diff options
author | Naushir Patuck <naush@raspberrypi.com> | 2020-05-03 16:48:42 +0100 |
---|---|---|
committer | Laurent Pinchart <laurent.pinchart@ideasonboard.com> | 2020-05-11 23:54:40 +0300 |
commit | 0db2c8dc75e466e7648dc1b95380495c6a126349 (patch) | |
tree | fc723a251981ded749c900947a2f510ed56e60da /src/ipa/raspberrypi/controller/rpi | |
parent | 740fd1b62f670bd1ad4965ef0866ef5d51bdf947 (diff) |
libcamera: ipa: Raspberry Pi IPA
Initial implementation of the Raspberry Pi (BCM2835) libcamera IPA and
associated libraries.
All code is licensed under the BSD-2-Clause terms.
Copyright (c) 2019-2020 Raspberry Pi Trading Ltd.
Signed-off-by: Naushir Patuck <naush@raspberrypi.com>
Acked-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Diffstat (limited to 'src/ipa/raspberrypi/controller/rpi')
24 files changed, 3535 insertions, 0 deletions
diff --git a/src/ipa/raspberrypi/controller/rpi/agc.cpp b/src/ipa/raspberrypi/controller/rpi/agc.cpp new file mode 100644 index 00000000..a4742872 --- /dev/null +++ b/src/ipa/raspberrypi/controller/rpi/agc.cpp @@ -0,0 +1,642 @@ +/* SPDX-License-Identifier: BSD-2-Clause */ +/* + * Copyright (C) 2019, Raspberry Pi (Trading) Limited + * + * agc.cpp - AGC/AEC control algorithm + */ + +#include <map> + +#include "linux/bcm2835-isp.h" + +#include "../awb_status.h" +#include "../device_status.h" +#include "../histogram.hpp" +#include "../logging.hpp" +#include "../lux_status.h" +#include "../metadata.hpp" + +#include "agc.hpp" + +using namespace RPi; + +#define NAME "rpi.agc" + +#define PIPELINE_BITS 13 // seems to be a 13-bit pipeline + +void AgcMeteringMode::Read(boost::property_tree::ptree const ¶ms) +{ + int num = 0; + for (auto &p : params.get_child("weights")) { + if (num == AGC_STATS_SIZE) + throw std::runtime_error("AgcConfig: too many weights"); + weights[num++] = p.second.get_value<double>(); + } + if (num != AGC_STATS_SIZE) + throw std::runtime_error("AgcConfig: insufficient weights"); +} + +static std::string +read_metering_modes(std::map<std::string, AgcMeteringMode> &metering_modes, + boost::property_tree::ptree const ¶ms) +{ + std::string first; + for (auto &p : params) { + AgcMeteringMode metering_mode; + metering_mode.Read(p.second); + metering_modes[p.first] = std::move(metering_mode); + if (first.empty()) + first = p.first; + } + return first; +} + +static int read_double_list(std::vector<double> &list, + boost::property_tree::ptree const ¶ms) +{ + for (auto &p : params) + list.push_back(p.second.get_value<double>()); + return list.size(); +} + +void AgcExposureMode::Read(boost::property_tree::ptree const ¶ms) +{ + int num_shutters = + read_double_list(shutter, params.get_child("shutter")); + int num_ags = read_double_list(gain, params.get_child("gain")); + if (num_shutters < 2 || num_ags < 2) + throw std::runtime_error( + "AgcConfig: must have at least two entries in exposure profile"); + if (num_shutters != num_ags) + throw std::runtime_error( + "AgcConfig: expect same number of exposure and gain entries in exposure profile"); +} + +static std::string +read_exposure_modes(std::map<std::string, AgcExposureMode> &exposure_modes, + boost::property_tree::ptree const ¶ms) +{ + std::string first; + for (auto &p : params) { + AgcExposureMode exposure_mode; + exposure_mode.Read(p.second); + exposure_modes[p.first] = std::move(exposure_mode); + if (first.empty()) + first = p.first; + } + return first; +} + +void AgcConstraint::Read(boost::property_tree::ptree const ¶ms) +{ + std::string bound_string = params.get<std::string>("bound", ""); + transform(bound_string.begin(), bound_string.end(), + bound_string.begin(), ::toupper); + if (bound_string != "UPPER" && bound_string != "LOWER") + throw std::runtime_error( + "AGC constraint type should be UPPER or LOWER"); + bound = bound_string == "UPPER" ? Bound::UPPER : Bound::LOWER; + q_lo = params.get<double>("q_lo"); + q_hi = params.get<double>("q_hi"); + Y_target.Read(params.get_child("y_target")); +} + +static AgcConstraintMode +read_constraint_mode(boost::property_tree::ptree const ¶ms) +{ + AgcConstraintMode mode; + for (auto &p : params) { + AgcConstraint constraint; + constraint.Read(p.second); + mode.push_back(std::move(constraint)); + } + return mode; +} + +static std::string read_constraint_modes( + std::map<std::string, AgcConstraintMode> &constraint_modes, + boost::property_tree::ptree const ¶ms) +{ + std::string first; + for (auto &p : params) { + constraint_modes[p.first] = read_constraint_mode(p.second); + if (first.empty()) + first = p.first; + } + return first; +} + +void AgcConfig::Read(boost::property_tree::ptree const ¶ms) +{ + RPI_LOG("AgcConfig"); + default_metering_mode = read_metering_modes( + metering_modes, params.get_child("metering_modes")); + default_exposure_mode = read_exposure_modes( + exposure_modes, params.get_child("exposure_modes")); + default_constraint_mode = read_constraint_modes( + constraint_modes, params.get_child("constraint_modes")); + Y_target.Read(params.get_child("y_target")); + speed = params.get<double>("speed", 0.2); + startup_frames = params.get<uint16_t>("startup_frames", 10); + fast_reduce_threshold = + params.get<double>("fast_reduce_threshold", 0.4); + base_ev = params.get<double>("base_ev", 1.0); +} + +Agc::Agc(Controller *controller) + : AgcAlgorithm(controller), metering_mode_(nullptr), + exposure_mode_(nullptr), constraint_mode_(nullptr), + frame_count_(0), lock_count_(0) +{ + ev_ = status_.ev = 1.0; + flicker_period_ = status_.flicker_period = 0.0; + fixed_shutter_ = status_.fixed_shutter = 0; + fixed_analogue_gain_ = status_.fixed_analogue_gain = 0.0; + // set to zero initially, so we can tell it's not been calculated + status_.total_exposure_value = 0.0; + status_.target_exposure_value = 0.0; + status_.locked = false; + output_status_ = status_; +} + +char const *Agc::Name() const +{ + return NAME; +} + +void Agc::Read(boost::property_tree::ptree const ¶ms) +{ + RPI_LOG("Agc"); + config_.Read(params); + // Set the config's defaults (which are the first ones it read) as our + // current modes, until someone changes them. (they're all known to + // exist at this point) + metering_mode_name_ = config_.default_metering_mode; + metering_mode_ = &config_.metering_modes[metering_mode_name_]; + exposure_mode_name_ = config_.default_exposure_mode; + exposure_mode_ = &config_.exposure_modes[exposure_mode_name_]; + constraint_mode_name_ = config_.default_constraint_mode; + constraint_mode_ = &config_.constraint_modes[constraint_mode_name_]; +} + +void Agc::SetEv(double ev) +{ + std::unique_lock<std::mutex> lock(settings_mutex_); + ev_ = ev; +} + +void Agc::SetFlickerPeriod(double flicker_period) +{ + std::unique_lock<std::mutex> lock(settings_mutex_); + flicker_period_ = flicker_period; +} + +void Agc::SetFixedShutter(double fixed_shutter) +{ + std::unique_lock<std::mutex> lock(settings_mutex_); + fixed_shutter_ = fixed_shutter; +} + +void Agc::SetFixedAnalogueGain(double fixed_analogue_gain) +{ + std::unique_lock<std::mutex> lock(settings_mutex_); + fixed_analogue_gain_ = fixed_analogue_gain; +} + +void Agc::SetMeteringMode(std::string const &metering_mode_name) +{ + std::unique_lock<std::mutex> lock(settings_mutex_); + metering_mode_name_ = metering_mode_name; +} + +void Agc::SetExposureMode(std::string const &exposure_mode_name) +{ + std::unique_lock<std::mutex> lock(settings_mutex_); + exposure_mode_name_ = exposure_mode_name; +} + +void Agc::SetConstraintMode(std::string const &constraint_mode_name) +{ + std::unique_lock<std::mutex> lock(settings_mutex_); + constraint_mode_name_ = constraint_mode_name; +} + +void Agc::Prepare(Metadata *image_metadata) +{ + AgcStatus status; + { + std::unique_lock<std::mutex> lock(output_mutex_); + status = output_status_; + } + int lock_count = lock_count_; + lock_count_ = 0; + status.digital_gain = 1.0; + if (status_.total_exposure_value) { + // Process has run, so we have meaningful values. + DeviceStatus device_status; + if (image_metadata->Get("device.status", device_status) == 0) { + double actual_exposure = device_status.shutter_speed * + device_status.analogue_gain; + if (actual_exposure) { + status.digital_gain = + status_.total_exposure_value / + actual_exposure; + RPI_LOG("Want total exposure " << status_.total_exposure_value); + // Never ask for a gain < 1.0, and also impose + // some upper limit. Make it customisable? + status.digital_gain = std::max( + 1.0, + std::min(status.digital_gain, 4.0)); + RPI_LOG("Actual exposure " << actual_exposure); + RPI_LOG("Use digital_gain " << status.digital_gain); + RPI_LOG("Effective exposure " << actual_exposure * status.digital_gain); + // Decide whether AEC/AGC has converged. + // Insist AGC is steady for MAX_LOCK_COUNT + // frames before we say we are "locked". + // (The hard-coded constants may need to + // become customisable.) + if (status.target_exposure_value) { +#define MAX_LOCK_COUNT 3 + double err = 0.10 * status.target_exposure_value + 200; + if (actual_exposure < + status.target_exposure_value + err + && actual_exposure > + status.target_exposure_value - err) + lock_count_ = + std::min(lock_count + 1, + MAX_LOCK_COUNT); + else if (actual_exposure < + status.target_exposure_value + + 1.5 * err && + actual_exposure > + status.target_exposure_value + - 1.5 * err) + lock_count_ = lock_count; + RPI_LOG("Lock count: " << lock_count_); + } + } + } else + RPI_LOG(Name() << ": no device metadata"); + status.locked = lock_count_ >= MAX_LOCK_COUNT; + //printf("%s\n", status.locked ? "+++++++++" : "-"); + image_metadata->Set("agc.status", status); + } +} + +void Agc::Process(StatisticsPtr &stats, Metadata *image_metadata) +{ + frame_count_++; + // First a little bit of housekeeping, fetching up-to-date settings and + // configuration, that kind of thing. + housekeepConfig(); + // Get the current exposure values for the frame that's just arrived. + fetchCurrentExposure(image_metadata); + // Compute the total gain we require relative to the current exposure. + double gain, target_Y; + computeGain(stats.get(), image_metadata, gain, target_Y); + // Now compute the target (final) exposure which we think we want. + computeTargetExposure(gain); + // Some of the exposure has to be applied as digital gain, so work out + // what that is. This function also tells us whether it's decided to + // "desaturate" the image more quickly. + bool desaturate = applyDigitalGain(image_metadata, gain, target_Y); + // The results have to be filtered so as not to change too rapidly. + filterExposure(desaturate); + // The last thing is to divvy up the exposure value into a shutter time + // and analogue_gain, according to the current exposure mode. + divvyupExposure(); + // Finally advertise what we've done. + writeAndFinish(image_metadata, desaturate); +} + +static void copy_string(std::string const &s, char *d, size_t size) +{ + size_t length = s.copy(d, size - 1); + d[length] = '\0'; +} + +void Agc::housekeepConfig() +{ + // First fetch all the up-to-date settings, so no one else has to do it. + std::string new_exposure_mode_name, new_constraint_mode_name, + new_metering_mode_name; + { + std::unique_lock<std::mutex> lock(settings_mutex_); + new_metering_mode_name = metering_mode_name_; + new_exposure_mode_name = exposure_mode_name_; + new_constraint_mode_name = constraint_mode_name_; + status_.ev = ev_; + status_.fixed_shutter = fixed_shutter_; + status_.fixed_analogue_gain = fixed_analogue_gain_; + status_.flicker_period = flicker_period_; + } + RPI_LOG("ev " << status_.ev << " fixed_shutter " + << status_.fixed_shutter << " fixed_analogue_gain " + << status_.fixed_analogue_gain); + // Make sure the "mode" pointers point to the up-to-date things, if + // they've changed. + if (strcmp(new_metering_mode_name.c_str(), status_.metering_mode)) { + auto it = config_.metering_modes.find(new_metering_mode_name); + if (it == config_.metering_modes.end()) + throw std::runtime_error("Agc: no metering mode " + + new_metering_mode_name); + metering_mode_ = &it->second; + copy_string(new_metering_mode_name, status_.metering_mode, + sizeof(status_.metering_mode)); + } + if (strcmp(new_exposure_mode_name.c_str(), status_.exposure_mode)) { + auto it = config_.exposure_modes.find(new_exposure_mode_name); + if (it == config_.exposure_modes.end()) + throw std::runtime_error("Agc: no exposure profile " + + new_exposure_mode_name); + exposure_mode_ = &it->second; + copy_string(new_exposure_mode_name, status_.exposure_mode, + sizeof(status_.exposure_mode)); + } + if (strcmp(new_constraint_mode_name.c_str(), status_.constraint_mode)) { + auto it = + config_.constraint_modes.find(new_constraint_mode_name); + if (it == config_.constraint_modes.end()) + throw std::runtime_error("Agc: no constraint list " + + new_constraint_mode_name); + constraint_mode_ = &it->second; + copy_string(new_constraint_mode_name, status_.constraint_mode, + sizeof(status_.constraint_mode)); + } + RPI_LOG("exposure_mode " + << new_exposure_mode_name << " constraint_mode " + << new_constraint_mode_name << " metering_mode " + << new_metering_mode_name); +} + +void Agc::fetchCurrentExposure(Metadata *image_metadata) +{ + std::unique_lock<Metadata> lock(*image_metadata); + DeviceStatus *device_status = + image_metadata->GetLocked<DeviceStatus>("device.status"); + if (!device_status) + throw std::runtime_error("Agc: no device metadata"); + current_.shutter = device_status->shutter_speed; + current_.analogue_gain = device_status->analogue_gain; + AgcStatus *agc_status = + image_metadata->GetLocked<AgcStatus>("agc.status"); + current_.total_exposure = agc_status ? agc_status->total_exposure_value : 0; + current_.total_exposure_no_dg = current_.shutter * current_.analogue_gain; +} + +static double compute_initial_Y(bcm2835_isp_stats *stats, Metadata *image_metadata, + double weights[]) +{ + bcm2835_isp_stats_region *regions = stats->agc_stats; + struct AwbStatus awb; + awb.gain_r = awb.gain_g = awb.gain_b = 1.0; // in case no metadata + if (image_metadata->Get("awb.status", awb) != 0) + RPI_WARN("Agc: no AWB status found"); + double Y_sum = 0, weight_sum = 0; + for (int i = 0; i < AGC_STATS_SIZE; i++) { + if (regions[i].counted == 0) + continue; + weight_sum += weights[i]; + double Y = regions[i].r_sum * awb.gain_r * .299 + + regions[i].g_sum * awb.gain_g * .587 + + regions[i].b_sum * awb.gain_b * .114; + Y /= regions[i].counted; + Y_sum += Y * weights[i]; + } + return Y_sum / weight_sum / (1 << PIPELINE_BITS); +} + +// We handle extra gain through EV by adjusting our Y targets. However, you +// simply can't monitor histograms once they get very close to (or beyond!) +// saturation, so we clamp the Y targets to this value. It does mean that EV +// increases don't necessarily do quite what you might expect in