/rpi/awb.hpp b/src/ipa/raspberrypi/controller/rpi/awb.hpp index ac3dca6f..021aafa9 100644 --- a/src/ipa/raspberrypi/controller/rpi/awb.hpp +++ b/src/ipa/raspberrypi/controller/rpi/awb.hpp @@ -19,59 +19,59 @@ namespace RPiController { // Control algorithm to perform AWB calculations. struct AwbMode { - void Read(boost::property_tree::ptree const ¶ms); - double ct_lo; // low CT value for search - double ct_hi; // high CT value for search + void read(boost::property_tree::ptree const ¶ms); + double ctLo; // low CT value for search + double ctHi; // high CT value for search }; struct AwbPrior { - void Read(boost::property_tree::ptree const ¶ms); + void read(boost::property_tree::ptree const ¶ms); double lux; // lux level Pwl prior; // maps CT to prior log likelihood for this lux level }; struct AwbConfig { - AwbConfig() : default_mode(nullptr) {} - void Read(boost::property_tree::ptree const ¶ms); + AwbConfig() : defaultMode(nullptr) {} + void read(boost::property_tree::ptree const ¶ms); // Only repeat the AWB calculation every "this many" frames - uint16_t frame_period; + uint16_t framePeriod; // number of initial frames for which speed taken as 1.0 (maximum) - uint16_t startup_frames; - unsigned int convergence_frames; // approx number of frames to converge + uint16_t startupFrames; + unsigned int convergenceFrames; // approx number of frames to converge double speed; // IIR filter speed applied to algorithm results bool fast; // "fast" mode uses a 16x16 rather than 32x32 grid - Pwl ct_r; // function maps CT to r (= R/G) - Pwl ct_b; // function maps CT to b (= B/G) + Pwl ctR; // function maps CT to r (= R/G) + Pwl ctB; // function maps CT to b (= B/G) // table of illuminant priors at different lux levels std::vector<AwbPrior> priors; // AWB "modes" (determines the search range) std::map<std::string, AwbMode> modes; - AwbMode *default_mode; // mode used if no mode selected + AwbMode *defaultMode; // mode used if no mode selected // minimum proportion of pixels counted within AWB region for it to be // "useful" - double min_pixels; + double minPixels; // minimum G value of those pixels, to be regarded a "useful" - uint16_t min_G; + uint16_t minG; // number of AWB regions that must be "useful" in order to do the AWB // calculation - uint32_t min_regions; + uint32_t minRegions; // clamp on colour error term (so as not to penalise non-grey excessively) - double delta_limit; + double deltaLimit; // step size control in coarse search - double coarse_step; + double coarseStep; // how far to wander off CT curve towards "more purple" - double transverse_pos; + double transversePos; // how far to wander off CT curve towards "more green" - double transverse_neg; + double transverseNeg; // red sensitivity ratio (set to canonical sensor's R/G divided by this // sensor's R/G) - double sensitivity_r; + double sensitivityR; // blue sensitivity ratio (set to canonical sensor's B/G divided by this // sensor's B/G) - double sensitivity_b; + double sensitivityB; // The whitepoint (which we normally "aim" for) can be moved. - double whitepoint_r; - double whitepoint_b; + double whitepointR; + double whitepointB; bool bayes; // use Bayesian algorithm }; @@ -80,22 +80,22 @@ class Awb : public AwbAlgorithm public: Awb(Controller *controller = NULL); ~Awb(); - char const *Name() const override; - void Initialise() override; - void Read(boost::property_tree::ptree const ¶ms) override; + char const *name() const override; + void initialise() override; + void read(boost::property_tree::ptree const ¶ms) override; // AWB handles "pausing" for itself. - bool IsPaused() const override; - void Pause() override; - void Resume() override; - unsigned int GetConvergenceFrames() const override; - void SetMode(std::string const &name) override; - void SetManualGains(double manual_r, double manual_b) override; - void SwitchMode(CameraMode const &camera_mode, Metadata *metadata) override; - void Prepare(Metadata *image_metadata) override; - void Process(StatisticsPtr &stats, Metadata *image_metadata) override; + bool isPaused() const override; + void pause() override; + void resume() override; + unsigned int getConvergenceFrames() const override; + void setMode(std::string const &name) override; + void setManualGains(double manualR, double manualB) override; + void switchMode(CameraMode const &cameraMode, Metadata *metadata) override; + void prepare(Metadata *imageMetadata) override; + void process(StatisticsPtr &stats, Metadata *imageMetadata) override; struct RGB { - RGB(double _R = 0, double _G = 0, double _B = 0) - : R(_R), G(_G), B(_B) + RGB(double r = 0, double g = 0, double b = 0) + : R(r), G(g), B(b) { } double R, G, B; @@ -110,29 +110,29 @@ private: bool isAutoEnabled() const; // configuration is read-only, and available to both threads AwbConfig config_; - std::thread async_thread_; + std::thread asyncThread_; void asyncFunc(); // asynchronous thread function std::mutex mutex_; // condvar for async thread to wait on - std::condition_variable async_signal_; + std::condition_variable asyncSignal_; // condvar for synchronous thread to wait on - std::condition_variable sync_signal_; + std::condition_variable syncSignal_; // for sync thread to check if async thread finished (requires mutex) - bool async_finished_; + bool asyncFinished_; // for async thread to check if it's been told to run (requires mutex) - bool async_start_; + bool asyncStart_; // for async thread to check if it's been told to quit (requires mutex) - bool async_abort_; + bool asyncAbort_; // The following are only for the synchronous thread to use: // for sync thread to note its has asked async thread to run - bool async_started_; - // counts up to frame_period before restarting the async thread - int frame_phase_; - int frame_count_; // counts up to startup_frames - AwbStatus sync_results_; - AwbStatus prev_sync_results_; - std::string mode_name_; + bool asyncStarted_; + // counts up to framePeriod before restarting the async thread + int framePhase_; + int frameCount_; // counts up to startup_frames + AwbStatus syncResults_; + AwbStatus prevSyncResults_; + std::string modeName_; // The following are for the asynchronous thread to use, though the main // thread can set/reset them if the async thread is known to be idle: void restartAsync(StatisticsPtr &stats, double lux); @@ -141,22 +141,22 @@ private: StatisticsPtr statistics_; AwbMode *mode_; double lux_; - AwbStatus async_results_; + AwbStatus