certain +// (contrived) cases. + +#define EV_GAIN_Y_TARGET_LIMIT 0.9 + +static double constraint_compute_gain(AgcConstraint &c, Histogram &h, + double lux, double ev_gain, + double &target_Y) +{ + target_Y = c.Y_target.Eval(c.Y_target.Domain().Clip(lux)); + target_Y = std::min(EV_GAIN_Y_TARGET_LIMIT, target_Y * ev_gain); + double iqm = h.InterQuantileMean(c.q_lo, c.q_hi); + return (target_Y * NUM_HISTOGRAM_BINS) / iqm; +} + +void Agc::computeGain(bcm2835_isp_stats *statistics, Metadata *image_metadata, + double &gain, double &target_Y) +{ + struct LuxStatus lux = {}; + lux.lux = 400; // default lux level to 400 in case no metadata found + if (image_metadata->Get("lux.status", lux) != 0) + RPI_WARN("Agc: no lux level found"); + Histogram h(statistics->hist[0].g_hist, NUM_HISTOGRAM_BINS); + double ev_gain = status_.ev * config_.base_ev; + // The initial gain and target_Y come from some of the regions. After + // that we consider the histogram constraints. + target_Y = + config_.Y_target.Eval(config_.Y_target.Domain().Clip(lux.lux)); + target_Y = std::min(EV_GAIN_Y_TARGET_LIMIT, target_Y * ev_gain); + double initial_Y = compute_initial_Y(statistics, image_metadata, + metering_mode_->weights); + gain = std::min(10.0, target_Y / (initial_Y + .001)); + RPI_LOG("Initially Y " << initial_Y << " target " << target_Y + << " gives gain " << gain); + for (auto &c : *constraint_mode_) { + double new_target_Y; + double new_gain = + constraint_compute_gain(c, h, lux.lux, ev_gain, + new_target_Y); + RPI_LOG("Constraint has target_Y " + << new_target_Y << " giving gain " << new_gain); + if (c.bound == AgcConstraint::Bound::LOWER && + new_gain > gain) { + RPI_LOG("Lower bound constraint adopted"); + gain = new_gain, target_Y = new_target_Y; + } else if (c.bound == AgcConstraint::Bound::UPPER && + new_gain < gain) { + RPI_LOG("Upper bound constraint adopted"); + gain = new_gain, target_Y = new_target_Y; + } + } + RPI_LOG("Final gain " << gain << " (target_Y " << target_Y << " ev " + << status_.ev << " base_ev " << config_.base_ev + << ")"); +} + +void Agc::computeTargetExposure(double gain) +{ + // The statistics reflect the image without digital gain, so the final + // total exposure we're aiming for is: + target_.total_exposure = current_.total_exposure_no_dg * gain; + // The final target exposure is also limited to what the exposure + // mode allows. + double max_total_exposure = + (status_.fixed_shutter != 0.0 + ? status_.fixed_shutter + : exposure_mode_->shutter.back()) * + (status_.fixed_analogue_gain != 0.0 + ? status_.fixed_analogue_gain + : exposure_mode_->gain.back()); + target_.total_exposure = std::min(target_.total_exposure, + max_total_exposure); + RPI_LOG("Target total_exposure " << target_.total_exposure); +} + +bool Agc::applyDigitalGain(Metadata *image_metadata, double gain, + double target_Y) +{ + double dg = 1.0; + // I think this pipeline subtracts black level and rescales before we + // get the stats, so no need to worry about it. + struct AwbStatus awb; + if (image_metadata->Get("awb.status", awb) == 0) { + double min_gain = std::min(awb.gain_r, + std::min(awb.gain_g, awb.gain_b)); + dg *= std::max(1.0, 1.0 / min_gain); + } else + RPI_WARN("Agc: no AWB status found"); + RPI_LOG("after AWB, target dg " << dg << " gain " << gain + << " target_Y " << target_Y); + // Finally, if we're trying to reduce exposure but the target_Y is + // "close" to 1.0, then the gain computed for that constraint will be + // only slightly less than one, because the measured Y can never be + // larger than 1.0. When this happens, demand a large digital gain so + // that the exposure can be reduced, de-saturating the image much more + // quickly (and we then approach the correct value more quickly from + // below). + bool desaturate = target_Y > config_.fast_reduce_threshold && + gain < sqrt(target_Y); + if (desaturate) + dg /= config_.fast_reduce_threshold; + RPI_LOG("Digital gain " << dg << " desaturate? " << desaturate); + target_.total_exposure_no_dg = target_.total_exposure / dg; + RPI_LOG("Target total_exposure_no_dg " << target_.total_exposure_no_dg); + return desaturate; +} + +void Agc::filterExposure(bool desaturate) +{ + double speed = frame_count_ <= config_.startup_frames ? 1.0 : config_.speed; + if (filtered_.total_exposure == 0.0) { + filtered_.total_exposure = target_.total_exposure; + filtered_.total_exposure_no_dg = target_.total_exposure_no_dg; + } else { + // If close to the result go faster, to save making so many + // micro-adjustments on the way. (Make this customisable?) + if (filtered_.total_exposure < 1.2 * target_.total_exposure && + filtered_.total_exposure > 0.8 * target_.total_exposure) + speed = sqrt(speed); + filtered_.total_exposure = speed * target_.total_exposure + + filtered_.total_exposure * (1.0 - speed); + // When desaturing, take a big jump down in exposure_no_dg, + // which we'll hide with digital gain. + if (desaturate) + filtered_.total_exposure_no_dg = + target_.total_exposure_no_dg; + else + filtered_.total_exposure_no_dg = + speed * target_.total_exposure_no_dg + + filtered_.total_exposure_no_dg * (1.0 - speed); + } + // We can't let the no_dg exposure deviate too far below the + // total exposure, as there might not be enough digital gain available + // in the ISP to hide it (which will cause nasty oscillation). + if (filtered_.total_exposure_no_dg < + filtered_.total_exposure * config_.fast_reduce_threshold) + filtered_.total_exposure_no_dg = filtered_.total_exposure * + config_.fast_reduce_threshold; + RPI_LOG("After filtering, total_exposure " << filtered_.total_exposure << + " no dg " << filtered_.total_exposure_no_dg); +} + +void Agc::divvyupExposure() +{ + // Sending the fixed shutter/gain cases through the same code may seem + // unnecessary, but it will make more sense when extend this to cover + // variable aperture. + double exposure_value = filtered_.total_exposure_no_dg; + double shutter_time, analogue_gain; + shutter_time = status_.fixed_shutter != 0.0 + ? status_.fixed_shutter + : exposure_mode_->shutter[0]; + analogue_gain = status_.fixed_analogue_gain != 0.0 + ? status_.fixed_analogue_gain + : exposure_mode_->gain[0]; + if (shutter_time * analogue_gain < exposure_value) { + for (unsigned int stage = 1; + stage < exposure_mode_->gain.size(); stage++) { + if (status_.fixed_shutter == 0.0) { + if (exposure_mode_->shutter[stage] * + analogue_gain >= + exposure_value) { + shutter_time = + exposure_value / analogue_gain; + break; + } + shutter_time = exposure_mode_->shutter[stage]; + } + if (status_.fixed_analogue_gain == 0.0) { + if (exposure_mode_->gain[stage] * + shutter_time >= + exposure_value) { + analogue_gain = + exposure_value / shutter_time; + break; + } + analogue_gain = exposure_mode_->gain[stage]; + } + } + } + RPI_LOG("Divided up shutter and gain are " << shutter_time << " and " + << analogue_gain); + // Finally adjust shutter time for flicker avoidance (require both + // shutter and gain not to be fixed). + if (status_.fixed_shutter == 0.0 && + status_.fixed_analogue_gain == 0.0 && + status_.flicker_period != 0.0) { + int flicker_periods = shutter_time / status_.flicker_period; + if (flicker_periods > 0) { + double new_shutter_time = flicker_periods * status_.flicker_period; + analogue_gain *= shutter_time / new_shutter_time; + // We should still not allow the ag to go over the + // largest value in the exposure mode. Note that this + // may force more of the total exposure into the digital + // gain as a side-effect. + analogue_gain = std::min(analogue_gain, + exposure_mode_->gain.back()); + shutter_time = new_shutter_time; + } + RPI_LOG("After flicker avoidance, shutter " + << shutter_time << " gain " << analogue_gain); + } + filtered_.shutter = shutter_time; + filtered_.analogue_gain = analogue_gain; +} + +void Agc::writeAndFinish(Metadata *image_metadata, bool desaturate) +{ + status_.total_exposure_value = filtered_.total_exposure; + status_.target_exposure_value = desaturate ? 0 : target_.total_exposure_no_dg; + status_.shutter_time = filtered_.shutter; + status_.analogue_gain = filtered_.analogue_gain; + { + std::unique_lock<std::mutex> lock(output_mutex_); + output_status_ = status_; + } + // Write to metadata as well, in case anyone wants to update the camera + // immediately. + image_metadata->Set("agc.status", status_); + RPI_LOG("Output written, total exposure requested is " + << filtered_.total_exposure); + RPI_LOG("Camera exposure update: shutter time " << filtered_.shutter << + " analogue gain " << filtered_.analogue_gain); +} + +// Register algorithm with the system. +static Algorithm *Create(Controller *controller) +{ + return (Algorithm *)new Agc(controller); +} +static RegisterAlgorithm reg(NAME, &Create); diff --git a/src/ipa/raspberrypi/controller/rpi/agc.hpp b/src/ipa/raspberrypi/controller/rpi/agc.hpp new file mode 100644 index 00000000..dbcefba6 --- /dev/null +++ b/src/ipa/raspberrypi/controller/rpi/agc.hpp @@ -0,0 +1,123 @@ +/* SPDX-License-Identifier: BSD-2-Clause */ +/* + * Copyright (C) 2019, Raspberry Pi (Trading) Limited + * + * agc.hpp - AGC/AEC control algorithm + */ +#pragma once + +#include <vector> +#include <mutex> + +#include "../agc_algorithm.hpp" +#include "../agc_status.h" +#include "../pwl.hpp" + +// This is our implementation of AGC. + +// This is the number actually set up by the firmware, not the maximum possible +// number (which is 16). + +#define AGC_STATS_SIZE 15 + +namespace RPi { + +struct AgcMeteringMode { + double weights[AGC_STATS_SIZE]; + void Read(boost::property_tree::ptree const ¶ms); +}; + +struct AgcExposureMode { + std::vector<double> shutter; + std::vector<double> gain; + void Read(boost::property_tree::ptree const ¶ms); +}; + +struct AgcConstraint { + enum class Bound { LOWER = 0, UPPER = 1 }; + Bound bound; + double q_lo; + double q_hi; + Pwl Y_target; + void Read(boost::property_tree::ptree const ¶ms); +}; + +typedef std::vector<AgcConstraint> AgcConstraintMode; + +struct AgcConfig { + void Read(boost::property_tree::ptree const ¶ms); + std::map<std::string, AgcMeteringMode> metering_modes; + std::map<std::string, AgcExposureMode> exposure_modes; + std::map<std::string, AgcConstraintMode> constraint_modes; + Pwl Y_target; + double speed; + uint16_t startup_frames; + double max_change; + double min_change; + double fast_reduce_threshold; + double speed_up_threshold; + std::string default_metering_mode; + std::string default_exposure_mode; + std::string default_constraint_mode; + double base_ev; +}; + +class Agc : public AgcAlgorithm +{ +public: + Agc(Controller *controller); + char const *Name() const override; + void Read(boost::property_tree::ptree const ¶ms) override; + void SetEv(double ev) override; + void SetFlickerPeriod(double flicker_period) override; + void SetFixedShutter(double fixed_shutter) override; // microseconds + void SetFixedAnalogueGain(double fixed_analogue_gain) override; + void SetMeteringMode(std::string const &metering_mode_name) override; + void SetExposureMode(std::string const &exposure_mode_name) override; + void SetConstraintMode(std::string const &contraint_mode_name) override; + void Prepare(Metadata *image_metadata) override; + void Process(StatisticsPtr &stats, Metadata *image_metadata) override; + +private: + AgcConfig config_; + void housekeepConfig(); + void fetchCurrentExposure(Metadata *image_metadata); + void computeGain(bcm2835_isp_stats *statistics, Metadata *image_metadata, + double &gain, double &target_Y); + void computeTargetExposure(double gain); + bool applyDigitalGain(Metadata *image_metadata, double gain, + double target_Y); + void filterExposure(bool desaturate); + void divvyupExposure(); + void writeAndFinish(Metadata *image_metadata, bool desaturate); + AgcMeteringMode *metering_mode_; + AgcExposureMode *exposure_mode_; + AgcConstraintMode *constraint_mode_; + uint64_t frame_count_; + struct ExposureValues { + ExposureValues() : shutter(0), analogue_gain(0), + total_exposure(0), total_exposure_no_dg(0) {} + double shutter; + double analogue_gain; + double total_exposure; + double total_exposure_no_dg; // without digital gain + }; + ExposureValues current_; // values for the current frame + ExposureValues target_; // calculate the values we want here + ExposureValues filtered_; // these values are filtered towards target + AgcStatus status_; // to "latch" settings so they can't change + AgcStatus output_status_; // the status we will write out + std::mutex output_mutex_; + int lock_count_; + // Below here the "settings" that applications can change. + std::mutex settings_mutex_; + std::string metering_mode_name_; + std::string exposure_mode_name_; + std::string constraint_mode_name_; + double ev_; + double flicker_period_; + double fixed_shutter_; + double fixed_analogue_gain_; +}; + +} // namespace RPi diff --git a/src/ipa/raspberrypi/controller/rpi/alsc.cpp b/src/ipa/raspberrypi/controller/rpi/alsc.cpp new file mode 100644 index 00000000..821a0ca3 --- /dev/null +++ b/src/ipa/raspberrypi/controller/rpi/alsc.cpp @@ -0,0 +1,705 @@ +/* SPDX-License-Identifier: BSD-2-Clause */ +/* + * Copyright (C) 2019, Raspberry Pi (Trading) Limited + * + * alsc.cpp - ALSC (auto lens shading correction) control algorithm + */ +#include <math.h> + +#include "../awb_status.h" +#include "alsc.hpp" + +// Raspberry Pi ALSC (Auto Lens Shading Correction) algorithm. + +using namespace RPi; + +#define NAME "rpi.alsc" + +static const int X = ALSC_CELLS_X; +static const int Y = ALSC_CELLS_Y; +static const int XY = X * Y; +static const double INSUFFICIENT_DATA = -1.0; + +Alsc::Alsc(Controller *controller) + : Algorithm(controller) +{ + async_abort_ = async_start_ = async_started_ = async_finished_ = false; + async_thread_ = std::thread(std::bind(&Alsc::asyncFunc, this)); +} + +Alsc::~Alsc() +{ + { + std::lock_guard<std::mutex> lock(mutex_); + async_abort_ = true; + async_signal_.notify_one(); + } + async_thread_.join(); +} + +char const *Alsc::Name() const +{ + return NAME; +} + +static void generate_lut(double *lut, boost::property_tree::ptree const ¶ms) +{ + double cstrength = params.get<double>("corner_strength", 2.0); + if (cstrength <= 1.0) + throw std::runtime_error("Alsc: corner_strength must be > 1.0"); + double asymmetry = params.get<double>("asymmetry", 1.0); + if (asymmetry < 0) + throw std::runtime_error("Alsc: asymmetry must be >= 0"); + double f1 = cstrength - 1, f2 = 1 + sqrt(cstrength); + double R2 = X * Y / 4 * (1 + asymmetry * asymmetry); + int num = 0; + for (int y = 0; y < Y; y++) { + for (int x = 0; x < X; x++) { + double dy = y - Y / 2 + 0.5, + dx = (x - X / 2 + 0.5) * asymmetry; + double r2 = (dx * dx + dy * dy) / R2; + lut[num++] = + (f1 * r2 + f2) * (f1 * r2 + f2) / + (f2 * f2); // this reproduces the cos^4 rule + } + } +} + +static void read_lut(double *lut, boost::property_tree::ptree const ¶ms) +{ + int num = 0; + const int max_num = XY; + for (auto &p : params) { + if (num == max_num) + throw std::runtime_error( + "Alsc: too many entries in LSC table"); + lut[num++] = p.second.get_value<double>(); + } + if (num < max_num) + throw std::runtime_error("Alsc: too few entries in LSC table"); +} + +static void read_calibrations(std::vector<AlscCalibration> &calibrations, + boost::property_tree::ptree const ¶ms, + std::string const &name) +{ + if (params.get_child_optional(name)) { + double last_ct = 0; + for (auto &p : params.get_child(name)) { + double ct = p.second.get<double>("ct"); + if (ct <= last_ct) + throw std::runtime_error( + "Alsc: entries in " + name + + " must be in increasing ct order"); + AlscCalibration calibration; + calibration.ct = last_ct = ct; + boost::property_tree::ptree const &table = + p.second.get_child("table"); + int num = 0; + for (auto it = table.begin(); it != table.end(); it++) { + if (num == XY) + throw std::runtime_error( + "Alsc: too many values for ct " + + std::to_string(ct) + " in " + + name); + calibration.table[num++] = + it->second.get_value<double>(); + } + if (num != XY) + throw std::runtime_error( + "Alsc: too few values for ct " + + std::to_string(ct) + " in " + name); + calibrations.push_back(calibration); + RPI_LOG("Read " << name << " calibration for ct " + << ct); + } + } +} + +void Alsc::Read(boost::property_tree::ptree const ¶ms) +{ + RPI_LOG("Alsc"); + config_.frame_period = params.get<uint16_t>("frame_period", 12); + config_.startup_frames = params.get<uint16_t>("startup_frames", 10); + config_.speed = params.get<double>("speed", 0.05); + double sigma = params.get<double>("sigma", 0.01); + config_.sigma_Cr = params.get<double>("sigma_Cr", sigma); + config_.sigma_Cb = params.get<double>("sigma_Cb", sigma); + config_.min_count = params.get<double>("min_count", 10.0); + config_.min_G = params.get<uint16_t>("min_G", 50); + config_.omega = params.get<double>("omega", 1.3); + config_.n_iter = params.get<uint32_t>("n_iter", X + Y); + config_.luminance_strength = + params.get<double>("luminance_strength", 1.0); + for (int i = 0; i < XY; i++) + config_.luminance_lut[i] = 1.0; + if (params.get_child_optional("corner_strength")) + generate_lut(config_.luminance_lut, params); + else if (params.get_child_optional("luminance_lut")) + read_lut(config_.luminance_lut, + params.get_child("luminance_lut")); + else + RPI_WARN("Alsc: no luminance table - assume unity everywhere"); + read_calibrations(config_.calibrations_Cr, params, "calibrations_Cr"); + read_calibrations(config_.calibrations_Cb, params, "calibrations_Cb"); + config_.default_ct = params.get<double>("default_ct", 4500.0); + config_.threshold = params.get<double>("threshold", 1e-3); +} + +static void get_cal_table(double ct, + std::vector<AlscCalibration> const &calibrations, + double cal_table[XY]); +static void resample_cal_table(double const cal_table_in[XY], + CameraMode const &camera_mode, + double cal_table_out[XY]); +static void compensate_lambdas_for_cal(double const cal_table[XY], + double const old_lambdas[XY], + double new_lambdas[XY]); +static void add_luminance_to_tables(double results[3][Y][X], + double const lambda_r[XY], double lambda_g, + double const lambda_b[XY], + double const luminance_lut[XY], + double luminance_strength); + +void Alsc::Initialise() +{ + RPI_LOG("Alsc"); + frame_count2_ = frame_count_ = frame_phase_ = 0; + first_time_ = true; + // Initialise the lambdas. Each call to Process then restarts from the + // previous results. Also initialise the previous frame tables to the + // same harmless values. + for (int i = 0; i < XY; i++) + lambda_r_[i] = lambda_b_[i] = 1.0; +} + +void Alsc::SwitchMode(CameraMode const &camera_mode) +{ + // There's a bit of a question what we should do if the "crop" of the + // camera mode has changed. Any calculation currently in flight would + // not be useful to the new mode, so arguably we should abort it, and + // generate a new table (like the "first_time" code already here). When + // the crop doesn't change, we can presumably just leave things + // alone. For now, I think we'll just wait and see. When the crop does + // change, any effects should be transient, and if they're not transient + // enough, we'll revisit the question then. + camera_mode_ = camera_mode; + if (first_time_) { + // On the first time, arrange for something sensible in the + // initial tables. Construct the tables for some default colour + // temperature. This echoes the code in doAlsc, without the + // adaptive algorithm. + double cal_table_r[XY], cal_table_b[XY], cal_table_tmp[XY]; + get_cal_table(4000, config_.calibrations_Cr, cal_table_tmp); + resample_cal_table(cal_table_tmp, camera_mode_, cal_table_r); + get_cal_table(4000, config_.calibrations_Cb, cal_table_tmp); + resample_cal_table(cal_table_tmp, camera_mode_, cal_table_b); + compensate_lambdas_for_cal(cal_table_r, lambda_r_, + async_lambda_r_); + compensate_lambdas_for_cal(cal_table_b, lambda_b_, + async_lambda_b_); + add_luminance_to_tables(sync_results_, async_lambda_r_, 1.0, + async_lambda_b_, config_.luminance_lut, + config_.luminance_strength); + memcpy(prev_sync_results_, sync_results_, + sizeof(prev_sync_results_)); + first_time_ = false; + } +} + +void Alsc::fetchAsyncResults() +{ + RPI_LOG("Fetch ALSC results"); + async_finished_ = false; + async_started_ = false; + memcpy(sync_results_, async_results_, sizeof(sync_results_)); +} + +static double get_ct(Metadata *metadata, double default_ct) +{ + AwbStatus awb_status; + awb_status.temperature_K = default_ct; // in case nothing found + if (metadata->Get("awb.status", awb_status) != 0) + RPI_WARN("Alsc: no AWB results found, using " + << awb_status.temperature_K); + else + RPI_LOG("Alsc: AWB results found, using " + << awb_status.temperature_K); + return awb_status.temperature_K; +} + +static void copy_stats(bcm2835_isp_stats_region regions[XY], StatisticsPtr &stats, + AlscStatus const &status) +{ + bcm2835_isp_stats_region *input_regions = stats->awb_stats; + double *r_table = (double *)status.r; + double *g_table = (double *)status.g; + double *b_table = (double *)status.b; + for (int i = 0; i < XY; i++) { + regions[i].r_sum = input_regions[i].r_sum / r_table[i]; + regions[i].g_sum = input_regions[i].g_sum / g_table[i]; + regions[i].b_sum = input_regions[i].b_sum / b_table[i]; + regions[i].counted = input_regions[i].counted; + // (don't care about the uncounted value) + } +} + +void Alsc::restartAsync(StatisticsPtr &stats, Metadata *image_metadata) +{ + RPI_LOG("Starting ALSC thread"); + // Get the current colour temperature. It's all we need from the + // metadata. + ct_ = get_ct(image_metadata, config_.default_ct); + // We have to copy the statistics here, dividing out our best guess of + // the LSC table that the pipeline applied to them. + AlscStatus alsc_status; + if (image_metadata->Get("alsc.status", alsc_status) != 0) { + RPI_WARN("No ALSC status found for applied gains!"); + for (int y = 0; y < Y; y++) + for (int x = 0; x < X; x++) { + alsc_status.r[y][x] = 1.0; + alsc_status.g[y][x] = 1.0; + alsc_status.b[y][x] = 1.0; + } + } + copy_stats(statistics_, stats, alsc_status); + frame_phase_ = 0; + // copy the camera mode so it won't change during the calculations + async_camera_mode_ = camera_mode_; + async_start_ = true; + async_started_ = true; + async_signal_.notify_one(); +} + +void Alsc::Prepare(Metadata *image_metadata) +{ + // Count frames since we started, and since we last poked the async + // thread. + if (frame_count_ < (int)config_.startup_frames) + frame_count_++; + double speed = frame_count_ < (int)config_.startup_frames + ? 1.0 + : config_.speed; + RPI_LOG("Alsc: frame_count " << frame_count_ << " speed " << speed); + { + std::unique_lock<std::mutex> lock(mutex_); + if (async_started_ && async_finished_) { + RPI_LOG("ALSC thread finished"); + fetchAsyncResults(); + } + } + // Apply IIR filter to results and program into the pipeline. + double *ptr = (double *)sync_results_, + *pptr = (double *)prev_sync_results_; + for (unsigned int i = 0; + i < sizeof(sync_results_) / sizeof(double); i++) + pptr[i] = speed * ptr[i] + (1.0 - speed) * pptr[i]; + // Put output values into status metadata. + AlscStatus status; + memcpy(status.r, prev_sync_results_[0], sizeof(status.r)); + memcpy(status.g, prev_sync_results_[1], sizeof(status.g)); + memcpy(status.b, prev_sync_results_[2], sizeof(status.b)); + image_metadata->Set("alsc.status", status); +} + +void Alsc::Process(StatisticsPtr &stats, Metadata *image_metadata) +{ + // Count frames since we started, and since we last poked the async + // thread. + if (frame_phase_ < (int)config_.frame_period) + frame_phase_++; + if (frame_count2_ < (int)config_.startup_frames) + frame_count2_++; + RPI_LOG("Alsc: frame_phase " << frame_phase_); + if (frame_phase_ >= (int)config_.frame_period || + frame_count2_ < (int)config_.startup_frames) { + std::unique_lock<std::mutex> lock(mutex_); + if (async_started_ == false) { + RPI_LOG("ALSC thread starting"); + restartAsync(stats, image_metadata); + } + } +} + +void Alsc::asyncFunc() +{ + while (true) { + { + std::unique_lock<std::mutex> lock(mutex_); + async_signal_.wait(lock, [&] { + return async_start_ || async_abort_; + }); + async_start_ = false; + if (async_abort_) + break; + } + doAlsc(); + { + std::lock_guard<std::mutex> lock(mutex_); + async_finished_ = true; + sync_signal_.notify_one(); + } + } +} + +void get_cal_table(double ct, std::vector<AlscCalibration> const &calibrations, + double cal_table[XY]) +{ + if (calibrations.empty()) { + for (int i = 0; i < XY; i++) + cal_table[i] = 1.0; + RPI_LOG("Alsc: no calibrations found"); + } else if (ct <= calibrations.front().ct) { + memcpy(cal_table, calibrations.front().table, + XY * sizeof(double)); + RPI_LOG("Alsc: using calibration for " + << calibrations.front().ct); + } else if (ct >= calibrations.back().ct) { + memcpy(cal_table, calibrations.back().table, + XY * sizeof(double)); + RPI_LOG("Alsc: using calibration for " + << calibrations.front().ct); + } else { + int idx = 0; + while (ct > calibrations[idx + 1].ct) + idx++; + double ct0 = calibrations[idx].ct, + ct1 = calibrations[idx + 1].ct; + RPI_LOG("Alsc: ct is " << ct << ", interpolating between " + << ct0 << " and " << ct1); + for (int i = 0; i < XY; i++) + cal_table[i] = + (calibrations[idx].table[i] * (ct1 - ct) + + calibrations[idx + 1].table[i] * (ct - ct0)) / + (ct1 - ct0); + } +} + +void resample_cal_table(double const cal_table_in[XY], + CameraMode const &camera_mode, double cal_table_out[XY]) +{ + // Precalculate and cache the x sampling locations and phases to save + // recomputing them on every row. + int x_lo[X], x_hi[X]; + double xf[X]; + double scale_x = camera_mode.sensor_width / + (camera_mode.width * camera_mode.scale_x); + double x_off = camera_mode.crop_x / (double)camera_mode.sensor_width; + double x = .5 / scale_x + x_off * X - .5; + double x_inc = 1 / scale_x; + for (int i = 0; i < X; i++, x += x_inc) { + x_lo[i] = floor(x); + xf[i] = x - x_lo[i]; + x_hi[i] = std::min(x_lo[i] + 1, X - 1); + x_lo[i] = std::max(x_lo[i], 0); + } + // Now march over the output table generating the new values. + double scale_y = camera_mode.sensor_height / + (camera_mode.height * camera_mode.scale_y); + double y_off = camera_mode.crop_y / (double)camera_mode.sensor_height; + double y = .5 / scale_y + y_off * Y - .5; + double y_inc = 1 / scale_y; + for (int j = 0; j < Y; j++, y += y_inc) { + int y_lo = floor(y); + double yf = y - y_lo; + int y_hi = std::min(y_lo + 1, Y - 1); + y_lo = std::max(y_lo, 0); + double const *row_above = cal_table_in + X * y_lo; + double const *row_below = cal_table_in + X * y_hi; + for (int i = 0; i < X; i++) { + double above = row_above[x_lo[i]] * (1 - xf[i]) + + row_above[x_hi[i]] * xf[i]; + double below = row_below[x_lo[i]] * (1 - xf[i]) + + row_below[x_hi[i]] * xf[i]; + *(cal_table_out++) = above * (1 - yf) + below * yf; + } + } +} + +// Calculate chrominance statistics (R/G and B/G) for each region. +static_assert(XY == AWB_REGIONS, "ALSC/AWB statistics region mismatch"); +static void calculate_Cr_Cb(bcm2835_isp_stats_region *awb_region, double Cr[XY], + double Cb[XY], uint32_t min_count, uint16_t min_G) +{ + for (int i = 0; i < XY; i++) { + bcm2835_isp_stats_region &zone = awb_region[i]; + if (zone.counted <= min_count || + zone.g_sum / zone.counted <= min_G) { + Cr[i] = Cb[i] = INSUFFICIENT_DATA; + continue; + } + Cr[i] = zone.r_sum / (double)zone.g_sum; + Cb[i] = zone.b_sum / (double)zone.g_sum; + } +} + +static void apply_cal_table(double const cal_table[XY], double C[XY]) +{ + for (int i = 0; i < XY; i++) + if (C[i] != INSUFFICIENT_DATA) + C[i] *= cal_table[i]; +} + +void compensate_lambdas_for_cal(double const cal_table[XY], + double const old_lambdas[XY], + double new_lambdas[XY]) +{ + double min_new_lambda = std::numeric_limits<double>::max(); + for (int i = 0; i < XY; i++) { + new_lambdas[i] = old_lambdas[i] * cal_table[i]; + min_new_lambda = std::min(min_new_lambda, new_lambdas[i]); + } + for (int i = 0; i < XY; i++) + new_lambdas[i] /= min_new_lambda; +} + +static void print_cal_table(double const C[XY]) +{ + printf("table: [\n"); + for (int j = 0; j < Y; j++) { + for (int i = 0; i < X; i++) { + printf("%5.3f", 1.0 / C[j * X + i]); + if (i != X - 1 || j != Y - 1) + printf(","); + } + printf("\n"); + } + printf("]\n"); +} + +// Compute weight out of 1.0 which reflects how similar we wish to make the +// colours of these two regions. +static double compute_weight(double C_i, double C_j, double sigma) +{ + if (C_i == INSUFFICIENT_DATA || C_j == INSUFFICIENT_DATA) + return 0; + double diff = (C_i - C_j) / sigma; + return exp(-diff * diff / 2); +} + +// Compute all weights. +static void compute_W(double const C[XY], double sigma, double W[XY][4]) +{ + for (int i = 0; i < XY; i++) { + // Start with neighbour above and go clockwise. + W[i][0] = i >= X ? compute_weight(C[i], C[i - X], sigma) : 0; + W[i][1] = i % X < X - 1 ? compute_weight(C[i], C[i + 1], sigma) + : 0; + W[i][2] = + i < XY - X ? compute_weight(C[i], C[i + X], sigma) : 0; + W[i][3] = i % X ? compute_weight(C[i], C[i - 1], sigma) : 0; + } +} + +// Compute M, the large but sparse matrix such that M * lambdas = 0. +static void construct_M(double const C[XY], double const W[XY][4], + double M[XY][4]) +{ + double epsilon = 0.001; + for (int i = 0; i < XY; i++) { + // Note how, if C[i] == INSUFFICIENT_DATA, the weights will all + // be zero so the equation is still set up correctly. + int m = !!(i >= X) + !!(i % X < X - 1) + !!(i < XY - X) + + !!