asyncResults_; void doAwb(); void awbBayes(); void awbGrey(); void prepareStats(); - double computeDelta2Sum(double gain_r, double gain_b); + double computeDelta2Sum(double gainR, double gainB); Pwl interpolatePrior(); double coarseSearch(Pwl const &prior); void fineSearch(double &t, double &r, double &b, Pwl const &prior); std::vector<RGB> zones_; std::vector<Pwl::Point> points_; // manual r setting - double manual_r_; + double manualR_; // manual b setting - double manual_b_; - bool first_switch_mode_; // is this the first call to SwitchMode? + double manualB_; + bool firstSwitchMode_; // is this the first call to SwitchMode? }; static inline Awb::RGB operator+(Awb::RGB const &a, Awb::RGB const &b) diff --git a/src/ipa/raspberrypi/controller/rpi/black_level.cpp b/src/ipa/raspberrypi/controller/rpi/black_level.cpp index 6b3497f1..340da0f0 100644 --- a/src/ipa/raspberrypi/controller/rpi/black_level.cpp +++ b/src/ipa/raspberrypi/controller/rpi/black_level.cpp @@ -26,38 +26,38 @@ BlackLevel::BlackLevel(Controller *controller) { } -char const *BlackLevel::Name() const +char const *BlackLevel::name() const { return NAME; } -void BlackLevel::Read(boost::property_tree::ptree const ¶ms) +void BlackLevel::read(boost::property_tree::ptree const ¶ms) { - uint16_t black_level = params.get<uint16_t>( + uint16_t blackLevel = params.get<uint16_t>( "black_level", 4096); // 64 in 10 bits scaled to 16 bits - black_level_r_ = params.get<uint16_t>("black_level_r", black_level); - black_level_g_ = params.get<uint16_t>("black_level_g", black_level); - black_level_b_ = params.get<uint16_t>("black_level_b", black_level); + blackLevelR_ = params.get<uint16_t>("black_level_r", blackLevel); + blackLevelG_ = params.get<uint16_t>("black_level_g", blackLevel); + blackLevelB_ = params.get<uint16_t>("black_level_b", blackLevel); LOG(RPiBlackLevel, Debug) - << " Read black levels red " << black_level_r_ - << " green " << black_level_g_ - << " blue " << black_level_b_; + << " Read black levels red " << blackLevelR_ + << " green " << blackLevelG_ + << " blue " << blackLevelB_; } -void BlackLevel::Prepare(Metadata *image_metadata) +void BlackLevel::prepare(Metadata *imageMetadata) { - // Possibly we should think about doing this in a switch_mode or + // Possibly we should think about doing this in a switchMode or // something? struct BlackLevelStatus status; - status.black_level_r = black_level_r_; - status.black_level_g = black_level_g_; - status.black_level_b = black_level_b_; - image_metadata->Set("black_level.status", status); + status.blackLevelR = blackLevelR_; + status.blackLevelG = blackLevelG_; + status.blackLevelB = blackLevelB_; + imageMetadata->set("black_level.status", status); } // Register algorithm with the system. -static Algorithm *Create(Controller *controller) +static Algorithm *create(Controller *controller) { return new BlackLevel(controller); } -static RegisterAlgorithm reg(NAME, &Create); +static RegisterAlgorithm reg(NAME, &create); diff --git a/src/ipa/raspberrypi/controller/rpi/black_level.hpp b/src/ipa/raspberrypi/controller/rpi/black_level.hpp index 65ec4d0e..0d74f6a4 100644 --- a/src/ipa/raspberrypi/controller/rpi/black_level.hpp +++ b/src/ipa/raspberrypi/controller/rpi/black_level.hpp @@ -17,14 +17,14 @@ class BlackLevel : public Algorithm { public: BlackLevel(Controller *controller); - char const *Name() const override; - void Read(boost::property_tree::ptree const ¶ms) override; - void Prepare(Metadata *image_metadata) override; + char const *name() const override; + void read(boost::property_tree::ptree const ¶ms) override; + void prepare(Metadata *imageMetadata) override; private: - double black_level_r_; - double black_level_g_; - double black_level_b_; + double blackLevelR_; + double blackLevelG_; + double blackLevelB_; }; } // namespace RPiController diff --git a/src/ipa/raspberrypi/controller/rpi/ccm.cpp b/src/ipa/raspberrypi/controller/rpi/ccm.cpp index 821a4c7c..24d8e5bd 100644 --- a/src/ipa/raspberrypi/controller/rpi/ccm.cpp +++ b/src/ipa/raspberrypi/controller/rpi/ccm.cpp @@ -37,7 +37,7 @@ Matrix::Matrix(double m0, double m1, double m2, double m3, double m4, double m5, m[0][0] = m0, m[0][1] = m1, m[0][2] = m2, m[1][0] = m3, m[1][1] = m4, m[1][2] = m5, m[2][0] = m6, m[2][1] = m7, m[2][2] = m8; } -void Matrix::Read(boost::property_tree::ptree const ¶ms) +void Matrix::read(boost::property_tree::ptree const ¶ms) { double *ptr = (double *)m; int n = 0; @@ -53,47 +53,49 @@ void Matrix::Read(boost::property_tree::ptree const ¶ms) Ccm::Ccm(Controller *controller) : CcmAlgorithm(controller), saturation_(1.0) {} -char const *Ccm::Name() const +char const *Ccm::name() const { return NAME; } -void Ccm::Read(boost::property_tree::ptree const ¶ms) +void Ccm::read(boost::property_tree::ptree const ¶ms) { if (params.get_child_optional("saturation")) - config_.saturation.Read(params.get_child("saturation")); + config_.saturation.read(params.get_child("saturation")); for (auto &p : params.get_child("ccms")) { - CtCcm ct_ccm; - ct_ccm.ct = p.second.get<double>("ct"); - ct_ccm.ccm.Read(p.second.get_child("ccm")); + CtCcm ctCcm; + ctCcm.ct = p.second.get<double>("ct"); + ctCcm.ccm.read(p.second.get_child("ccm")); if (!config_.ccms.empty() && - ct_ccm.ct <= config_.ccms.back().ct) + ctCcm.ct <= config_.ccms.back().ct) throw std::runtime_error( "Ccm: CCM not in increasing colour temperature order"); - config_.ccms.push_back(std::move(ct_ccm)); + config_.ccms.push_back(std::move(ctCcm)); } if (config_.ccms.empty()) throw std::runtime_error("Ccm: no CCMs specified"); } -void Ccm::SetSaturation(double saturation) +void Ccm::setSaturation(double saturation) { saturation_ = saturation; } -void Ccm::Initialise() {} +void Ccm::initialise() +{ +} template<typename T> -static bool get_locked(Metadata *metadata, std::string const &tag, T &value) +static bool getLocked(Metadata *metadata, std::string const &tag, T &value) { - T *ptr = metadata->GetLocked<T>(tag); + T *ptr = metadata->getLocked<T>(tag); if (ptr == nullptr) return false; value = *ptr; return true; } -Matrix calculate_ccm(std::vector<CtCcm> const &ccms, double ct) +Matrix calculateCcm(std::vector<CtCcm> const &ccms, double ct) { if (ct <= ccms.front().ct) return ccms.front().ccm; @@ -109,7 +111,7 @@ Matrix calculate_ccm(std::vector<CtCcm> const &ccms, double ct) } } -Matrix apply_saturation(Matrix const &ccm, double saturation) +Matrix applySaturation(Matrix const &ccm, double saturation) { Matrix