(i % X); // total number of neighbours + // we'll divide the diagonal out straight away + double diagonal = + (epsilon + W[i][0] + W[i][1] + W[i][2] + W[i][3]) * + C[i]; + M[i][0] = i >= X ? (W[i][0] * C[i - X] + epsilon / m * C[i]) / + diagonal + : 0; + M[i][1] = i % X < X - 1 + ? (W[i][1] * C[i + 1] + epsilon / m * C[i]) / + diagonal + : 0; + M[i][2] = i < XY - X + ? (W[i][2] * C[i + X] + epsilon / m * C[i]) / + diagonal + : 0; + M[i][3] = i % X ? (W[i][3] * C[i - 1] + epsilon / m * C[i]) / + diagonal + : 0; + } +} + +// In the compute_lambda_ functions, note that the matrix coefficients for the +// left/right neighbours are zero down the left/right edges, so we don't need +// need to test the i value to exclude them. +static double compute_lambda_bottom(int i, double const M[XY][4], + double lambda[XY]) +{ + return M[i][1] * lambda[i + 1] + M[i][2] * lambda[i + X] + + M[i][3] * lambda[i - 1]; +} +static double compute_lambda_bottom_start(int i, double const M[XY][4], + double lambda[XY]) +{ + return M[i][1] * lambda[i + 1] + M[i][2] * lambda[i + X]; +} +static double compute_lambda_interior(int i, double const M[XY][4], + double lambda[XY]) +{ + return M[i][0] * lambda[i - X] + M[i][1] * lambda[i + 1] + + M[i][2] * lambda[i + X] + M[i][3] * lambda[i - 1]; +} +static double compute_lambda_top(int i, double const M[XY][4], + double lambda[XY]) +{ + return M[i][0] * lambda[i - X] + M[i][1] * lambda[i + 1] + + M[i][3] * lambda[i - 1]; +} +static double compute_lambda_top_end(int i, double const M[XY][4], + double lambda[XY]) +{ + return M[i][0] * lambda[i - X] + M[i][3] * lambda[i - 1]; +} + +// Gauss-Seidel iteration with over-relaxation. +static double gauss_seidel2_SOR(double const M[XY][4], double omega, + double lambda[XY]) +{ + double old_lambda[XY]; + for (int i = 0; i < XY; i++) + old_lambda[i] = lambda[i]; + int i; + lambda[0] = compute_lambda_bottom_start(0, M, lambda); + for (i = 1; i < X; i++) + lambda[i] = compute_lambda_bottom(i, M, lambda); + for (; i < XY - X; i++) + lambda[i] = compute_lambda_interior(i, M, lambda); + for (; i < XY - 1; i++) + lambda[i] = compute_lambda_top(i, M, lambda); + lambda[i] = compute_lambda_top_end(i, M, lambda); + // Also solve the system from bottom to top, to help spread the updates + // better. + lambda[i] = compute_lambda_top_end(i, M, lambda); + for (i = XY - 2; i >= XY - X; i--) + lambda[i] = compute_lambda_top(i, M, lambda); + for (; i >= X; i--) + lambda[i] = compute_lambda_interior(i, M, lambda); + for (; i >= 1; i--) + lambda[i] = compute_lambda_bottom(i, M, lambda); + lambda[0] = compute_lambda_bottom_start(0, M, lambda); + double max_diff = 0; + for (int i = 0; i < XY; i++) { + lambda[i] = old_lambda[i] + (lambda[i] - old_lambda[i]) * omega; + if (fabs(lambda[i] - old_lambda[i]) > fabs(max_diff)) + max_diff = lambda[i] - old_lambda[i]; + } + return max_diff; +} + +// Normalise the values so that the smallest value is 1. +static void normalise(double *ptr, size_t n) +{ + double minval = ptr[0]; + for (size_t i = 1; i < n; i++) + minval = std::min(minval, ptr[i]); + for (size_t i = 0; i < n; i++) + ptr[i] /= minval; +} + +static void run_matrix_iterations(double const C[XY], double lambda[XY], + double const W[XY][4], double omega, + int n_iter, double threshold) +{ + double M[XY][4]; + construct_M(C, W, M); + double last_max_diff = std::numeric_limits<double>::max(); + for (int i = 0; i < n_iter; i++) { + double max_diff = fabs(gauss_seidel2_SOR(M, omega, lambda)); + if (max_diff < threshold) { + RPI_LOG("Stop after " << i + 1 << " iterations"); + break; + } + // this happens very occasionally (so make a note), though + // doesn't seem to matter + if (max_diff > last_max_diff) + RPI_LOG("Iteration " << i << ": max_diff gone up " + << last_max_diff << " to " + << max_diff); + last_max_diff = max_diff; + } + // We're going to normalise the lambdas so the smallest is 1. Not sure + // this is really necessary as they get renormalised later, but I + // suppose it does stop these quantities from wandering off... + normalise(lambda, XY); +} + +static void add_luminance_rb(double result[XY], double const lambda[XY], + double const luminance_lut[XY], + double luminance_strength) +{ + for (int i = 0; i < XY; i++) + result[i] = lambda[i] * + ((luminance_lut[i] - 1) * luminance_strength + 1); +} + +static void add_luminance_g(double result[XY], double lambda, + double const luminance_lut[XY], + double luminance_strength) +{ + for (int i = 0; i < XY; i++) + result[i] = lambda * + ((luminance_lut[i] - 1) * luminance_strength + 1); +} + +void add_luminance_to_tables(double results[3][Y][X], double const lambda_r[XY], + double lambda_g, double const lambda_b[XY], + double const luminance_lut[XY], + double luminance_strength) +{ + add_luminance_rb((double *)results[0], lambda_r, luminance_lut, + luminance_strength); + add_luminance_g((double *)results[1], lambda_g, luminance_lut, + luminance_strength); + add_luminance_rb((double *)results[2], lambda_b, luminance_lut, + luminance_strength); + normalise((double *)results, 3 * XY); +} + +void Alsc::doAlsc() +{ + double Cr[XY], Cb[XY], Wr[XY][4], Wb[XY][4], cal_table_r[XY], + cal_table_b[XY], cal_table_tmp[XY]; + // Calculate our R/B ("Cr"/"Cb") colour statistics, and assess which are + // usable. + calculate_Cr_Cb(statistics_, Cr, Cb, config_.min_count, config_.min_G); + // Fetch the new calibrations (if any) for this CT. Resample them in + // case the camera mode is not full-frame. + get_cal_table(ct_, config_.calibrations_Cr, cal_table_tmp); + resample_cal_table(cal_table_tmp, async_camera_mode_, cal_table_r); + get_cal_table(ct_, config_.calibrations_Cb, cal_table_tmp); + resample_cal_table(cal_table_tmp, async_camera_mode_, cal_table_b); + // You could print out the cal tables for this image here, if you're + // tuning the algorithm... + (void)print_cal_table; + // Apply any calibration to the statistics, so the adaptive algorithm + // makes only the extra adjustments. + apply_cal_table(cal_table_r, Cr); + apply_cal_table(cal_table_b, Cb); + // Compute weights between zones. + compute_W(Cr, config_.sigma_Cr, Wr); + compute_W(Cb, config_.sigma_Cb, Wb); + // Run Gauss-Seidel iterations over the resulting matrix, for R and B. + run_matrix_iterations(Cr, lambda_r_, Wr, config_.omega, config_.n_iter, + config_.threshold); + run_matrix_iterations(Cb, lambda_b_, Wb, config_.omega, config_.n_iter, + config_.threshold); + // Fold the calibrated gains into our final lambda values. (Note that on + // the next run, we re-start with the lambda values that don't have the + // calibration gains included.) + compensate_lambdas_for_cal(cal_table_r, lambda_r_, async_lambda_r_); + compensate_lambdas_for_cal(cal_table_b, lambda_b_, async_lambda_b_); + // Fold in the luminance table at the appropriate strength. + add_luminance_to_tables(async_results_, async_lambda_r_, 1.0, + async_lambda_b_, config_.luminance_lut, + config_.luminance_strength); +} + +// Register algorithm with the system. +static Algorithm *Create(Controller *controller) +{ + return (Algorithm *)new Alsc(controller); +} +static RegisterAlgorithm reg(NAME, &Create); diff --git a/src/ipa/raspberrypi/controller/rpi/alsc.hpp b/src/ipa/raspberrypi/controller/rpi/alsc.hpp new file mode 100644 index 00000000..c8ed3d21 --- /dev/null +++ b/src/ipa/raspberrypi/controller/rpi/alsc.hpp @@ -0,0 +1,104 @@ +/* SPDX-License-Identifier: BSD-2-Clause */ +/* + * Copyright (C) 2019, Raspberry Pi (Trading) Limited + * + * alsc.hpp - ALSC (auto lens shading correction) control algorithm + */ +#pragma once + +#include <mutex> +#include <condition_variable> +#include <thread> + +#include "../algorithm.hpp" +#include "../alsc_status.h" + +namespace RPi { + +// Algorithm to generate automagic LSC (Lens Shading Correction) tables. + +struct AlscCalibration { + double ct; + double table[ALSC_CELLS_X * ALSC_CELLS_Y]; +}; + +struct AlscConfig { + // Only repeat the ALSC calculation every "this many" frames + uint16_t frame_period; + // number of initial frames for which speed taken as 1.0 (maximum) + uint16_t startup_frames; + // IIR filter speed applied to algorithm results + double speed; + double sigma_Cr; + double sigma_Cb; + double min_count; + uint16_t min_G; + double omega; + uint32_t n_iter; + double luminance_lut[ALSC_CELLS_X * ALSC_CELLS_Y]; + double luminance_strength; + std::vector<AlscCalibration> calibrations_Cr; + std::vector<AlscCalibration> calibrations_Cb; + double default_ct; // colour temperature if no metadata found + double threshold; // iteration termination threshold +}; + +class Alsc : public Algorithm +{ +public: + Alsc(Controller *controller = NULL); + ~Alsc(); + char const *Name() const override; + void Initialise() override; + void SwitchMode(CameraMode const &camera_mode) override; + void Read(boost::property_tree::ptree const ¶ms) override; + void Prepare(Metadata *image_metadata) override; + void Process(StatisticsPtr &stats, Metadata *image_metadata) override; + +private: + // configuration is read-only, and available to both threads + AlscConfig config_; + bool first_time_; + std::atomic<CameraMode> camera_mode_; + std::thread async_thread_; + void asyncFunc(); // asynchronous thread function + std::mutex mutex_; + CameraMode async_camera_mode_; + // condvar for async thread to wait on + std::condition_variable async_signal_; + // condvar for synchronous thread to wait on + std::condition_variable sync_signal_; + // for sync thread to check if async thread finished (requires mutex) + bool async_finished_; + // for async thread to check if it's been told to run (requires mutex) + bool async_start_; + // for async thread to check if it's been told to quit (requires mutex) + bool async_abort_; + + // The following are only for the synchronous thread to use: + // for sync thread to note its has asked async thread to run + bool async_started_; + // counts up to frame_period before restarting the async thread + int frame_phase_; + // counts up to startup_frames + int frame_count_; + // counts up to startup_frames for Process method + int frame_count2_; + double sync_results_[3][ALSC_CELLS_Y][ALSC_CELLS_X]; + double prev_sync_results_[3][ALSC_CELLS_Y][ALSC_CELLS_X]; + // The following are for the asynchronous thread to use, though the main + // thread can set/reset them if the async thread is known to be idle: + void restartAsync(StatisticsPtr &stats, Metadata *image_metadata); + // copy out the results from the async thread so that it can be restarted + void fetchAsyncResults(); + double ct_; + bcm2835_isp_stats_region statistics_[ALSC_CELLS_Y * ALSC_CELLS_X]; + double async_results_[3][ALSC_CELLS_Y][ALSC_CELLS_X]; + double async_lambda_r_[ALSC_CELLS_X * ALSC_CELLS_Y]; + double async_lambda_b_[ALSC_CELLS_X * ALSC_CELLS_Y]; + void doAlsc(); + double lambda_r_[ALSC_CELLS_X * ALSC_CELLS_Y]; + double lambda_b_[ALSC_CELLS_X * ALSC_CELLS_Y]; +}; + +} // namespace RPi diff --git a/src/ipa/raspberrypi/controller/rpi/awb.cpp b/src/ipa/raspberrypi/controller/rpi/awb.cpp new file mode 100644 index 00000000..a58fa11d --- /dev/null +++ b/src/ipa/raspberrypi/controller/rpi/awb.cpp @@ -0,0 +1,608 @@ +/* SPDX-License-Identifier: BSD-2-Clause */ +/* + * Copyright (C) 2019, Raspberry Pi (Trading) Limited + * + * awb.cpp - AWB control algorithm + */ + +#include "../logging.hpp" +#include "../lux_status.h" + +#include "awb.hpp" + +using namespace RPi; + +#define NAME "rpi.awb" + +#define AWB_STATS_SIZE_X DEFAULT_AWB_REGIONS_X +#define AWB_STATS_SIZE_Y DEFAULT_AWB_REGIONS_Y + +const double Awb::RGB::INVALID = -1.0; + +void AwbMode::Read(boost::property_tree::ptree const ¶ms) +{ + ct_lo = params.get<double>("lo"); + ct_hi = params.get<double>("hi"); +} + +void AwbPrior::Read(boost::property_tree::ptree const ¶ms) +{ + lux = params.get<double>("lux"); + prior.Read(params.get_child("prior")); +} + +static void read_ct_curve(Pwl &ct_r, Pwl &ct_b, + boost::property_tree::ptree const ¶ms) +{ + int num = 0; + for (auto it = params.begin(); it != params.end(); it++) { + double ct = it->second.get_value<double>(); + assert(it == params.begin() || ct != ct_r.Domain().end); + if (++it == params.end()) + throw std::runtime_error( + "AwbConfig: incomplete CT curve entry"); + ct_r.Append(ct, it->second.get_value<double>()); + if (++it == params.end()) + throw std::runtime_error( + "AwbConfig: incomplete CT curve entry"); + ct_b.Append(ct, it->second.get_value<double>()); + num++; + } + if (num < 2) + throw std::runtime_error( + "AwbConfig: insufficient points in CT curve"); +} + +void AwbConfig::Read(boost::property_tree::ptree const ¶ms) +{ + RPI_LOG("AwbConfig"); + bayes = params.get<int>("bayes", 1); + frame_period = params.get<uint16_t>("frame_period", 10); + startup_frames = params.get<uint16_t>("startup_frames", 10); + speed = params.get<double>("speed", 0.05); + if (params.get_child_optional("ct_curve")) + read_ct_curve(ct_r, ct_b, params.get_child("ct_curve")); + if (params.get_child_optional("priors")) { + for (auto &p : params.get_child("priors")) { + AwbPrior prior; + prior.Read(p.second); + if (!priors.empty() && prior.lux <= priors.back().lux) + throw std::runtime_error( + "AwbConfig: Prior must be ordered in increasing lux value"); + priors.push_back(prior); + } + if (priors.empty()) + throw std::runtime_error( + "AwbConfig: no AWB priors configured"); + } + if (params.get_child_optional("modes")) { + for (auto &p : params.get_child("modes")) { + modes[p.first].Read(p.second); + if (default_mode == nullptr) + default_mode = &modes[p.first]; + } + if (default_mode == nullptr) + throw std::runtime_error( + "AwbConfig: no AWB modes configured"); + } + min_pixels = params.get<double>("min_pixels", 16.0); + min_G = params.get<uint16_t>("min_G", 32); + min_regions = params.get<uint32_t>("min_regions", 10); + delta_limit = params.get<double>("delta_limit", 0.2); + coarse_step = params.get<double>("coarse_step", 0.2); + transverse_pos = params.get<double>("transverse_pos", 0.01); + transverse_neg = params.get<double>("transverse_neg", 0.01); + if (transverse_pos <= 0 || transverse_neg <= 0) + throw std::runtime_error( + "AwbConfig: transverse_pos/neg must be > 0"); + sensitivity_r = params.get<double>("sensitivity_r", 1.0); + sensitivity_b = params.get<double>("sensitivity_b", 1.0); + if (bayes) { + if (ct_r.Empty() || ct_b.Empty() || priors.empty() || + default_mode == nullptr) { + RPI_WARN( + "Bayesian AWB mis-configured - switch to Grey method"); + bayes = false; + } + } + fast = params.get<int>( + "fast", bayes); // default to fast for Bayesian, otherwise slow + whitepoint_r = params.get<double>("whitepoint_r", 0.0); + whitepoint_b = params.get<double>("whitepoint_b", 0.0); + if (bayes == false) + sensitivity_r = sensitivity_b = + 1.0; // nor do sensitivities make any sense +} + +Awb::Awb(Controller *controller) + : AwbAlgorithm(controller) +{ + async_abort_ = async_start_ = async_started_ = async_finished_ = false; + mode_ = nullptr; + manual_r_ = manual_b_ = 0.0; + async_thread_ = std::thread(std::bind(&Awb::asyncFunc, this)); +} + +Awb::~Awb() +{ + { + std::lock_guard<std::mutex> lock(mutex_); + async_abort_ = true; + async_signal_.notify_one(); + } + async_thread_.join(); +} + +char const *Awb::Name() const +{ + return NAME; +} + +void Awb::Read(boost::property_tree::ptree const ¶ms) +{ + config_.Read(params); +} + +void Awb::Initialise() +{ + frame_count2_ = frame_count_ = frame_phase_ = 0; + // Put something sane into the status that we are filtering towards, + // just in case the first few frames don't have anything meaningful in + // them. + if (!config_.ct_r.Empty() && !config_.ct_b.Empty()) { + sync_results_.temperature_K = config_.ct_r.Domain().Clip(4000); + sync_results_.gain_r = + 1.0 / config_.ct_r.Eval(sync_results_.temperature_K); + sync_results_.gain_g = 1.0; + sync_results_.gain_b = + 1.0 / config_.ct_b.Eval(sync_results_.temperature_K); + } else { + // random values just to stop the world blowing up + sync_results_.temperature_K = 4500; + sync_results_.gain_r = sync_results_.gain_g = + sync_results_.gain_b = 1.0; + } + prev_sync_results_ = sync_results_; +} + +void Awb::SetMode(std::string const &mode_name) +{ + std::unique_lock<std::mutex> lock(settings_mutex_); + mode_name_ = mode_name; +} + +void Awb::SetManualGains(double manual_r, double manual_b) +{ + std::unique_lock<std::mutex> lock(settings_mutex_); + // If any of these are 0.0, we swich back to auto. + manual_r_ = manual_r; + manual_b_ = manual_b; +} + +void Awb::fetchAsyncResults() +{ + RPI_LOG("Fetch AWB results"); + async_finished_ = false; + async_started_ = false; + sync_results_ = async_results_; +} + +void Awb::restartAsync(StatisticsPtr &stats, std::string const &mode_name, + double lux) +{ + RPI_LOG("Starting AWB thread"); + // this makes a new reference which belongs to the asynchronous thread + statistics_ = stats; + // store the mode as it could technically change + auto m = config_.modes.find(mode_name); + mode_ = m != config_.modes.end() + ? &m->second + : (mode_ == nullptr ? config_.default_mode : mode_); + lux_ = lux; + frame_phase_ = 0; + async_start_ = true; + async_started_ = true; + size_t len = mode_name.copy(async_results_.mode, + sizeof(async_results_.mode) - 1); + async_results_.mode[len] = '\0'; + async_signal_.notify_one(); +} + +void Awb::Prepare(Metadata *image_metadata) +{ + if (frame_count_ < (int)config_.startup_frames) + frame_count_++; + double speed = frame_count_ < (int)config_.startup_frames + ? 1.0 + : config_.speed; + RPI_LOG("Awb: frame_count " << frame_count_ << " speed " << speed); + { + std::unique_lock<std::mutex> lock(mutex_); + if (async_started_ && async_finished_) { + RPI_LOG("AWB thread finished"); + fetchAsyncResults(); + } + } + // Finally apply IIR filter to results and put into metadata. + memcpy(prev_sync_results_.mode, sync_results_.mode, + sizeof(prev_sync_results_.mode)); + prev_sync_results_.temperature_K = + speed * sync_results_.temperature_K + + (1.0 - speed) * prev_sync_results_.temperature_K; + prev_sync_results_.gain_r = speed * sync_results_.gain_r + + (1.0 - speed) * prev_sync_results_.gain_r; + prev_sync_results_.gain_g = speed * sync_results_.gain_g + + (1.0 - speed) * prev_sync_results_.gain_g; + prev_sync_results_.gain_b = speed * sync_results_.gain_b + + (1.0 - speed) * prev_sync_results_.gain_b; + image_metadata->Set("awb.status", prev_sync_results_); + RPI_LOG("Using AWB gains r " << prev_sync_results_.gain_r << " g " + << prev_sync_results_.gain_g << " b " + << prev_sync_results_.gain_b); +} + +void Awb::Process(StatisticsPtr &stats, Metadata *image_metadata) +{ + // Count frames since we last poked the async thread. + if (frame_phase_ < (int)config_.frame_period) + frame_phase_++; + if (frame_count2_ < (int)config_.startup_frames) + frame_count2_++; + RPI_LOG("Awb: frame_phase " << frame_phase_); + if (frame_phase_ >= (int)config_.frame_period || + frame_count2_ < (int)config_.startup_frames) { + // Update any settings and any image metadata that we need. + std::string mode_name; + { + std::unique_lock<std::mutex> lock(settings_mutex_); + mode_name = mode_name_; + } + struct LuxStatus lux_status = {}; + lux_status.lux = 400; // in case no metadata + if (image_metadata->Get("lux.status", lux_status) != 0) + RPI_LOG("No lux metadata found"); + RPI_LOG("Awb lux value is " << lux_status.lux); + + std::unique_lock<std::mutex> lock(mutex_); + if (async_started_ == false) { + RPI_LOG("AWB thread starting"); + restartAsync(stats, mode_name, lux_status.lux); + } + } +} + +void Awb::asyncFunc() +{ + while (true) { + { + std::unique_lock<std::mutex> lock(mutex_); + async_signal_.wait(lock, [&] { + return async_start_ || async_abort_; + }); + async_start_ = false; + if (async_abort_) + break; + } + doAwb(); + { + std::lock_guard<std::mutex> lock(mutex_); + async_finished_ = true; + sync_signal_.notify_one(); + } + } +} + +static void generate_stats(std::vector<Awb::RGB> &zones, + bcm2835_isp_stats_region *stats, double min_pixels, + double min_G) +{ + for (int i = 0; i < AWB_STATS_SIZE_X * AWB_STATS_SIZE_Y; i++) { + Awb::RGB zone; // this is "invalid", unless R gets overwritten later + double counted = stats[i].counted; + if (counted >= min_pixels) { + zone.G = stats[i].g_sum / counted; + if (zone.G >= min_G) { + zone.R = stats[i].r_sum / counted; + zone.B = stats[i].b_sum / counted; + } + } + zones.push_back(zone); + } +} + +void Awb::prepareStats() +{ + zones_.clear(); + // LSC has already been applied to the stats in this pipeline, so stop + // any LSC compensation. We also ignore config_.fast in this version. + generate_stats(zones_, statistics_->awb_stats, config_.min_pixels, + config_.min_G); + // we're done with these; we may as well relinquish our hold on the + // pointer. + statistics_.reset(); + // apply sensitivities, so values appear to come from our "canonical" + // sensor. + for (auto &zone : zones_) + zone.R *= config_.sensitivity_r, + zone.B *= config_.sensitivity_b; +} + +double Awb::computeDelta2Sum(double gain_r, double gain_b) +{ + // Compute the sum of the squared colour error (non-greyness) as it + // appears in the log likelihood equation. + double delta2_sum = 0; + for (auto &z : zones_) { + double delta_r = gain_r * z.R - 1 - config_.whitepoint_r; + double delta_b = gain_b * z.B - 1 - config_.whitepoint_b; + double delta2 = delta_r * delta_r + delta_b * delta_b; + //RPI_LOG("delta_r " << delta_r << " delta_b " << delta_b << " delta2 " << delta2); + delta2 = std::min(delta2, config_.delta_limit); + delta2_sum += delta2; + } + return delta2_sum; +} + +Pwl Awb::interpolatePrior() +{ + // Interpolate the prior log likelihood function for our current lux + // value. + if (lux_ <= config_.priors.front().lux) + return config_.priors.front().prior; + else if (lux_ >= config_.priors.back().lux) + return config_.priors.back().prior; + else { + int idx = 0; + // find which two we lie between + while (config_.priors[idx + 1].lux < lux_) + idx++; + double lux0 = config_.priors[idx].lux, + lux1 = config_.priors[idx + 1].lux; + return Pwl::Combine(config_.priors[idx].prior, + config_.priors[idx + 1].prior, + [&](double /*x*/, double y0, double y1) { + return y0 + (y1 - y0) * + (lux_ - lux0) / (lux1 - lux0); + }); + } +} + +static double interpolate_quadatric(Pwl::Point const &A, Pwl::Point const &B, + Pwl::Point const &C) +{ + // Given 3 points on a curve, find the extremum of the function in that + // interval by fitting a quadratic. + const double eps = 1e-3; + Pwl::Point CA = C - A, BA = B - A; + double denominator = 2 * (BA.y * CA.x - CA.y * BA.x); + if (abs(denominator) > eps) { + double numerator = BA.y * CA.x * CA.x - CA.y * BA.x * BA.x; + double result = numerator / denominator + A.x; + return std::max(A.x, std::min(C.x, result)); + } + // has degenerated to straight line segment + return A.y < C.y - eps ? A.x : (C.y < A.y - eps ? C.x : B.x); +} + +double Awb::coarseSearch(Pwl const &prior) +{ + points_.clear(); // assume doesn't deallocate memory + size_t best_point = 0; + double t = mode_->ct_lo; + int span_r = 0, span_b = 0; + // Step down the CT curve evaluating log likelihood. + while (true) { + double r = config_.ct_r.Eval(t, &span_r); + double b = config_.ct_b.Eval(t, &span_b); + double gain_r = 1 / r, gain_b = 1 / b; + double delta2_sum = computeDelta2Sum(gain_r, gain_b); + double prior_log_likelihood = + prior.Eval(prior.Domain().Clip(t)); + double final_log_likelihood = delta2_sum - prior_log_likelihood; + RPI_LOG("t: " << t << " gain_r " << gain_r << " gain_b " + << gain_b << " delta2_sum " << delta2_sum + << " prior " << prior_log_likelihood << " final " + << final_log_likelihood); + points_.push_back(Pwl::Point(t, final_log_likelihood)); + if (points_.back().y < points_[best_point].y) + best_point = points_.size() - 1; + if (t == mode_->ct_hi) + break; + // for even steps along the r/b curve scale them by the current t + t = std::min(t + t / 10 * config_.coarse_step, + mode_->ct_hi); + } + t = points_[best_point].x; + RPI_LOG("Coarse search found CT " << t); + // We have the best point of the search, but refine it with a quadratic + // interpolation around its neighbours. + if (points_.size() > 2) { + unsigned long bp = std::min(best_point, points_.size() - 2); + best_point = std::max(1UL, bp); + t = interpolate_quadatric(points_[best_point - 1], + points_[best_point], + points_[best_point + 1]); + RPI_LOG("After quadratic refinement, coarse search has CT " + << t); + } + return t; +} + +void Awb::fineSearch(double &t, double &r, double &b, Pwl const &prior) +{ + int span_r, span_b; + config_.ct_r.Eval(t, &span_r); + config_.ct_b.Eval(t, &span_b); + double step = t / 10 * config_.coarse_step * 0.1; + int nsteps = 5; + double r_diff = config_.ct_r.Eval(t + nsteps * step, &span_r) - + config_.ct_r.Eval(t - nsteps * step, &span_r); + double b_diff = config_.ct_b.Eval(t + nsteps * step, &span_b) - + config_.ct_b.Eval(t - nsteps * step, &span_b); + Pwl::Point transverse(b_diff, -r_diff); + if (transverse.Len2() < 1e-6) + return; + // unit vector orthogonal to the b vs. r function (pointing outwards + // with r and b increasing) + transverse = transverse / transverse.Len(); + double best_log_likelihood = 0, best_t = 0, best_r = 0, best_b = 0; + double transverse_range = + config_.transverse_neg + config_.transverse_pos; + const int MAX_NUM_DELTAS = 12; + // a transverse step approximately every 0.01 r/b units + int num_deltas = floor(transverse_range * 100 + 0.5) + 1; + num_deltas = num_deltas < 3 ? 3 : + (num_deltas > MAX_NUM_DELTAS ? MAX_NUM_DELTAS : num_deltas); + // Step down CT curve. March a bit further if the transverse range is + // large. + nsteps += num_deltas; + for (int i = -nsteps; i <= nsteps; i++) { + double t_test = t + i * step; + double prior_log_likelihood = + prior.Eval(prior.Domain().Clip(t_test)); + double r_curve = config_.ct_r.Eval(t_test, &span_r); + double b_curve = config_.ct_b.Eval(t_test, &span_b); + // x will be distance off the curve, y the log likelihood there + Pwl::Point points[MAX_NUM_DELTAS]; + int best_point = 0; + // Take some measurements transversely *off* the CT curve. + for (int j = 0; j < num_deltas; j++) { + points[j].x = -config_.transverse_neg + + (transverse_range * j) / (num_deltas - 1); + Pwl::Point rb_test = Pwl::Point(r_curve, b_curve) + + transverse * points[j].x; + double r_test = rb_test.x, b_test = rb_test.y; + double gain_r = 1 / r_test, gain_b = 1 / b_test; + double delta2_sum = computeDelta2Sum(gain_r, gain_b); + points[j].y = delta2_sum - prior_log_likelihood; + RPI_LOG("At t " << t_test << " r " << r_test << " b " + << b_test << ": " << points[j].y); + if (points[j].y < points[best_point].y) + best_point = j; + } + // We have NUM_DELTAS points transversely across the CT curve, + // now let's do a quadratic interpolation for the best result. + best_point = std::max(1, std::min(best_point, num_deltas - 2)); + Pwl::Point rb_test = + Pwl::Point(r_curve, b_curve) + + transverse * + interpolate_quadatric(points[best_point - 1], + points[best_point], + points[best_point + 1]); + double r_test = rb_test.x, b_test = rb_test.y; + double gain_r = 1 / r_test, gain_b = 1 / b_test; + double delta2_sum = computeDelta2Sum(gain_r, gain_b); + double final_log_likelihood = delta2_sum - prior_log_likelihood; + RPI_LOG("Finally " + << t_test << " r " << r_test << " b " << b_test << ": " + << final_log_likelihood + << (final_log_likelihood < best_log_likelihood ? " BEST" + : "")); + if (best_t == 0 || final_log_likelihood < best_log_likelihood) + best_log_likelihood = final_log_likelihood, + best_t = t_test, best_r = r_test, best_b = b_test; + } + t = best_t, r = best_r, b = best_b; + RPI_LOG("Fine search found t " << t << " r " << r << " b " << b); +} + +void Awb::awbBayes() +{ + // May as well divide out G to save computeDelta2Sum from doing it over + // and over. + for (auto &z : zones_) + z.R = z.R / (z.G + 1), z.B = z.B / (z.G + 1); + // Get the current prior, and scale according to how many zones are + // valid... not entirely sure about this. + Pwl prior = interpolatePrior(); + prior *= zones_.size() / (double)(AWB_STATS_SIZE_X * AWB_STATS_SIZE_Y); + prior.Map([](double x, double y) { + RPI_LOG("(" << x << "," << y << ")"); + }); + double t = coarseSearch(prior); + double r = config_.ct_r.Eval(t); + double b = config_.ct_b.Eval(t); + RPI_LOG("After coarse search: r " << r << " b " << b << " (gains r " + << 1 / r << " b " << 1 / b << ")"); + // Not entirely sure how to handle the fine search yet. Mostly the + // estimated CT is already good enough, but the fine search allows us to + // wander transverely off the CT curve. Under some illuminants, where + // there may be more or less green light, this may prove beneficial, + // though I probably need more real datasets before deciding exactly how + // this should be controlled and tuned. + fineSearch(t, r, b, prior); + RPI_LOG("After fine search: r " << r << " b " << b << " (gains r " + << 1 / r << " b " << 1 / b << ")"); + // Write results out for the main thread to pick up. Remember to adjust + // the gains from the ones that the "canonical sensor" would require to + // the ones needed by *this* sensor. + async_results_.temperature_K = t; + async_results_.gain_r = 1.0 / r * config_.sensitivity_r; + async_results_.gain_g = 1.0; + async_results_.gain_b = 1.0 / b * config_.sensitivity_b; +} + +void Awb::awbGrey() +{ + RPI_LOG("Grey world AWB"); + // Make a separate list of the derivatives for each of red and blue, so + // that we can sort them to exclude the extreme gains. We could + // consider some variations, such as normalising all the zones first, or + // doing an L2 average etc. + std::vector<RGB> &derivs_R(zones_); + std::vector<RGB> derivs_B(derivs_R); + std::sort(derivs_R.begin(), derivs_R.end(), + [](RGB const &a, RGB const &b) { + return a.G * b.R < b.G * a.R; + }); + std::sort(derivs_B.begin(), derivs_B.end(), + [](RGB const &a, RGB const &b) { + return a.G * b.B < b.G * a.B; + }); + // Average the middle half of the values. + int discard = derivs_R.size() / 4; + RGB sum_R(0, 0, 0), sum_B(0, 0, 0); + for (auto ri = derivs_R.begin() + discard, + bi = derivs_B.begin() + discard; + ri != derivs_R.end() - discard; ri++, bi++) + sum_R += *ri, sum_B += *bi; + double gain_r = sum_R.G / (sum_R.R + 1), + gain_b = sum_B.G / (sum_B.B + 1); + async_results_.temperature_K = 4500; // don't know what it is + async_results_.gain_r = gain_r; + async_results_.gain_g = 1.0; + async_results_.gain_b = gain_b; +} + +void Awb::doAwb() +{ + if (manual_r_ != 0.0 && manual_b_ != 0.0) { + async_results_.temperature_K = 4500; // don't know what it is + async_results_.gain_r = manual_r_; + async_results_.gain_g = 1.0; + async_results_.gain_b = manual_b_; + RPI_LOG("Using manual white balance: gain_r " + << async_results_.gain_r << " gain_b " + << async_results_.gain_b); + } else { + prepareStats(); + RPI_LOG("Valid zones: " << zones_.size()); + if (zones_.size() > config_.min_regions) { + if (config_.bayes) + awbBayes(); + else + awbGrey(); + RPI_LOG("CT found is " + << async_results_.temperature_K + << " with gains r " << async_results_.gain_r + << " and b " << async_results_.gain_b); + } + } +} + +// Register algorithm with the system. +static Algorithm *Create(Controller *controller) +{ + return (Algorithm *)new Awb(controller); +} +static RegisterAlgorithm reg(NAME, &Create); diff --git a/src/ipa/raspberrypi/controller/rpi/awb.hpp b/src/ipa/raspberrypi/controller/rpi/awb.hpp new file mode 100644 index 00000000..36925252 --- /dev/null +++ b/src/ipa/raspberrypi/controller/rpi/awb.hpp @@ -0,0 +1,178 @@ +/* SPDX-License-Identifier: BSD-2-Clause */ +/* + * Copyright (C) 2019, Raspberry Pi (Trading) Limited + * + * awb.hpp - AWB control algorithm + */ +#pragma once + +#include <mutex> +#include <condition_variable> +#include <thread> + +#include "../awb_algorithm.hpp" +#include "../pwl.hpp" +#include "../awb_status.h" + +namespace RPi { + +// Control algorithm to perform AWB calculations. + +struct AwbMode { + void Read(boost::property_tree::ptree const ¶ms); + double ct_lo; // low CT value for search + double ct_hi; // high CT value for search +}; + +struct AwbPrior { + void Read(boost::property_tree::ptree const ¶ms); + double lux; // lux level + Pwl prior; // maps CT to prior log likelihood for this lux level +}; + +struct AwbConfig { + AwbConfig() : default_mode(nullptr) {} + void Read(boost::property_tree::ptree const ¶ms); + // Only repeat the AWB calculation every "this many" frames + uint16_t frame_period; + // number of initial frames for which speed taken as 1.0 (maximum) + uint16_t startup_frames; + double speed; // IIR filter speed applied to algorithm results + bool fast; // "fast" mode uses a 16x16 rather than 32x32 grid + Pwl ct_r; // function maps CT to r (= R/G) + Pwl ct_b; // function maps CT to b (= B/G) + // table of illuminant priors at different lux levels + std::vector<AwbPrior> priors; + // AWB "modes" (determines the search range) + std::map<std::string, AwbMode> modes; + AwbMode *default_mode; // mode used if no mode selected + // minimum proportion of pixels counted within AWB region for it to be + // "useful" + double min_pixels; + // minimum G value of those pixels, to be regarded a "useful" + uint16_t min_G; + // number of AWB regions that must be "useful" in order to do the AWB + // calculation + uint32_t min_regions; + // clamp on colour error term (so as not to penalise non-grey excessively) + double delta_limit; + // step size control in coarse search + double coarse_step; + // how far to wander off CT curve towards "more purple" + double transverse_pos; + // how far to wander off CT curve towards "more green" + double transverse_neg; + // red sensitivity ratio (set to canonical sensor's R/G divided by this + // sensor's R/G) + double sensitivity_r; + // blue sensitivity ratio (set to canonical sensor's B/G divided by this + // sensor's B/G) + double sensitivity_b; + // The whitepoint (which we normally "aim" for) can be moved. + double whitepoint_r; + double whitepoint_b; + bool bayes; // use Bayesian algorithm +}; + +class Awb : public AwbAlgorithm +{ +public: + Awb(Controller *controller = NULL); + ~Awb(); + char const *Name() const override; + void Initialise() override; + void Read(boost::property_tree::ptree const ¶ms) override; + void SetMode(std::string const &name) override; + void SetManualGains(double manual_r, double manual_b) override; + void Prepare(Metadata *image_metadata) override; + void Process(StatisticsPtr &stats, Metadata *image_metadata) override; + struct RGB { + RGB(double _R = INVALID, double _G = INVALID, + double _B = INVALID) + : R(_R), G(_G), B(_B) + { + } + double R, G, B; + static const double INVALID; + bool Valid() const { return G != INVALID; } + bool Invalid() const { return G == INVALID; } + RGB &operator+=(RGB const &other) + { + R += other.R, G += other.G, B += other.B; + return *this; + } + RGB Square() const { return RGB(R * R, G * G, B * B); } + }; + +private: + // configuration is read-only, and available to both threads + AwbConfig config_; + std::thread async_thread_; + void asyncFunc(); // asynchronous thread function + std::mutex mutex_; + // condvar for async thread to wait on + std::condition_variable async_signal_; + // condvar for synchronous thread to wait on + std::condition_variable sync_signal_; + // for sync thread to check if async thread finished (requires mutex) + bool async_finished_; + // for async thread to check if it's been told to run (requires mutex) + bool async_start_; + // for async thread to check if it's been told to quit (requires mutex) + bool async_abort_; + + // The following are only for the synchronous thread to use: + // for sync thread to note its has asked async thread to run + bool async_started_; + // counts up to frame_period before restarting the async thread + int frame_phase_; + int frame_count_; // counts up to startup_frames + int frame_count2_; // counts up to startup_frames for Process method + AwbStatus sync_results_; + AwbStatus prev_sync_results_; + std::string mode_name_; + std::mutex settings_mutex_; + // The following are for the asynchronous thread to use, though the main + // thread can set/reset them if the async thread is known to be idle: + void restartAsync(StatisticsPtr &stats, std::string const &mode_name, + double lux); + // copy out the results from the async thread so that it can be restarted + void fetchAsyncResults(); + StatisticsPtr statistics_; + AwbMode *mode_; + double lux_; + AwbStatus async_results_; + void doAwb(); + void awbBayes(); + void awbGrey(); + void prepareStats(); + double computeDelta2Sum(double gain_r, double gain_b); + Pwl interpolatePrior(); + double coarseSearch(Pwl const &prior); + void fineSearch(double &t, double &r, double &b, Pwl const &prior); + std::vector<RGB> zones_; + std::vector<Pwl::Point> points_; + // manual r setting + double manual_r_; + // manual b setting + double manual_b_; +}; + +static inline Awb::RGB operator+(Awb::RGB const &a, Awb::RGB const &b) +{ + return Awb::RGB(a.R + b.R, a.G + b.G, a.B + b.B); +} +static inline Awb::RGB operator-(Awb::RGB const &a, Awb::RGB const &b) +{ + return Awb::RGB(a.R - b.R, a.G - b.G, a.B - b.B); +} +static inline Awb::RGB operator*(double d, Awb::RGB const &rgb) +{ + return Awb::RGB(d * rgb.R, d * rgb.G, d * rgb.B); +} +static inline Awb::RGB operator*(Awb::RGB const &rgb, double d) +{ + return d * rgb; +} + +} // namespace RPi diff --git a/src/ipa/raspberrypi/controller/rpi/black_level.cpp b/src/ipa/raspberrypi/controller/rpi/black_level.cpp new file mode 100644 index 00000000..59c9f5a6 --- /dev/null +++ b/src/ipa/raspberrypi/controller/rpi/black_level.cpp @@ -0,0 +1,56 @@ +/* SPDX-License-Identifier: BSD-2-Clause */ +/* + * Copyright (C) 2019, Raspberry Pi (Trading) Limited + * + * black_level.cpp - black level control algorithm + */ + +#include <math.h> +#include <stdint.h> + +#include "../black_level_status.h" +#include "../logging.hpp" + +#include "black_level.hpp" + +using namespace RPi; + +#define NAME "rpi.black_level" + +BlackLevel::BlackLevel(Controller *controller) + : Algorithm(controller) +{ +} + +char const *BlackLevel::Name() const +{ + return NAME; +} + +void BlackLevel::Read(boost::property_tree::ptree const ¶ms) +{ + RPI_LOG(Name()); + uint16_t black_level = params.get<uint16_t>( + "black_level", 4096); // 64 in 10 bits scaled to 16 bits + black_level_r_ = params.get<uint16_t>("black_level_r", black_level); + black_level_g_ = params.get<uint16_t>("black_level_g", black_level); + black_level_b_ = params.get<uint16_t>("black_level_b", black_level); +} + +void BlackLevel::Prepare(Metadata *image_metadata) +{ + // Possibly we should think about doing this in a switch_mode or + // something? + struct BlackLevelStatus status; + status.black_level_r = black_level_r_; + status.black_level_g = black_level_g_; + status.black_level_b = black_level_b_; + image_metadata->Set("black_level.status", status); +} + +// Register algorithm with the system. +static Algorithm *Create(Controller *controller) +{ + return new BlackLevel(controller); +} +static RegisterAlgorithm reg(NAME, &Create); diff --git a/src/ipa/raspberrypi/controller/rpi/black_level.hpp b/src/ipa/raspberrypi/controller/rpi/black_level.hpp new file mode 100644 index 00000000..5d74c6da --- /dev/null +++ b/src/ipa/raspberrypi/controller/rpi/black_level.hpp @@ -0,0 +1,30 @@ +/* SPDX-License-Identifier: BSD-2-Clause */ +/* + * Copyright (C) 2019, Raspberry Pi (Trading) Limited + * + * black_level.hpp - black level control algorithm + */ +#pragma once + +#include "../algorithm.hpp" +#include "../black_level_status.h" + +// This is our implementation of the "black level algorithm". + +namespace RPi { + +class BlackLevel : public Algorithm +{ +public: + BlackLevel(Controller *controller); + char const *Name() const override; + void Read(boost::property_tree::ptree const ¶ms) override; + void Prepare(Metadata *image_metadata) override; + +private: + double black_level_r_; + double black_level_g_; + double black_level_b_; +}; + +} // namespace RPi diff --git a/src/ipa/raspberrypi/controller/rpi/ccm.cpp b/src/ipa/raspberrypi/controller/rpi/ccm.cpp new file mode 100644 index 00000000..327cb71c --- /dev/null +++ b/src/ipa/raspberrypi/controller/rpi/ccm.cpp @@ -0,0 +1,163 @@ +/* SPDX-License-Identifier: BSD-2-Clause */ +/* + * Copyright (C) 2019, Raspberry Pi (Trading) Limited + * + * ccm.cpp - CCM (colour correction matrix) control algorithm + */ + +#include "../awb_status.h" +#include "../ccm_status.h" +#include "../logging.hpp" +#include "../lux_status.h" +#include "../metadata.hpp" + +#include "ccm.hpp" + +using namespace RPi; + +// This algorithm selects a CCM (Colour Correction Matrix) according to the +// colour temperature estimated by AWB (interpolating between known matricies as +// necessary). Additionally the amount of colour saturation can be controlled +// both according to the current estimated lux level and according to a +// saturation setting that is exposed to applications. + +#define NAME "rpi.ccm" + +Matrix::Matrix() +{ + memset(m, 0, sizeof(m)); +} +Matrix::Matrix(double m0, double m1, double m2, double m3, double m4, double m5, + double m6, double m7, double m8) +{ + m[0][0] = m0, m[0][1] = m1, m[0][2] = m2, m[1][0] = m3, m[1][1] = m4, + m[1][2] = m5, m[2][0] = m6, m[2][1] = m7, m[2][2] = m8; +} +void Matrix::Read(boost::property_tree::ptree const ¶ms) +{ + double *ptr = (double *)m; + int n = 0; + for (auto it = params.begin(); it != params.end(); it++) { + if (n++ == 9) + throw std::runtime_error("Ccm: too many values in CCM"); + *ptr++ = it->second.get_value<double>(); + } + if (n < 9) + throw std::runtime_error("Ccm: too few values in CCM"); +} + +Ccm::Ccm(Controller *controller) + : CcmAlgorithm(controller), saturation_(1.0) {} + +char const *Ccm::Name() const +{ + return NAME; +} + +void Ccm::Read(boost::property_tree::ptree const ¶ms) +{ + if (params.get_child_optional("saturation")) + config_.saturation.Read(params.get_child("saturation")); + for (auto &p : params.get_child("ccms")) { + CtCcm ct_ccm; + ct_ccm.ct = p.second.get<double>("ct"); + ct_ccm.ccm.Read(p.second.get_child("ccm")); + if (!config_.ccms.empty() && + ct_ccm.ct <= config_.ccms.back().ct) + throw std::runtime_error( + "Ccm: CCM not in increasing colour temperature order"); + config_.ccms.push_back(std::move(ct_ccm)); + } + if (config_.ccms.empty()) + throw std::runtime_error("Ccm: no CCMs specified"); +} + +void Ccm::SetSaturation(double saturation) +{ + saturation_ = saturation; +} + +void Ccm::Initialise() {} + +template<typename T> +static bool get_locked(Metadata *metadata, std::string const &tag, T &value) +{ + T *ptr = metadata->GetLocked<T>(tag); + if (ptr == nullptr) + return false; + value = *ptr; + return true; +} + +Matrix calculate_ccm(std::vector<CtCcm> const &ccms, double ct) +{ + if (ct <= ccms.front().ct) + return ccms.front().ccm; + else if (ct >= ccms.back().ct) + return ccms.back().ccm; + else { + int i = 0; + for (; ct > ccms[i].ct; i++) + ; + double lambda = + (ct - ccms[i - 1].ct) / (ccms[i].ct - ccms[i - 1].ct); + return lambda * ccms[i].ccm + (1.0 - lambda) * ccms[i - 1].ccm; + } +} + +Matrix apply_saturation(Matrix const &ccm, double saturation) +{ + Matrix RGB2Y(0.299, 0.587, 0.114, -0.169, -0.331, 0.500, 0.500, -0.419, + -0.081); + Matrix Y2RGB(1.000, 0.000, 1.402, 1.000, -0.345, -0.714, 1.000, 1.771, + 0.000); + Matrix S(1, 0, 0, 0, saturation, 0, 0, 0, saturation); + return Y2RGB * S * RGB2Y * ccm; +} + +void Ccm::Prepare(Metadata *image_metadata) +{ + bool awb_ok = false, lux_ok = false; + struct AwbStatus awb = {}; + awb.temperature_K = 4000; // in case no metadata + struct LuxStatus lux = {}; + lux.lux = 400; // in case no metadata + { + // grab mutex just once to get everything + std::lock_guard<Metadata> lock(*image_metadata); + awb_ok = get_locked(image_metadata, "awb.status", awb); + lux_ok = get_locked(image_metadata, "lux.status", lux); + } + if (!awb_ok) + RPI_WARN("Ccm: no colour temperature found"); + if (!lux_ok) + RPI_WARN("Ccm: no lux value found"); + Matrix ccm = calculate_ccm(config_.ccms, awb.temperature_K); + double saturation = saturation_; + struct CcmStatus ccm_status; + ccm_status.saturation = saturation; + if (!config_.saturation.Empty()) + saturation *= config_.saturation.Eval( + config_.saturation.Domain().Clip(lux.lux)); + ccm = apply_saturation(ccm, saturation); + for (int j = 0; j < 3; j++) + for (int i = 0; i < 3; i++) + ccm_status.matrix[j * 3 + i] = + std::max(-8.0, std::min(7.9999, ccm.m[j][i])); + RPI_LOG("CCM: colour temperature " << awb.temperature_K << "K"); + RPI_LOG("CCM: " << ccm_status.matrix[0] << " " << ccm_status.matrix[1] + << " " << ccm_status.matrix[2] << " " + << ccm_status.matrix[3] << " " << ccm_status.matrix[4] + << " " << ccm_status.matrix[5] << " " + << ccm_status.matrix[6] << " " << ccm_status.matrix[7] + << " " << ccm_status.matrix[8]); + image_metadata->Set("ccm.status", ccm_status); +} + +// Register algorithm with the system. +static Algorithm *Create(Controller *controller) +{ + return (Algorithm *)new Ccm(controller); + ; +} +static RegisterAlgorithm reg(NAME, &Create); diff --git a/src/ipa/raspberrypi/controller/rpi/ccm.hpp b/src/ipa/raspberrypi/controller/rpi/ccm.hpp new file mode 100644 index 00000000..f6f4dee1 --- /dev/null +++ b/src/ipa/raspberrypi/controller/rpi/ccm.hpp @@ -0,0 +1,76 @@ +/* SPDX-License-Identifier: BSD-2-Clause */ +/* + * Copyright (C) 2019, Raspberry Pi (Trading) Limited + * + * ccm.hpp - CCM (colour correction matrix) control algorithm + */ +#pragma once + +#include <vector> +#include <atomic> + +#include "../ccm_algorithm.hpp" +#include "../pwl.hpp" + +namespace RPi { + +// Algorithm to calculate colour matrix. Should be placed after AWB. + +struct Matrix { + Matrix(double m0, double m1, double m2, double m3, double m4, double m5, + double m6, double m7, double m8); + Matrix(); + double m[3][3]; + void Read(boost::property_tree::ptree const ¶ms); +}; +static inline Matrix operator*(double d, Matrix const &m) +{ + return Matrix(m.m[0][0] * d, m.m[0][1] * d, m.m[0][2] * d, + m.m[1][0] * d, m.m[1][1] * d, m.m[1][2] * d, + m.m[2][0] * d, m.m[2][1] * d, m.m[2][2] * d); +} +static inline Matrix operator*(Matrix const &m1, Matrix const &m2) +{ + Matrix m; + for (int i = 0; i < 3; i++) + for (int j = 0; j < 3; j++) + m.m[i][j] = m1.m[i][0] * m2.m[0][j] + + m1.m[i][1] * m2.m[1][j] + + m1.m[i][2] * m2.m[2][j]; + return m; +} +static inline Matrix operator+(Matrix const &m1, Matrix const &m2) +{ + Matrix m; + for (int i = 0; i < 3; i++) + for (int j = 0; j < 3; j++) + m.m[i][j] = m1.m[i][j] + m2.m[i][j]; + return m; +} + +struct CtCcm { + double ct; + Matrix ccm; +}; + +struct CcmConfig { + std::vector<CtCcm> ccms; + Pwl saturation; +}; + +class Ccm : public CcmAlgorithm +{ +public: + Ccm(Controller *controller = NULL); + char const *Name() const override; + void Read(boost::property_tree::ptree const ¶ms) override; + void SetSaturation(double saturation) override; + void Initialise() override; + void Prepare(Metadata *image_metadata) override; + +private: + CcmConfig config_; + std::atomic<double> saturation_; +}; + +} // namespace RPi diff --git a/src/ipa/raspberrypi/controller/rpi/contrast.cpp b/src/ipa/raspberrypi/controller/rpi/contrast.cpp new file mode 100644 index 00000000..e4967990 --- /dev/null +++ b/src/ipa/raspberrypi/controller/rpi/contrast.cpp @@ -0,0 +1,176 @@ +/* SPDX-License-Identifier: BSD-2-Clause */ +/* + * Copyright (C) 2019, Raspberry Pi (Trading) Limited + * + * contrast.cpp - contrast (gamma) control algorithm + */ +#include <stdint.h> + +#include "../contrast_status.h" +#include "../histogram.hpp" + +#include "contrast.hpp" + +using namespace RPi; + +// This is a very simple control algorithm which simply retrieves the results of +// AGC and AWB via their "status" metadata, and applies digital gain to the +// colour channels in accordance with those instructions. We take care never to +// apply less than unity gains, as that would cause fully saturated pixels to go +// off-white. + +#define NAME "rpi.contrast" + +Contrast::Contrast(Controller *controller) + : ContrastAlgorithm(controller), brightness_(0.0), contrast_(1.0) +{ +} + +char const *Contrast::Name() const +{ + return NAME; +} + +void Contrast::Read(boost::property_tree::ptree const ¶ms) +{ + // enable adaptive enhancement by default + config_.ce_enable = params.get<int>("ce_enable", 1); + // the point near the bottom of the histogram to move + config_.lo_histogram = params.get<double>("lo_histogram", 0.01); + // where in the range to try and move it to + config_.lo_level = params.get<double>("lo_level", 0.015); + // but don't move by more than this + config_.lo_max = params.get<double>("lo_max", 500); + // equivalent values for the top of the histogram... + config_.hi_histogram = params.get<double>("hi_histogram", 0.95); + config_.hi_level = params.get<double>("hi_level", 0.95); + config_.hi_max = params.get<double>("hi_max", 2000); + config_.gamma_curve.Read(params.get_child("gamma_curve")); +} + +void Contrast::SetBrightness(double brightness) +{ + brightness_ = brightness; +} + +void Contrast::SetContrast(double contrast) +{ + contrast_ = contrast; +} + +static void fill_in_status(ContrastStatus &status, double brightness, + double contrast, Pwl &gamma_curve) +{ + status.brightness = brightness; + status.contrast = contrast; + for (int i = 0; i < CONTRAST_NUM_POINTS - 1; i++) { + int x = i < 16 ? i * 1024 + : (i < 24 ? (i - 16) * 2048 + 16384 + : (i - 24) * 4096 + 32768); + status.points[i].x = x; + status.points[i].y = std::min(65535.0, gamma_curve.Eval(x)); + } + status.points[CONTRAST_NUM_POINTS - 1].x = 65535; + status.points[CONTRAST_NUM_POINTS - 1].y = 65535; +} + +void Contrast::Initialise() +{ + // Fill in some default values as Prepare will run before Process gets + // called. + fill_in_status(status_, brightness_, contrast_, config_.gamma_curve); +} + +void Contrast::Prepare(Metadata *image_metadata) +{ + std::unique_lock<std::mutex> lock(mutex_); + image_metadata->Set("contrast.status", status_); +} + +Pwl compute_stretch_curve(Histogram const &histogram, + ContrastConfig const &config) +{ + Pwl enhance; + enhance.Append(0, 0); + // If the start of the histogram is rather empty, try to pull it down a + // bit. + double hist_lo = histogram.Quantile(config.lo_histogram) * + (65536 / NUM_HISTOGRAM_BINS); + double level_lo = config.lo_level * 65536; + RPI_LOG("Move histogram point " << hist_lo << " to " << level_lo); + hist_lo = std::max( + level_lo, + std::min(65535.0, std::min(hist_lo, level_lo + config.lo_max))); + RPI_LOG("Final values " << hist_lo << " -> " << level_lo); + enhance.Append(hist_lo, level_lo); + // Keep the mid-point (median) in the same place, though, to limit the + // apparent amount of global brightness shift. + double mid = histogram.Quantile(0.5) * (65536 / NUM_HISTOGRAM_BINS); + enhance.Append(mid, mid); + + // If the top to the histogram is empty, try to pull the pixel values + // there up. + double hist_hi = histogram.Quantile(config.hi_histogram) * + (65536 / NUM_HISTOGRAM_BINS); + double level_hi = config.hi_level * 65536; + RPI_LOG("Move histogram point " << hist_hi << " to " << level_hi); + hist_hi = std::min( + level_hi, + std::max(0.0, std::max(hist_hi, level_hi - config.hi_max))); + RPI_LOG("Final values " << hist_hi << " -> " << level_hi); + enhance.Append(hist_hi, level_hi); + enhance.Append(65535, 65535); + return enhance; +} + +Pwl apply_manual_contrast(Pwl const &gamma_curve, double brightness, + double contrast) +{ + Pwl new_gamma_curve; + RPI_LOG("Manual brightness " << brightness << " contrast " << contrast); + gamma_curve.Map([&](double x, double y) { + new_gamma_curve.Append( + x, std::max(0.0, std::min(65535.0, + (y - 32768) * contrast + + 32768 + brightness))); + }); + return new_gamma_curve; +} + +void Contrast::Process(StatisticsPtr &stats, Metadata *image_metadata) +{ + (void)image_metadata; + double brightness = brightness_, contrast = contrast_; + Histogram histogram(stats->hist[0].g_hist, NUM_HISTOGRAM_BINS); + // We look at the histogram and adjust the gamma curve in the following + // ways: 1. Adjust the gamma curve so as to pull the start of the + // histogram down, and possibly push the end up. + Pwl gamma_curve = config_.gamma_curve; + if (config_.ce_enable) { + if (config_.lo_max != 0 || config_.hi_max != 0) + gamma_curve = compute_stretch_curve(histogram, config_) + .Compose(gamma_curve); + // We could apply other adjustments (e.g. partial equalisation) + // based on the histogram...? + } + // 2. Finally apply any manually selected brightness/contrast + // adjustment. + if (brightness != 0 || contrast != 1.0) + gamma_curve = apply_manual_contrast(gamma_curve, brightness, + contrast); + // And fill in the status for output. Use more points towards the bottom + // of the curve. + ContrastStatus status; + fill_in_status(status, brightness, contrast, gamma_curve); + { + std::unique_lock<std::mutex> lock(mutex_); + status_ = status; + } +} + +// Register algorithm with the system. +static Algorithm *Create(Controller *controller) +{ + return (Algorithm *)new Contrast(controller); +} +static RegisterAlgorithm reg(NAME, &Create); diff --git a/src/ipa/raspberrypi/controller/rpi/contrast.hpp b/src/ipa/raspberrypi/controller/rpi/contrast.hpp new file mode 100644 index 00000000..2e38a762 --- /dev/null +++ b/src/ipa/raspberrypi/controller/rpi/contrast.hpp @@ -0,0 +1,51 @@ +/* SPDX-License-Identifier: BSD-2-Clause */ +/* + * Copyright (C) 2019, Raspberry Pi (Trading) Limited + * + * contrast.hpp - contrast (gamma) control algorithm + */ +#pragma once + +#include <atomic> +#include <mutex> + +#include "../contrast_algorithm.hpp" +#include "../pwl.hpp" + +namespace RPi { + +// Back End algorithm to appaly correct digital gain. Should be placed after +// Back End AWB. + +struct ContrastConfig { + bool ce_enable; + double lo_histogram; + double lo_level; + double lo_max; + double hi_histogram; + double hi_level; + double hi_max; + Pwl gamma_curve; +}; + +class Contrast : public ContrastAlgorithm +{ +public: + Contrast(Controller *controller = NULL); + char const *Name() const override; + void Read(boost::property_tree::ptree const ¶ms) override; + void SetBrightness(double brightness) override; + void SetContrast(double contrast) override; + void Initialise() override; + void Prepare(Metadata *image_metadata) override; + void Process(StatisticsPtr &stats, Metadata *image_metadata) override; + +private: + ContrastConfig config_; + std::atomic<double> brightness_; + std::atomic<double> contrast_; + ContrastStatus status_; + std::mutex mutex_; +}; + +} // namespace RPi diff --git a/src/ipa/raspberrypi/controller/rpi/dpc.cpp b/src/ipa/raspberrypi/controller/rpi/dpc.cpp new file mode 100644 index 00000000..d31fae97 --- /dev/null +++ b/src/ipa/raspberrypi/controller/rpi/dpc.cpp @@ -0,0 +1,49 @@ +/* SPDX-License-Identifier: BSD-2-Clause */ +/* + * Copyright (C) 2019, Raspberry Pi (Trading) Limited + * + * dpc.cpp - DPC (defective pixel correction) control algorithm + */ + +#include "../logging.hpp" +#include "dpc.hpp" + +using namespace RPi; + +// We use the lux status so that we can apply stronger settings in darkness (if +// necessary). + +#define NAME "rpi.dpc" + +Dpc::Dpc(Controller *controller) + : Algorithm(controller) +{ +} + +char const *Dpc::Name() const +{ + return NAME; +} + +void Dpc::Read(boost::property_tree::ptree const ¶ms) +{ + config_.strength = params.get<int>("strength", 1); + if (config_.strength < 0 || config_.strength > 2) + throw std::runtime_error("Dpc: bad strength value"); +} + +void Dpc::Prepare(Metadata *image_metadata) +{ + DpcStatus dpc_status = {}; + // Should we vary this with lux level or analogue gain? TBD. + dpc_status.strength = config_.strength; + RPI_LOG("Dpc: strength " << dpc_status.strength); + image_metadata->Set("dpc.status", dpc_status); +} + +// Register algorithm with the system. +static Algorithm *Create(Controller *controller) +{ + return (Algorithm *)new Dpc(controller); +} +static RegisterAlgorithm reg(NAME, &Create); diff --git a/src/ipa/raspberrypi/controller/rpi/dpc.hpp b/src/ipa/raspberrypi/controller/rpi/dpc.hpp new file mode 100644 index 00000000..9fb72867 --- /dev/null +++ b/src/ipa/raspberrypi/controller/rpi/dpc.hpp @@ -0,0 +1,32 @@ +/* SPDX-License-Identifier: BSD-2-Clause */ +/* + * Copyright (C) 2019, Raspberry Pi (Trading) Limited + * + * dpc.hpp - DPC (defective pixel correction) control algorithm + */ +#pragma once + +#include "../algorithm.hpp" +#include "../dpc_status.h" + +namespace RPi { + +// Back End algorithm to apply appropriate GEQ settings. + +struct DpcConfig { + int strength; +}; + +class Dpc : public Algorithm +{ +public: + Dpc(Controller *controller); + char const *Name() const override; + void Read(boost::property_tree::ptree const ¶ms) override; + void Prepare(Metadata *image_metadata) override; + +private: + DpcConfig config_; +}; + +} // namespace RPi diff --git a/src/ipa/raspberrypi/controller/rpi/geq.cpp b/src/ipa/raspberrypi/controller/rpi/geq.cpp new file mode 100644 index 00000000..ee0cb95d --- /dev/null +++ b/src/ipa/raspberrypi/controller/rpi/geq.cpp @@ -0,0 +1,75 @@ +/* SPDX-License-Identifier: BSD-2-Clause */ +/* + * Copyright (C) 2019, Raspberry Pi (Trading) Limited + * + * geq.cpp - GEQ (green equalisation) control algorithm + */ + +#include "../device_status.h" +#include "../logging.hpp" +#include "../lux_status.h" +#include "../pwl.hpp" + +#include "geq.hpp" + +using namespace RPi; + +// We use the lux status so that we can apply stronger settings in darkness (if +// necessary). + +#define NAME "rpi.geq" + +Geq::Geq(Controller *controller) + : Algorithm(controller) +{ +} + +char const *Geq::Name() const +{ + return NAME; +} + +void Geq::Read(boost::property_tree::ptree const ¶ms) +{ + config_.offset = params.get<uint16_t>("offset", 0); + config_.slope = params.get<double>("slope", 0.0); + if (config_.slope < 0.0 || config_.slope >= 1.0) + throw std::runtime_error("Geq: bad slope value"); + if (params.get_child_optional("strength")) + config_.strength.Read(params.get_child("strength")); +} + +void Geq::Prepare(Metadata *image_metadata) +{ + LuxStatus lux_status = {}; + lux_status.lux = 400; + if (image_metadata->Get("lux.status", lux_status)) + RPI_WARN("Geq: no lux data found"); + DeviceStatus device_status = {}; + device_status.analogue_gain = 1.0; // in case not found + if (image_metadata->Get("device.status", device_status)) + RPI_WARN("Geq: no device metadata - use analogue gain of 1x"); + GeqStatus geq_status = {}; + double strength = + config_.strength.Empty() + ? 1.0 + : config_.strength.Eval(config_.strength.Domain().Clip( + lux_status.lux)); + strength *= device_status.analogue_gain; + double offset = config_.offset * strength; + double slope = config_.slope * strength; + geq_status.offset = std::min(65535.0, std::max(0.0, offset)); + geq_status.slope = std::min(.99999, std::max(0.0, slope)); + RPI_LOG("Geq: offset " << geq_status.offset << " slope " + << geq_status.slope << " (analogue gain " + << device_status.analogue_gain << " lux " + << lux_status.lux << ")"); + image_metadata->Set("geq.status", geq_status); +} + +// Register algorithm with the system. +static Algorithm *Create(Controller *controller) +{ + return (Algorithm *)new Geq(controller); +} +static RegisterAlgorithm reg(NAME, &Create); diff --git a/src/ipa/raspberrypi/controller/rpi/geq.hpp b/src/ipa/raspberrypi/controller/rpi/geq.hpp new file mode 100644 index 00000000..7d4bd38d --- /dev/null +++ b/src/ipa/raspberrypi/controller/rpi/geq.hpp @@ -0,0 +1,34 @@ +/* SPDX-License-Identifier: BSD-2-Clause */ +/* + * Copyright (C) 2019, Raspberry Pi (Trading) Limited + * + * geq.hpp - GEQ (green equalisation) control algorithm + */ +#pragma once + +#include "../algorithm.hpp" +#include "../geq_status.h" + +namespace RPi { + +// Back End algorithm to apply appropriate GEQ settings. + +struct GeqConfig { + uint16_t offset; + double slope; + Pwl strength; // lux to strength factor +}; + +class Geq : public Algorithm +{ +public: + Geq(Controller *controller); + char const *Name() const override; + void Read(boost::property_tree::ptree const ¶ms) override; + void Prepare(Metadata *image_metadata) override; + +private: + GeqConfig config_; +}; + +} // namespace RPi diff --git a/src/ipa/raspberrypi/controller/rpi/lux.cpp b/src/ipa/raspberrypi/controller/rpi/lux.cpp new file mode 100644 index 00000000..154db153 --- /dev/null +++ b/src/ipa/raspberrypi/controller/rpi/lux.cpp @@ -0,0 +1,104 @@ +/* SPDX-License-Identifier: BSD-2-Clause */ +/* + * Copyright (C) 2019, Raspberry Pi (Trading) Limited + * + * lux.cpp - Lux control algorithm + */ +#include <math.h> + +#include "linux/bcm2835-isp.h" + +#include "../device_status.h" +#include "../logging.hpp" + +#include "lux.hpp" + +using namespace RPi; + +#define NAME "rpi.lux" + +Lux::Lux(Controller *controller) + : Algorithm(controller) +{ + // Put in some defaults as there will be no meaningful values until + // Process has run. + status_.aperture = 1.0; + status_.lux = 400; +} + +char const *Lux::Name() const +{ + return NAME; +} + +void Lux::Read(boost::property_tree::ptree const ¶ms) +{ + RPI_LOG(Name()); + reference_shutter_speed_ = + params.get<double>("reference_shutter_speed"); + reference_gain_ = params.get<double>("reference_gain"); + reference_aperture_ = params.get<double>("reference_aperture", 1.0); + reference_Y_ = params.get<double>("reference_Y"); + reference_lux_ = params.get<double>("reference_lux"); + current_aperture_ = reference_aperture_; +} + +void Lux::Prepare(Metadata *image_metadata) +{ + std::unique_lock<std::mutex> lock(mutex_); + image_metadata->Set("lux.status", status_); +} + +void Lux::Process(StatisticsPtr &stats, Metadata *image_metadata) +{ + // set some initial values to shut the compiler up + DeviceStatus device_status = + { .shutter_speed = 1.0, + .analogue_gain = 1.0, + .lens_position = 0.0, + .aperture = 0.0, + .flash_intensity = 0.0 }; + if (image_metadata->Get("device.status", device_status) == 0) { + double current_gain = device_status.analogue_gain; + double current_shutter_speed = device_status.shutter_speed; + double current_aperture = device_status.aperture; + if (current_aperture == 0) + current_aperture = current_aperture_; + uint64_t sum = 0; + uint32_t num = 0; + uint32_t *bin = stats->hist[0].g_hist; + const int num_bins = sizeof(stats->hist[0].g_hist) / + sizeof(stats->hist[0].g_hist[0]); + for (int i = 0; i < num_bins; i++) + sum += bin[i] * (uint64_t)i, num += bin[i]; + // add .5 to reflect the mid-points of bins + double current_Y = sum / (double)num + .5; + double gain_ratio = reference_gain_ / current_gain; + double shutter_speed_ratio = + reference_shutter_speed_ / current_shutter_speed; + double aperture_ratio = reference_aperture_ / current_aperture; + double Y_ratio = current_Y * (65536 / num_bins) / reference_Y_; + double estimated_lux = shutter_speed_ratio * gain_ratio * + aperture_ratio * aperture_ratio * + Y_ratio * reference_lux_; + LuxStatus status; + status.lux = estimated_lux; + status.aperture = current_aperture; + RPI_LOG(Name() << ": estimated lux " << estimated_lux); + { + std::unique_lock<std::mutex> lock(mutex_); + status_ = status; + } + // Overwrite the metadata here as well, so that downstream + // algorithms get the latest value. + image_metadata->Set("lux.status", status); + } else + RPI_WARN(Name() << ": no device metadata"); +} + +// Register algorithm with the system. +static Algorithm *Create(Controller *controller) +{ + return (Algorithm *)new Lux(controller); +} +static RegisterAlgorithm reg(NAME, &Create); diff --git a/src/ipa/raspberrypi/controller/rpi/lux.hpp b/src/ipa/raspberrypi/controller/rpi/lux.hpp new file mode 100644 index 00000000..eb935409 --- /dev/null +++ b/src/ipa/raspberrypi/controller/rpi/lux.hpp @@ -0,0 +1,42 @@ +/* SPDX-License-Identifier: BSD-2-Clause */ +/* + * Copyright (C) 2019, Raspberry Pi (Trading) Limited + * + * lux.hpp - Lux control algorithm + */ +#pragma once + +#include <atomic> +#include <mutex> + +#include "../lux_status.h" +#include "../algorithm.hpp" + +// This is our implementation of the "lux control algorithm". + +namespace RPi { + +class Lux : public Algorithm +{ +public: + Lux(Controller *controller); + char const *Name() const override; + void Read(boost::property_tree::ptree const ¶ms) override; + void Prepare(Metadata *image_metadata) override; + void Process(StatisticsPtr &stats, Metadata *image_metadata) override; + void SetCurrentAperture(double aperture); + +private: + // These values define the conditions of the reference image, against + // which we compare the new image. + double reference_shutter_speed_; // in micro-seconds + double reference_gain_; + double reference_aperture_; // units of 1/f + double reference_Y_; // out of 65536 + double reference_lux_; + std::atomic<double> current_aperture_; + LuxStatus status_; + std::mutex mutex_; +}; + +} // namespace RPi diff --git a/src/ipa/raspberrypi/controller/rpi/noise.cpp b/src/ipa/raspberrypi/controller/rpi/noise.cpp new file mode 100644 index 00000000..2209d791 --- /dev/null +++ b/src/ipa/raspberrypi/controller/rpi/noise.cpp @@ -0,0 +1,71 @@ +/* SPDX-License-Identifier: BSD-2-Clause */ +/* + * Copyright (C) 2019, Raspberry Pi (Trading) Limited + * + * noise.cpp - Noise control algorithm + */ + +#include <math.h> + +#include "../device_status.h" +#include "../logging.hpp" +#include "../noise_status.h" + +#include "noise.hpp" + +using namespace RPi; + +#define NAME "rpi.noise" + +Noise::Noise(Controller *controller) + : Algorithm(controller), mode_factor_(1.0) +{ +} + +char const *Noise::Name() const +{ + return NAME; +} + +void Noise::SwitchMode(CameraMode const &camera_mode) +{ + // For example, we would expect a 2x2 binned mode to have a "noise + // factor" of sqrt(2x2) = 2. (can't be less than one, right?) + mode_factor_ = std::max(1.0, camera_mode.noise_factor); +} + +void Noise::Read(boost::property_tree::ptree const ¶ms) +{ + RPI_LOG(Name()); + reference_constant_ = params.get<double>("reference_constant"); + reference_slope_ = params.get<double>("reference_slope"); +} + +void Noise::Prepare(Metadata *image_metadata) +{ + struct DeviceStatus device_status; + device_status.analogue_gain = 1.0; // keep compiler calm + if (image_metadata->Get("device.status", device_status) == 0) { + // There is a slight question as to exactly how the noise + // profile, specifically the constant part of it, scales. For + // now we assume it all scales the same, and we'll revisit this + // if it proves substantially wrong. NOTE: we may also want to + // make some adjustments based on the camera mode (such as + // binning), if we knew how to discover it... + double factor = sqrt(device_status.analogue_gain) / mode_factor_; + struct NoiseStatus status; + status.noise_constant = reference_constant_ * factor; + status.noise_slope = reference_slope_ * factor; + image_metadata->Set("noise.status", status); + RPI_LOG(Name() << ": constant " << status.noise_constant + << " slope " << status.noise_slope); + } else + RPI_WARN(Name() << " no metadata"); +} + +// Register algorithm with the system. +static Algorithm *Create(Controller *controller) +{ + return new Noise(controller); +} +static RegisterAlgorithm reg(NAME, &Create); diff --git a/src/ipa/raspberrypi/controller/rpi/noise.hpp b/src/ipa/raspberrypi/controller/rpi/noise.hpp new file mode 100644 index 00000000..51d46a3d --- /dev/null +++ b/src/ipa/raspberrypi/controller/rpi/noise.hpp @@ -0,0 +1,32 @@ +/* SPDX-License-Identifier: BSD-2-Clause */ +/* + * Copyright (C) 2019, Raspberry Pi (Trading) Limited + * + * noise.hpp - Noise control algorithm + */ +#pragma once + +#include "../algorithm.hpp" +#include "../noise_status.h" + +// This is our implementation of the "noise algorithm". + +namespace RPi { + +class Noise : public Algorithm +{ +public: + Noise(Controller *controller); + char const *Name() const override; + void SwitchMode(CameraMode const &camera_mode) override; + void Read(boost::property_tree::ptree const ¶ms) override; + void Prepare(Metadata *image_metadata) override; + +private: + // the noise profile for analogue gain of 1.0 + double reference_constant_; + double reference_slope_; + std::atomic<double> mode_factor_; +}; + +} // namespace RPi diff --git a/src/ipa/raspberrypi/controller/rpi/sdn.cpp b/src/ipa/raspberrypi/controller/rpi/sdn.cpp new file mode 100644 index 00000000..28d9d983 --- /dev/null +++ b/src/ipa/raspberrypi/controller/rpi/sdn.cpp @@ -0,0 +1,63 @@ +/* SPDX-License-Identifier: BSD-2-Clause */ +/* + * Copyright (C) 2019, Raspberry Pi (Trading) Limited + * + * sdn.cpp - SDN (spatial denoise) control algorithm + */ + +#include "../noise_status.h" +#include "../sdn_status.h" + +#include "sdn.hpp" + +using namespace RPi; + +// Calculate settings for the spatial denoise block using the noise profile in +// the image metadata. + +#define NAME "rpi.sdn" + +Sdn::Sdn(Controller *controller) + : Algorithm(controller) +{ +} + +char const *Sdn::Name() const +{ + return NAME; +} + +void Sdn::Read(boost::property_tree::ptree const ¶ms) +{ + deviation_ = params.get<double>("deviation", 3.2); + strength_ = params.get<double>("strength", 0.75); +} + +void Sdn::Initialise() {} + +void Sdn::Prepare(Metadata *image_metadata) +{ + struct NoiseStatus noise_status = {}; + noise_status.noise_slope = 3.0; // in case no metadata + if (image_metadata->Get("noise.status", noise_status) != 0) + RPI_WARN("Sdn: no noise profile found"); + RPI_LOG("Noise profile: constant " << noise_status.noise_constant + << " slope " + << noise_status.noise_slope); + struct SdnStatus status; + status.noise_constant = noise_status.noise_constant * deviation_; + status.noise_slope = noise_status.noise_slope * deviation_; + status.strength = strength_; + image_metadata->Set("sdn.status", status); + RPI_LOG("Sdn: programmed constant " << status.noise_constant + << " slope " << status.noise_slope + << " strength " + << status.strength); +} + +// Register algorithm with the system. +static Algorithm *Create(Controller *controller) +{ + return (Algorithm *)new Sdn(controller); +} +static RegisterAlgorithm reg(NAME, &Create); diff --git a/src/ipa/raspberrypi/controller/rpi/sdn.hpp b/src/ipa/raspberrypi/controller/rpi/sdn.hpp new file mode 100644 index 00000000..d48aab7e --- /dev/null +++ b/src/ipa/raspberrypi/controller/rpi/sdn.hpp @@ -0,0 +1,29 @@ +/* SPDX-License-Identifier: BSD-2-Clause */ +/* + * Copyright (C) 2019, Raspberry Pi (Trading) Limited + * + * sdn.hpp - SDN (spatial denoise) control algorithm + */ +#pragma once + +#include "../algorithm.hpp" + +namespace RPi { + +// Algorithm to calculate correct spatial denoise (SDN) settings. + +class Sdn : public Algorithm +{ +public: + Sdn(Controller *controller = NULL); + char const *Name() const override; + void Read(boost::property_tree::ptree const ¶ms) override; + void Initialise() override; + void Prepare(Metadata *image_metadata) override; + +private: + double deviation_; + double strength_; +}; + +} // namespace RPi diff --git a/src/ipa/raspberrypi/controller/rpi/sharpen.cpp b/src/ipa/raspberrypi/controller/rpi/sharpen.cpp new file mode 100644 index 00000000..1f07bb62 --- /dev/null +++ b/src/ipa/raspberrypi/controller/rpi/sharpen.cpp @@ -0,0 +1,60 @@ +/* SPDX-License-Identifier: BSD-2-Clause */ +/* + * Copyright (C) 2019, Raspberry Pi (Trading) Limited + * + * sharpen.cpp - sharpening control algorithm + */ + +#include <math.h> + +#include "../logging.hpp" +#include "../sharpen_status.h" + +#include "sharpen.hpp" + +using namespace RPi; + +#define NAME "rpi.sharpen" + +Sharpen::Sharpen(Controller *controller) + : Algorithm(controller) +{ +} + +char const *Sharpen::Name() const +{ + return NAME; +} + +void Sharpen::SwitchMode(CameraMode const &camera_mode) +{ + // can't be less than one, right? + mode_factor_ = std::max(1.0, camera_mode.noise_factor); +} + +void Sharpen::Read(boost::property_tree::ptree const ¶ms) +{ + RPI_LOG(Name()); + threshold_ = params.get<double>("threshold", 1.0); + strength_ = params.get<double>("strength", 1.0); + limit_ = params.get<double>("limit", 1.0); +} + +void Sharpen::Prepare(Metadata *image_metadata) +{ + double mode_factor = mode_factor_; + struct SharpenStatus status; + // Binned modes seem to need the sharpening toned down with this + // pipeline. + status.threshold = threshold_ * mode_factor; + status.strength = strength_ / mode_factor; + status.limit = limit_ / mode_factor; + image_metadata->Set("sharpen.status", status); +} + +// Register algorithm with the system. +static Algorithm *Create(Controller *controller) +{ + return new Sharpen(controller); +} +static RegisterAlgorithm reg(NAME, &Create); diff --git a/src/ipa/raspberrypi/controller/rpi/sharpen.hpp b/src/ipa/raspberrypi/controller/rpi/sharpen.hpp new file mode 100644 index 00000000..3b0d6801 --- /dev/null +++ b/src/ipa/raspberrypi/controller/rpi/sharpen.hpp @@ -0,0 +1,32 @@ +/* SPDX-License-Identifier: BSD-2-Clause */ +/* + * Copyright (C) 2019, Raspberry Pi (Trading) Limited + * + * sharpen.hpp - sharpening control algorithm + */ +#pragma once + +#include "../algorithm.hpp" +#include "../sharpen_status.h" + +// This is our implementation of the "sharpen algorithm". + +namespace RPi { + +class Sharpen : public Algorithm +{ +public: + Sharpen(Controller *controller); + char const *Name() const override; + void SwitchMode(CameraMode const &camera_mode) override; + void Read(boost::property_tree::ptree const ¶ms) override; + void Prepare(Metadata *image_metadata) override; + +private: + double threshold_; + double strength_; + double limit_; + std::atomic<double> mode_factor_; +}; + +} // namespace RPi |