RGB2Y(0.299, 0.587, 0.114, -0.169, -0.331, 0.500, 0.500, -0.419, -0.081); @@ -119,51 +121,51 @@ Matrix apply_saturation(Matrix const &ccm, double saturation) return Y2RGB * S * RGB2Y * ccm; } -void Ccm::Prepare(Metadata *image_metadata) +void Ccm::prepare(Metadata *imageMetadata) { - bool awb_ok = false, lux_ok = false; + bool awbOk = false, luxOk = false; struct AwbStatus awb = {}; - awb.temperature_K = 4000; // in case no metadata + awb.temperatureK = 4000; // in case no metadata struct LuxStatus lux = {}; lux.lux = 400; // in case no metadata { // grab mutex just once to get everything - std::lock_guard<Metadata> lock(*image_metadata); - awb_ok = get_locked(image_metadata, "awb.status", awb); - lux_ok = get_locked(image_metadata, "lux.status", lux); + std::lock_guard<Metadata> lock(*imageMetadata); + awbOk = getLocked(imageMetadata, "awb.status", awb); + luxOk = getLocked(imageMetadata, "lux.status", lux); } - if (!awb_ok) + if (!awbOk) LOG(RPiCcm, Warning) << "no colour temperature found"; - if (!lux_ok) + if (!luxOk) LOG(RPiCcm, Warning) << "no lux value found"; - Matrix ccm = calculate_ccm(config_.ccms, awb.temperature_K); + Matrix ccm = calculateCcm(config_.ccms, awb.temperatureK); double saturation = saturation_; - struct CcmStatus ccm_status; - ccm_status.saturation = saturation; - if (!config_.saturation.Empty()) - saturation *= config_.saturation.Eval( - config_.saturation.Domain().Clip(lux.lux)); - ccm = apply_saturation(ccm, saturation); + struct CcmStatus ccmStatus; + ccmStatus.saturation = saturation; + if (!config_.saturation.empty()) + saturation *= config_.saturation.eval( + config_.saturation.domain().clip(lux.lux)); + ccm = applySaturation(ccm, saturation); for (int j = 0; j < 3; j++) for (int i = 0; i < 3; i++) - ccm_status.matrix[j * 3 + i] = + ccmStatus.matrix[j * 3 + i] = std::max(-8.0, std::min(7.9999, ccm.m[j][i])); LOG(RPiCcm, Debug) - << "colour temperature " << awb.temperature_K << "K"; + << "colour temperature " << awb.temperatureK << "K"; LOG(RPiCcm, Debug) - << "CCM: " << ccm_status.matrix[0] << " " << ccm_status.matrix[1] - << " " << ccm_status.matrix[2] << " " - << ccm_status.matrix[3] << " " << ccm_status.matrix[4] - << " " << ccm_status.matrix[5] << " " - << ccm_status.matrix[6] << " " << ccm_status.matrix[7] - << " " << ccm_status.matrix[8]; - image_metadata->Set("ccm.status", ccm_status); + << "CCM: " << ccmStatus.matrix[0] << " " << ccmStatus.matrix[1] + << " " << ccmStatus.matrix[2] << " " + << ccmStatus.matrix[3] << " " << ccmStatus.matrix[4] + << " " << ccmStatus.matrix[5] << " " + << ccmStatus.matrix[6] << " " << ccmStatus.matrix[7] + << " " << ccmStatus.matrix[8]; + imageMetadata->set("ccm.status", ccmStatus); } // Register algorithm with the system. -static Algorithm *Create(Controller *controller) +static Algorithm *create(Controller *controller) { return (Algorithm *)new Ccm(controller); ; } -static RegisterAlgorithm reg(NAME, &Create); +static RegisterAlgorithm reg(NAME, &create); diff --git a/src/ipa/raspberrypi/controller/rpi/ccm.hpp b/src/ipa/raspberrypi/controller/rpi/ccm.hpp index 330ed51f..4c4807b8 100644 --- a/src/ipa/raspberrypi/controller/rpi/ccm.hpp +++ b/src/ipa/raspberrypi/controller/rpi/ccm.hpp @@ -20,7 +20,7 @@ struct Matrix { double m6, double m7, double m8); Matrix(); double m[3][3]; - void Read(boost::property_tree::ptree const ¶ms); + void read(boost::property_tree::ptree const ¶ms); }; static inline Matrix operator*(double d, Matrix const &m) { @@ -61,11 +61,11 @@ class Ccm : public CcmAlgorithm { public: Ccm(Controller *controller = NULL); - char const *Name() const override; - void Read(boost::property_tree::ptree const ¶ms) override; - void SetSaturation(double saturation) override; - void Initialise() override; - void Prepare(Metadata *image_metadata) override; + char const *name() const override; + void read(boost::property_tree::ptree const ¶ms) override; + void setSaturation(double saturation) override; + void initialise() override; + void prepare(Metadata *imageMetadata) override; private: CcmConfig config_; diff --git a/src/ipa/raspberrypi/controller/rpi/contrast.cpp b/src/ipa/raspberrypi/controller/rpi/contrast.cpp index ae55aad5..16983757 100644 --- a/src/ipa/raspberrypi/controller/rpi/contrast.cpp +++ b/src/ipa/raspberrypi/controller/rpi/contrast.cpp @@ -31,40 +31,40 @@ Contrast::Contrast(Controller *controller) { } -char const *Contrast::Name() const +char const *Contrast::name() const { return NAME; } -void Contrast::Read(boost::property_tree::ptree const ¶ms) +void Contrast::read(boost::property_tree::ptree const ¶ms) { // enable adaptive enhancement by default - config_.ce_enable = params.get<int>("ce_enable", 1); + config_.ceEnable = params.get<int>("ce_enable", 1); // the point near the bottom of the histogram to move - config_.lo_histogram = params.get<double>("lo_histogram", 0.01); + config_.loHistogram = params.get<double>("lo_histogram", 0.01); // where in the range to try and move it to - config_.lo_level = params.get<double>("lo_level", 0.015); + config_.loLevel = params.get<double>("lo_level", 0.015); // but don't move by more than this - config_.lo_max = params.get<double>("lo_max", 500); + config_.loMax = params.get<double>("lo_max", 500); // equivalent values for the top of the histogram... - config_.hi_histogram = params.get<double>("hi_histogram", 0.95); - config_.hi_level = params.get<double>("hi_level", 0.95); - config_.hi_max = params.get<double>("hi_max", 2000); - config_.gamma_curve.Read(params.get_child("gamma_curve")); + config_.hiHistogram = params.get<double>("hi_histogram", 0.95); + config_.hiLevel = params.get<double>("hi_level", 0.95); + config_.hiMax = params.get<double>("hi_max", 2000); + config_.gammaCurve.read(params.get_child("gamma_curve")); } -void Contrast::SetBrightness(double brightness) +void Contrast::setBrightness(double brightness) { brightness_ = brightness; } -void Contrast::SetContrast(double contrast) +void Contrast::setContrast(double contrast) { contrast_ = contrast; } -static void fill_in_status(ContrastStatus &status, double brightness, - double contrast, Pwl &gamma_curve) +static void fillInStatus(ContrastStatus &status, double brightness, + double contrast, Pwl &gammaCurve) { status.brightness = brightness; status.contrast = contrast; @@ -73,104 +73,100 @@ static void fill_in_status(ContrastStatus &status, double brightness, : (i < 24 ? (i - 16) * 2048 + 16384 : (i - 24) * 4096 + 32768); status.points[i].x = x; - status.points[i].y = std::min(65535.0, gamma_curve.Eval(x)); + status.points[i].y = std::min(65535.0, gammaCurve.eval(x)); } status.points[CONTRAST_NUM_POINTS - 1].x = 65535; status.points[CONTRAST_NUM_POINTS - 1].y = 65535; } -void Contrast::Initialise() +void Contrast::initialise() { // Fill in some default values as Prepare will run before Process gets // called. - fill_in_status(status_, brightness_, contrast_, config_.gamma_curve); + fillInStatus(status_, brightness_, contrast_, config_.gammaCurve); } -void Contrast::Prepare(Metadata *image_metadata) +void Contrast::prepare(Metadata *imageMetadata) { std::unique_lock<std::mutex> lock(mutex_); - image_metadata->Set("contrast.status", status_); + imageMetadata->set("contrast.status", status_); } -Pwl compute_stretch_curve(Histogram const &histogram, - ContrastConfig const &config) +Pwl computeStretchCurve(Histogram const &histogram, + ContrastConfig const &config) { Pwl enhance; - enhance.Append(0, 0); + enhance.append(0, 0); // If the start of the histogram is rather empty, try to pull it down a // bit. - double hist_lo = histogram.Quantile(config.lo_histogram) * - (65536 / NUM_HISTOGRAM_BINS); - double level_lo = config.lo_level * 65536; + double histLo = histogram.quantile(config.loHistogram) * + (65536 / NUM_HISTOGRAM_BINS); + double levelLo = config.loLevel * 65536; LOG(RPiContrast, Debug) - << "Move histogram point " << hist_lo << " to " << level_lo; - hist_lo = std::max( - level_lo, - std::min(65535.0, std::min(hist_lo, level_lo + config.lo_max))); + << "Move histogram point " << histLo << " to " << levelLo; + histLo = std::max(levelLo, + std::min(65535.0, std::min(histLo, levelLo + config.loMax))); LOG(RPiContrast, Debug) - << "Final values " << hist_lo << " -> " << level_lo; - enhance.Append(hist_lo, level_lo); + << "Final values " << histLo << " -> " << levelLo; + enhance.append(histLo, levelLo); // Keep the mid-point (median) in the same place, though, to limit the // apparent amount of global brightness shift. - double mid = histogram.Quantile(0.5) * (65536 / NUM_HISTOGRAM_BINS); - enhance.Append(mid, mid); + double mid = histogram.quantile(0.5) * (65536 / NUM_HISTOGRAM_BINS); + enhance.append(mid, mid); // If the top to the histogram is empty, try to pull the pixel values // there up. - double hist_hi = histogram.Quantile(config.hi_histogram) * - (65536 / NUM_HISTOGRAM_BINS); - double level_hi = config.hi_level * 65536; + double histHi = histogram.quantile(config.hiHistogram) * + (65536 / NUM_HISTOGRAM_BINS); + double levelHi = config.hiLevel * 65536; LOG(RPiContrast, Debug) - << "Move histogram point " << hist_hi << " to " << level_hi; - hist_hi = std::min( - level_hi, - std::max(0.0, std::max(hist_hi, level_hi - config.hi_max))); + << "Move histogram point " << histHi << " to " << levelHi; + histHi = std::min(levelHi, + std::max(0.0, std::max(histHi, levelHi - config.hiMax))); LOG(RPiContrast, Debug) - << "Final values " << hist_hi << " -> " << level_hi; - enhance.Append(hist_hi, level_hi); - enhance.Append(65535, 65535); + << "Final values " << histHi << " -> " << levelHi; + enhance.append(histHi, levelHi); + enhance.append(65535, 65535); return enhance; } -Pwl apply_manual_contrast(Pwl const &gamma_curve, double brightness, - double contrast) +Pwl applyManualContrast(Pwl const &gammaCurve, double brightness, + double contrast) { - Pwl new_gamma_curve; + Pwl newGammaCurve; LOG(RPiContrast, Debug) << "Manual brightness " << brightness << " contrast " << contrast; - gamma_curve.Map([&](double x, double y) { - new_gamma_curve.Append( + gammaCurve.map([&](double x, double y) { + newGammaCurve.append( x, std::max(0.0, std::min(65535.0, (y - 32768) * contrast + 32768 + brightness))); }); - return new_gamma_curve; + return newGammaCurve; } -void Contrast::Process(StatisticsPtr &stats, - [[maybe_unused]] Metadata *image_metadata) +void Contrast::process(StatisticsPtr &stats, + [[maybe_unused]] Metadata *imageMetadata) { Histogram histogram(stats->hist[0].g_hist, NUM_HISTOGRAM_BINS); // We look at the histogram and adjust the gamma curve in the following // ways: 1. Adjust the gamma curve so as to pull the start of the // histogram down, and possibly push the end up. - Pwl gamma_curve = config_.gamma_curve; - if (config_.ce_enable) { - if (config_.lo_max != 0 || config_.hi_max != 0) - gamma_curve = compute_stretch_curve(histogram, config_) - .Compose(gamma_curve); + Pwl gammaCurve = config_.gammaCurve; + if (config_.ceEnable) { + if (config_.loMax != 0 || config_.hiMax != 0) + gammaCurve = computeStretchCurve(histogram, config_).compose(gammaCurve); // We could apply other adjustments (e.g. partial equalisation) // based on the histogram...? } // 2. Finally apply any manually selected brightness/contrast // adjustment. if (brightness_ != 0 || contrast_ != 1.0) - gamma_curve = apply_manual_contrast(gamma_curve, brightness_, - contrast_); + gammaCurve = applyManualContrast(gammaCurve, brightness_, contrast_); // And fill in the status for output. Use more points towards the bottom // of the curve. ContrastStatus status; - fill_in_status(status, brightness_, contrast_, gamma_curve); + fillInStatus(status, brightness_, contrast_, gammaCurve); { std::unique_lock<std::mutex> lock(mutex_); status_ = status; @@ -178,8 +174,8 @@ void Contrast::Process(StatisticsPtr &stats, } // Register algorithm with the system. -static Algorithm *Create(Controller *controller) +static Algorithm *create(Controller *controller) { return (Algorithm *)new Contrast(controller); } -static RegisterAlgorithm reg(NAME, &Create); +static RegisterAlgorithm reg(NAME, &create); diff --git a/src/ipa/raspberrypi/controller/rpi/contrast.hpp b/src/ipa/raspberrypi/controller/rpi/contrast.hpp index 85624539..5a6d530f 100644 --- a/src/ipa/raspberrypi/controller/rpi/contrast.hpp +++ b/src/ipa/raspberrypi/controller/rpi/contrast.hpp @@ -17,27 +17,27 @@ namespace RPiController { // Back End AWB. struct ContrastConfig { - bool ce_enable; - double lo_histogram; - double lo_level; - double lo_max; - double hi_histogram; - double hi_level; - double hi_max; - Pwl gamma_curve; + bool ceEnable; + double loHistogram; + double loLevel; + double loMax; + double hiHistogram; + double hiLevel; + double hiMax; + Pwl gammaCurve; }; class Contrast : public ContrastAlgorithm { public: Contrast(Controller *controller = NULL); - char const *Name() const override; - void Read(boost::property_tree::ptree const ¶ms) override; - void SetBrightness(double brightness) override; - void SetContrast(double contrast) override; - void Initialise() override; - void Prepare(Metadata *image_metadata) override; - void Process(StatisticsPtr &stats, Metadata *image_metadata) override; + char const *name() const override; + void read(boost::property_tree::ptree const ¶ms) override; + void setBrightness(double brightness) override; + void setContrast(double contrast) override; + void initialise() override; + void prepare(Metadata *imageMetadata) override; + void process(StatisticsPtr &stats, Metadata *imageMetadata) override; private: ContrastConfig config_; diff --git a/src/ipa/raspberrypi/controller/rpi/dpc.cpp b/src/ipa/raspberrypi/controller/rpi/dpc.cpp index 110f5056..42154cf3 100644 --- a/src/ipa/raspberrypi/controller/rpi/dpc.cpp +++ b/src/ipa/raspberrypi/controller/rpi/dpc.cpp @@ -24,30 +24,30 @@ Dpc::Dpc(Controller *controller) { } -char const *Dpc::Name() const +char const *Dpc::name() const { return NAME; } -void Dpc::Read(boost::property_tree::ptree const ¶ms) +void Dpc::read(boost::property_tree::ptree const ¶ms) { config_.strength = params.get<int>("strength", 1); if (config_.strength < 0 || config_.strength > 2) throw std::runtime_error("Dpc: bad strength value"); } -void Dpc::Prepare(Metadata *image_metadata) +void Dpc::prepare(Metadata *imageMetadata) { - DpcStatus dpc_status = {}; + DpcStatus dpcStatus = {}; // Should we vary this with lux level or analogue gain? TBD. - dpc_status.strength = config_.strength; - LOG(RPiDpc, Debug) << "strength " << dpc_status.strength; - image_metadata->Set("dpc.status", dpc_status); + dpcStatus.strength = config_.strength; + LOG(RPiDpc, Debug) << "strength " << dpcStatus.strength; + imageMetadata->set("dpc.status", dpcStatus); } // Register algorithm with the system. -static Algorithm *Create(Controller *controller) +static Algorithm *create(Controller *controller) { return (Algorithm *)new Dpc(controller); } -static RegisterAlgorithm reg(NAME, &Create); +static RegisterAlgorithm reg(NAME, &create); diff --git a/src/ipa/raspberrypi/controller/rpi/dpc.hpp b/src/ipa/raspberrypi/controller/rpi/dpc.hpp index d90285c4..039310cc 100644 --- a/src/ipa/raspberrypi/controller/rpi/dpc.hpp +++ b/src/ipa/raspberrypi/controller/rpi/dpc.hpp @@ -21,9 +21,9 @@ class Dpc : public Algorithm { public: Dpc(Controller *controller); - char const *Name() const override; - void Read(boost::property_tree::ptree const ¶ms) override; - void Prepare(Metadata *image_metadata) override; + char const *name() const override; + void read(boost::property_tree::ptree const ¶ms) override; + void prepare(Metadata *imageMetadata) override; private: DpcConfig config_; diff --git a/src/ipa/raspberrypi/controller/rpi/focus.cpp b/src/ipa/raspberrypi/controller/rpi/focus.cpp index a87ec802..90f36e58 100644 --- a/src/ipa/raspberrypi/controller/rpi/focus.cpp +++ b/src/ipa/raspberrypi/controller/rpi/focus.cpp @@ -23,28 +23,28 @@ Focus::Focus(Controller *controller) { } -char const *Focus::Name() const +char const *Focus::name() const { return NAME; } -void Focus::Process(StatisticsPtr &stats, Metadata *image_metadata) +void Focus::process(StatisticsPtr &stats, Metadata *imageMetadata) { FocusStatus status; unsigned int i; for (i = 0; i < FOCUS_REGIONS; i++) - status.focus_measures[i] = stats->focus_stats[i].contrast_val[1][1] / 1000; + status.focusMeasures[i] = stats->focus_stats[i].contrast_val[1][1] / 1000; status.num = i; - image_metadata->Set("focus.status", status); + imageMetadata->set("focus.status", status); LOG(RPiFocus, Debug) << "Focus contrast measure: " - << (status.focus_measures[5] + status.focus_measures[6]) / 10; + << (status.focusMeasures[5] + status.focusMeasures[6]) / 10; } /* Register algorithm with the system. */ -static Algorithm *Create(Controller *controller) +static Algorithm *create(Controller *controller) { return new Focus(controller); } -static RegisterAlgorithm reg(NAME, &Create); +static RegisterAlgorithm reg(NAME, &create); diff --git a/src/ipa/raspberrypi/controller/rpi/focus.hpp b/src/ipa/raspberrypi/controller/rpi/focus.hpp index 131b1d0f..a9207eb3 100644 --- a/src/ipa/raspberrypi/controller/rpi/focus.hpp +++ b/src/ipa/raspberrypi/controller/rpi/focus.hpp @@ -21,8 +21,8 @@ class Focus : public Algorithm { public: Focus(Controller *controller); - char const *Name() const override; - void Process(StatisticsPtr &stats, Metadata *image_metadata) override; + char const *name() const override; + void process(StatisticsPtr &stats, Metadata *imageMetadata) override; }; } /* namespace RPiController */ diff --git a/src/ipa/raspberrypi/controller/rpi/geq.cpp b/src/ipa/raspberrypi/controller/rpi/geq.cpp index 4530cb75..0da5efdf 100644 --- a/src/ipa/raspberrypi/controller/rpi/geq.cpp +++ b/src/ipa/raspberrypi/controller/rpi/geq.cpp @@ -28,54 +28,52 @@ Geq::Geq(Controller *controller) { } -char const *Geq::Name() const +char const *Geq::name() const { return NAME; } -void Geq::Read(boost::property_tree::ptree const ¶ms) +void Geq::read(boost::property_tree::ptree const ¶ms) { config_.offset = params.get<uint16_t>("offset", 0); config_.slope = params.get<double>("slope", 0.0); if (config_.slope < 0.0 || config_.slope >= 1.0) throw std::runtime_error("Geq: bad slope value"); if (params.get_child_optional("strength")) - config_.strength.Read(params.get_child("strength")); + config_.strength.read(params.get_child("strength")); } -void Geq::Prepare(Metadata *image_metadata) +void Geq::prepare(Metadata *imageMetadata) { - LuxStatus lux_status = {}; - lux_status.lux = 400; - if (image_metadata->Get("lux.status", lux_status)) + LuxStatus luxStatus = {}; + luxStatus.lux = 400; + if (imageMetadata->get("lux.status", luxStatus)) LOG(RPiGeq, Warning) << "no lux data found"; - DeviceStatus device_status; - device_status.analogue_gain = 1.0; // in case not found - if (image_metadata->Get("device.status", device_status)) + DeviceStatus deviceStatus; + deviceStatus.analogueGain = 1.0; // in case not found + if (imageMetadata->get("device.status", deviceStatus)) LOG(RPiGeq, Warning) << "no device metadata - use analogue gain of 1x"; - GeqStatus geq_status = {}; - double strength = - config_.strength.Empty() + GeqStatus geqStatus = {}; + double strength = config_.strength.empty() ? 1.0 - : config_.strength.Eval(config_.strength.Domain().Clip( - lux_status.lux)); - strength *= device_status.analogue_gain; + : config_.strength.eval(config_.strength.domain().clip(luxStatus.lux)); + strength *= deviceStatus.analogueGain; double offset = config_.offset * strength; double slope = config_.slope * strength; - geq_status.offset = std::min(65535.0, std::max(0.0, offset)); - geq_status.slope = std::min(.99999, std::max(0.0, slope)); + geqStatus.offset = std::min(65535.0, std::max(0.0, offset)); + geqStatus.slope = std::min(.99999, std::max(0.0, slope)); LOG(RPiGeq, Debug) - << "offset " << geq_status.offset << " slope " - << geq_status.slope << " (analogue gain " - << device_status.analogue_gain << " lux " - << lux_status.lux << ")"; - image_metadata->Set("geq.status", geq_status); + << "offset " << geqStatus.offset << " slope " + << geqStatus.slope << " (analogue gain " + << deviceStatus.analogueGain << " lux " + << luxStatus.lux << ")"; + imageMetadata->set("geq.status", geqStatus); } // Register algorithm with the system. -static Algorithm *Create(Controller *controller) +static Algorithm *create(Controller *controller) { return (Algorithm *)new Geq(controller); } -static RegisterAlgorithm reg(NAME, &Create); +static RegisterAlgorithm reg(NAME, &create); diff --git a/src/ipa/raspberrypi/controller/rpi/geq.hpp b/src/ipa/raspberrypi/controller/rpi/geq.hpp index 8ba3046b..bdbc55b2 100644 --- a/src/ipa/raspberrypi/controller/rpi/geq.hpp +++ b/src/ipa/raspberrypi/controller/rpi/geq.hpp @@ -23,9 +23,9 @@ class Geq : public Algorithm { public: Geq(Controller *controller); - char const *Name() const override; - void Read(boost::property_tree::ptree const ¶ms) override; - void Prepare(Metadata *image_metadata) override; + char const *name() const override; + void read(boost::property_tree::ptree const ¶ms) override; + void prepare(Metadata *imageMetadata) override; private: GeqConfig config_; diff --git a/src/ipa/raspberrypi/controller/rpi/lux.cpp b/src/ipa/raspberrypi/controller/rpi/lux.cpp index 4d145b6f..739a3d53 100644 --- a/src/ipa/raspberrypi/controller/rpi/lux.cpp +++ b/src/ipa/raspberrypi/controller/rpi/lux.cpp @@ -31,74 +31,74 @@ Lux::Lux(Controller *controller) status_.lux = 400; } -char const *Lux::Name() const +char const *Lux::name() const { return NAME; } -void Lux::Read(boost::property_tree::ptree const ¶ms) +void Lux::read(boost::property_tree::ptree const ¶ms) { - reference_shutter_speed_ = + referenceShutterSpeed_ = params.get<double>("reference_shutter_speed") * 1.0us; - reference_gain_ = params.get<double>("reference_gain"); - reference_aperture_ = params.get<double>("reference_aperture", 1.0); - reference_Y_ = params.get<double>("reference_Y"); - reference_lux_ = params.get<double>("reference_lux"); - current_aperture_ = reference_aperture_; + referenceGain_ = params.get<double>("reference_gain"); + referenceAperture_ = params.get<double>("reference_aperture", 1.0); + referenceY_ = params.get<double>("reference_Y"); + referenceLux_ = params.get<double>("reference_lux"); + currentAperture_ = referenceAperture_; } -void Lux::SetCurrentAperture(double aperture) +void Lux::setCurrentAperture(double aperture) { - current_aperture_ = aperture; + currentAperture_ = aperture; } -void Lux::Prepare(Metadata *image_metadata) +void Lux::prepare(Metadata *imageMetadata) { std::unique_lock<std::mutex> lock(mutex_); - image_metadata->Set("lux.status", status_); + imageMetadata->set("lux.status", status_); } -void Lux::Process(StatisticsPtr &stats, Metadata *image_metadata) +void Lux::process(StatisticsPtr &stats, Metadata *imageMetadata) { - DeviceStatus device_status; - if (image_metadata->Get("device.status", device_status) == 0) { - double current_gain = device_status.analogue_gain; - double current_aperture = device_status.aperture.value_or(current_aperture_); + DeviceStatus deviceStatus; + if (imageMetadata->get("device.status", deviceStatus) == 0) { + double currentGain = deviceStatus.analogueGain; + double currentAperture = deviceStatus.aperture.value_or(currentAperture_); uint64_t sum = 0; uint32_t num = 0; uint32_t *bin = stats->hist[0].g_hist; - const int num_bins = sizeof(stats->hist[0].g_hist) / - sizeof(stats->hist[0].g_hist[0]); - for (int i = 0; i < num_bins; i++) + const int numBins = sizeof(stats->hist[0].g_hist) / + sizeof(stats->hist[0].g_hist[0]); + for (int i = 0; i < numBins; i++) sum += bin[i] * (uint64_t)i, num += bin[i]; // add .5 to reflect the mid-points of bins - double current_Y = sum / (double)num + .5; - double gain_ratio = reference_gain_ / current_gain; - double shutter_speed_ratio = - reference_shutter_speed_ / device_status.shutter_speed; - double aperture_ratio = reference_aperture_ / current_aperture; - double Y_ratio = current_Y * (65536 / num_bins) / reference_Y_; - double estimated_lux = shutter_speed_ratio * gain_ratio * - aperture_ratio * aperture_ratio * - Y_ratio * reference_lux_; + double currentY = sum / (double)num + .5; + double gainRatio = referenceGain_ / currentGain; + double shutterSpeedRatio = + referenceShutterSpeed_ / deviceStatus.shutterSpeed; + double apertureRatio = referenceAperture_ / currentAperture; + double yRatio = currentY * (65536 / numBins) / referenceY_; + double estimatedLux = shutterSpeedRatio * gainRatio * + apertureRatio * apertureRatio * + yRatio * referenceLux_; LuxStatus status; - status.lux = estimated_lux; - status.aperture = current_aperture; - LOG(RPiLux, Debug) << ": estimated lux " << estimated_lux; + status.lux = estimatedLux; + status.aperture = currentAperture; + LOG(RPiLux, Debug) << ": estimated lux " << estimatedLux; { std::unique_lock<std::mutex> lock(mutex_); status_ = status; } // Overwrite the metadata here as well, so that downstream // algorithms get the latest value. - image_metadata->Set("lux.status", status); + imageMetadata->set("lux.status", status); } else LOG(RPiLux, Warning) << ": no device metadata"; } // Register algorithm with the system. -static Algorithm *Create(Controller *controller) +static Algorithm *create(Controller *controller) { return (Algorithm *)new Lux(controller); } -static RegisterAlgorithm reg(NAME, &Create); +static RegisterAlgorithm reg(NAME, &create); diff --git a/src/ipa/raspberrypi/controller/rpi/lux.hpp b/src/ipa/raspberrypi/controller/rpi/lux.hpp index 3ebd35d1..bd49a409 100644 --- a/src/ipa/raspberrypi/controller/rpi/lux.hpp +++ b/src/ipa/raspberrypi/controller/rpi/lux.hpp @@ -21,21 +21,21 @@ class Lux : public Algorithm { public: Lux(Controller *controller); - char const *Name() const override; - void Read(boost::property_tree::ptree const ¶ms) override; - void Prepare(Metadata *image_metadata) override; - void Process(StatisticsPtr &stats, Metadata *image_metadata) override; - void SetCurrentAperture(double aperture); + char const *name() const override; + void read(boost::property_tree::ptree const ¶ms) override; + void prepare(Metadata *imageMetadata) override; + void process(StatisticsPtr &stats, Metadata *imageMetadata) override; + void setCurrentAperture(double aperture); private: // These values define the conditions of the reference image, against // which we compare the new image. - libcamera::utils::Duration reference_shutter_speed_; - double reference_gain_; - double reference_aperture_; // units of 1/f - double reference_Y_; // out of 65536 - double reference_lux_; - double current_aperture_; + libcamera::utils::Duration referenceShutterSpeed_; + double referenceGain_; + double referenceAperture_; // units of 1/f + double referenceY_; // out of 65536 + double referenceLux_; + double currentAperture_; LuxStatus status_; std::mutex mutex_; }; diff --git a/src/ipa/raspberrypi/controller/rpi/noise.cpp b/src/ipa/raspberrypi/controller/rpi/noise.cpp index 63cad639..97b0fd05 100644 --- a/src/ipa/raspberrypi/controller/rpi/noise.cpp +++ b/src/ipa/raspberrypi/controller/rpi/noise.cpp @@ -22,55 +22,55 @@ LOG_DEFINE_CATEGORY(RPiNoise) #define NAME "rpi.noise" Noise::Noise(Controller *controller) - : Algorithm(controller), mode_factor_(1.0) + : Algorithm(controller), modeFactor_(1.0) { } -char const *Noise::Name() const +char const *Noise::name() const { return NAME; } -void Noise::SwitchMode(CameraMode const &camera_mode, +void Noise::switchMode(CameraMode const &cameraMode, [[maybe_unused]] Metadata *metadata) { // For example, we would expect a 2x2 binned mode to have a "noise // factor" of sqrt(2x2) = 2. (can't be less than one, right?) - mode_factor_ = std::max(1.0, camera_mode.noise_factor); + modeFactor_ = std::max(1.0, cameraMode.noiseFactor); } -void Noise::Read(boost::property_tree::ptree const ¶ms) +void Noise::read(boost::property_tree::ptree const ¶ms) { - reference_constant_ = params.get<double>("reference_constant"); - reference_slope_ = params.get<double>("reference_slope"); + referenceConstant_ = params.get<double>("reference_constant"); + referenceSlope_ = params.get<double>("reference_slope"); } -void Noise::Prepare(Metadata *image_metadata) +void Noise::prepare(Metadata *imageMetadata) { - struct DeviceStatus device_status; - device_status.analogue_gain = 1.0; // keep compiler calm - if (image_metadata->Get("device.status", device_status) == 0) { + struct DeviceStatus deviceStatus; + deviceStatus.analogueGain = 1.0; // keep compiler calm + if (imageMetadata->get("device.status", deviceStatus) == 0) { // There is a slight question as to exactly how the noise // profile, specifically the constant part of it, scales. For // now we assume it all scales the same, and we'll revisit this // if it proves substantially wrong. NOTE: we may also want to // make some adjustments based on the camera mode (such as // binning), if we knew how to discover it... - double factor = sqrt(device_status.analogue_gain) / mode_factor_; + double factor = sqrt(deviceStatus.analogueGain) / modeFactor_; struct NoiseStatus status; - status.noise_constant = reference_constant_ * factor; - status.noise_slope = reference_slope_ * factor; - image_metadata->Set("noise.status", status); + status.noiseConstant = referenceConstant_ * factor; + status.noiseSlope = referenceSlope_ * factor; + imageMetadata->set("noise.status", status); LOG(RPiNoise, Debug) - << "constant " << status.noise_constant - << " slope " << status.noise_slope; + << "constant " << status.noiseConstant + << " slope " << status.noiseSlope; } else LOG(RPiNoise, Warning) << " no metadata"; } // Register algorithm with the system. -static Algorithm *Create(Controller *controller) +static Algorithm *create(Controller *controller) { return new Noise(controller); } -static RegisterAlgorithm reg(NAME, &Create); +static RegisterAlgorithm reg(NAME, &create); diff --git a/src/ipa/raspberrypi/controller/rpi/noise.hpp b/src/ipa/raspberrypi/controller/rpi/noise.hpp index 1c9de5c8..ed6ffe91 100644 --- a/src/ipa/raspberrypi/controller/rpi/noise.hpp +++ b/src/ipa/raspberrypi/controller/rpi/noise.hpp @@ -17,16 +17,16 @@ class Noise : public Algorithm { public: Noise(Controller *controller); - char const *Name() const override; - void SwitchMode(CameraMode const &camera_mode, Metadata *metadata) override; - void Read(boost::property_tree::ptree const ¶ms) override; - void Prepare(Metadata *image_metadata) override; + char const *name() const override; + void switchMode(CameraMode const &cameraMode, Metadata *metadata) override; + void read(boost::property_tree::ptree const ¶ms) override; + void prepare(Metadata *imageMetadata) override; private: // the noise profile for analogue gain of 1.0 - double reference_constant_; - double reference_slope_; - double mode_factor_; + double referenceConstant_; + double referenceSlope_; + double modeFactor_; }; } // namespace RPiController diff --git a/src/ipa/raspberrypi/controller/rpi/sdn.cpp b/src/ipa/raspberrypi/controller/rpi/sdn.cpp index 93845509..480da38d 100644 --- a/src/ipa/raspberrypi/controller/rpi/sdn.cpp +++ b/src/ipa/raspberrypi/controller/rpi/sdn.cpp @@ -27,49 +27,51 @@ Sdn::Sdn(Controller *controller) { } -char const *Sdn::Name() const +char const *Sdn::name() const { return NAME; } -void Sdn::Read(boost::property_tree::ptree const ¶ms) +void Sdn::read(boost::property_tree::ptree const ¶ms) { deviation_ = params.get<double>("deviation", 3.2); strength_ = params.get<double>("strength", 0.75); } -void Sdn::Initialise() {} +void Sdn::initialise() +{ +} -void Sdn::Prepare(Metadata *image_metadata) +void Sdn::prepare(Metadata *imageMetadata) { - struct NoiseStatus noise_status = {}; - noise_status.noise_slope = 3.0; // in case no metadata - if (image_metadata->Get("noise.status", noise_status) != 0) + struct NoiseStatus noiseStatus = {}; + noiseStatus.noiseSlope = 3.0; // in case no metadata + if (imageMetadata->get("noise.status", noiseStatus) != 0) LOG(RPiSdn, Warning) << "no noise profile found"; LOG(RPiSdn, Debug) - << "Noise profile: constant " << noise_status.noise_constant - << " slope " << noise_status.noise_slope; + << "Noise profile: constant " << noiseStatus.noiseConstant + << " slope " << noiseStatus.noiseSlope; struct DenoiseStatus status; - status.noise_constant = noise_status.noise_constant * deviation_; - status.noise_slope = noise_status.noise_slope * deviation_; + status.noiseConstant = noiseStatus.noiseConstant * deviation_; + status.noiseSlope = noiseStatus.noiseSlope * deviation_; status.strength = strength_; status.mode = static_cast<std::underlying_type_t<DenoiseMode>>(mode_); - image_metadata->Set("denoise.status", status); + imageMetadata->set("denoise.status", status); LOG(RPiSdn, Debug) - << "programmed constant " << status.noise_constant - << " slope " << status.noise_slope + << "programmed constant " << status.noiseConstant + << " slope " << status.noiseSlope << " strength " << status.strength; } -void Sdn::SetMode(DenoiseMode mode) +void Sdn::setMode(DenoiseMode mode) { // We only distinguish between off and all other modes. mode_ = mode; } // Register algorithm with the system. -static Algorithm *Create(Controller *controller) +static Algorithm *create(Controller *controller) { return (Algorithm *)new Sdn(controller); } -static RegisterAlgorithm reg(NAME, &Create); +static RegisterAlgorithm reg(NAME, &create); diff --git a/src/ipa/raspberrypi/controller/rpi/sdn.hpp b/src/ipa/raspberrypi/controller/rpi/sdn.hpp index 2371ce04..d9b18f29 100644 --- a/src/ipa/raspberrypi/controller/rpi/sdn.hpp +++ b/src/ipa/raspberrypi/controller/rpi/sdn.hpp @@ -17,11 +17,11 @@ class Sdn : public DenoiseAlgorithm { public: Sdn(Controller *controller = NULL); - char const *Name() const override; - void Read(boost::property_tree::ptree const ¶ms) override; - void Initialise() override; - void Prepare(Metadata *image_metadata) override; - void SetMode(DenoiseMode mode) override; + char const *name() const override; + void read(boost::property_tree::ptree const ¶ms) override; + void initialise() override; + void prepare(Metadata *imageMetadata) override; + void setMode(DenoiseMode mode) override; private: double deviation_; diff --git a/src/ipa/raspberrypi/controller/rpi/sharpen.cpp b/src/ipa/raspberrypi/controller/rpi/sharpen.cpp index 18825a43..3fe62bc8 100644 --- a/src/ipa/raspberrypi/controller/rpi/sharpen.cpp +++ b/src/ipa/raspberrypi/controller/rpi/sharpen.cpp @@ -21,23 +21,23 @@ LOG_DEFINE_CATEGORY(RPiSharpen) #define NAME "rpi.sharpen" Sharpen::Sharpen(Controller *controller) - : SharpenAlgorithm(controller), user_strength_(1.0) + : SharpenAlgorithm(controller), userStrength_(1.0) { } -char const *Sharpen::Name() const +char const *Sharpen::name() const { return NAME; } -void Sharpen::SwitchMode(CameraMode const &camera_mode, +void Sharpen::switchMode(CameraMode const &cameraMode, [[maybe_unused]] Metadata *metadata) { // can't be less than one, right? - mode_factor_ = std::max(1.0, camera_mode.noise_factor); + modeFactor_ = std::max(1.0, cameraMode.noiseFactor); } -void Sharpen::Read(boost::property_tree::ptree const ¶ms) +void Sharpen::read(boost::property_tree::ptree const ¶ms) { threshold_ = params.get<double>("threshold", 1.0); strength_ = params.get<double>("strength", 1.0); @@ -48,38 +48,38 @@ void Sharpen::Read(boost::property_tree::ptree const ¶ms) << " limit " << limit_; } -void Sharpen::SetStrength(double strength) +void Sharpen::setStrength(double strength) { // Note that this function is how an application sets the overall // sharpening "strength". We call this the "user strength" field // as there already is a strength_ field - being an internal gain // parameter that gets passed to the ISP control code. Negative // values are not allowed - coerce them to zero (no sharpening). - user_strength_ = std::max(0.0, strength); + userStrength_ = std::max(0.0, strength); } -void Sharpen::Prepare(Metadata *image_metadata) +void Sharpen::prepare(Metadata *imageMetadata) { - // The user_strength_ affects the algorithm's internal gain directly, but + // The userStrength_ affects the algorithm's internal gain directly, but // we adjust the limit and threshold less aggressively. Using a sqrt // function is an arbitrary but gentle way of accomplishing this. - double user_strength_sqrt = sqrt(user_strength_); + double userStrengthSqrt = sqrt(userStrength_); struct SharpenStatus status; // Binned modes seem to need the sharpening toned down with this - // pipeline, thus we use the mode_factor here. Also avoid - // divide-by-zero with the user_strength_sqrt. - status.threshold = threshold_ * mode_factor_ / - std::max(0.01, user_strength_sqrt); - status.strength = strength_ / mode_factor_ * user_strength_; - status.limit = limit_ / mode_factor_ * user_strength_sqrt; - // Finally, report any application-supplied parameters that were used. - status.user_strength = user_strength_; - image_metadata->Set("sharpen.status", status); + // pipeline, thus we use the modeFactor_ here. Also avoid + // divide-by-zero with the userStrengthSqrt. + status.threshold = threshold_ * modeFactor_ / + std::max(0.01, userStrengthSqrt); + status.strength = strength_ / modeFactor_ * userStrength_; + status.limit = limit_ / modeFactor_ * userStrengthSqrt; + /* Finally, report any application-supplied parameters that were used. */ + status.userStrength = userStrength_; + imageMetadata->set("sharpen.status", status); } // Register algorithm with the system. -static Algorithm *Create(Controller *controller) +static Algorithm *create(Controller *controller) { return new Sharpen(controller); } -static RegisterAlgorithm reg(NAME, &Create); +static RegisterAlgorithm reg(NAME, &create); diff --git a/src/ipa/raspberrypi/controller/rpi/sharpen.hpp b/src/ipa/raspberrypi/controller/rpi/sharpen.hpp index 13a076a8..ced917f3 100644 --- a/src/ipa/raspberrypi/controller/rpi/sharpen.hpp +++ b/src/ipa/raspberrypi/controller/rpi/sharpen.hpp @@ -17,18 +17,18 @@ class Sharpen : public SharpenAlgorithm { public: Sharpen(Controller *controller); - char const *Name() const override; - void SwitchMode(CameraMode const &camera_mode, Metadata *metadata) override; - void Read(boost::property_tree::ptree const ¶ms) override; - void SetStrength(double strength) override; - void Prepare(Metadata *image_metadata) override; + char const *name() const override; + void switchMode(CameraMode const &cameraMode, Metadata *metadata) override; + void read(boost::property_tree::ptree const ¶ms) override; + void setStrength(double strength) override; + void prepare(Metadata *imageMetadata) override; private: double threshold_; double strength_; double limit_; - double mode_factor_; - double user_strength_; + double modeFactor_; + double userStrength_; }; } // namespace RPiController |