summaryrefslogtreecommitdiff
path: root/include/linux/v4l2-mediabus.h
diff options
context:
space:
mode:
authorPaul Elder <paul.elder@ideasonboard.com>2022-07-21 01:40:04 +0900
committerLaurent Pinchart <laurent.pinchart@ideasonboard.com>2022-11-25 10:52:06 +0200
commit4c30ed47f656d67b619470b9091ebf6661b8a778 (patch)
treed40635f78715e841a0ea58d048ce313dbc6808d5 /include/linux/v4l2-mediabus.h
parent72721611fa5d772a3a2b7cd037e38c5db13dc265 (diff)
pipeline: rkisp1: Query the driver for formats
Query the driver for the output formats and sizes that it supports, instead of hardcoding them. This allows future-proofing for formats that are supported by some but not all versions of the driver. As the rkisp1 driver currently does not support VIDIOC_ENUM_FRAMESIZES, fallback to the hardcoded list of supported formats and framesizes. This feature will be added to the driver in parallel, though we cannot guarantee that users will have a new enough kernel for it. Signed-off-by: Paul Elder <paul.elder@ideasonboard.com> Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Reviewed-by: Jacopo Mondi <jacopo@jmondi.org>
Diffstat (limited to 'include/linux/v4l2-mediabus.h')
0 files changed, 0 insertions, 0 deletions
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
# SPDX-License-Identifier: GPL-2.0-or-later
# Copyright (C) 2022, Tomi Valkeinen <tomi.valkeinen@ideasonboard.com>
#
# Debayering code from PiCamera documentation

from numpy.lib.stride_tricks import as_strided
import libcamera as libcam
import libcamera.utils
import numpy as np


def demosaic(data, r0, g0, g1, b0):
    # Separate the components from the Bayer data to RGB planes

    rgb = np.zeros(data.shape + (3,), dtype=data.dtype)
    rgb[r0[1]::2, r0[0]::2, 0] = data[r0[1]::2, r0[0]::2]  # Red
    rgb[g0[1]::2, g0[0]::2, 1] = data[g0[1]::2, g0[0]::2]  # Green
    rgb[g1[1]::2, g1[0]::2, 1] = data[g1[1]::2, g1[0]::2]  # Green
    rgb[b0[1]::2, b0[0]::2, 2] = data[b0[1]::2, b0[0]::2]  # Blue

    # Below we present a fairly naive de-mosaic method that simply
    # calculates the weighted average of a pixel based on the pixels
    # surrounding it. The weighting is provided by a byte representation of
    # the Bayer filter which we construct first:

    bayer = np.zeros(rgb.shape, dtype=np.uint8)
    bayer[r0[1]::2, r0[0]::2, 0] = 1  # Red
    bayer[g0[1]::2, g0[0]::2, 1] = 1  # Green
    bayer[g1[1]::2, g1[0]::2, 1] = 1  # Green
    bayer[b0[1]::2, b0[0]::2, 2] = 1  # Blue

    # Allocate an array to hold our output with the same shape as the input
    # data. After this we define the size of window that will be used to
    # calculate each weighted average (3x3). Then we pad out the rgb and
    # bayer arrays, adding blank pixels at their edges to compensate for the
    # size of the window when calculating averages for edge pixels.

    output = np.empty(rgb.shape, dtype=rgb.dtype)
    window = (3, 3)
    borders = (window[0] - 1, window[1] - 1)
    border = (borders[0] // 2, borders[1] // 2)

    rgb = np.pad(rgb, [
        (border[0], border[0]),
        (border[1], border[1]),
        (0, 0),
    ], 'constant')
    bayer = np.pad(bayer, [
        (border[0], border[0]),
        (border[1], border[1]),
        (0, 0),
    ], 'constant')

    # For each plane in the RGB data, we use a nifty numpy trick
    # (as_strided) to construct a view over the plane of 3x3 matrices. We do
    # the same for the bayer array, then use Einstein summation on each
    # (np.sum is simpler, but copies the data so it's slower), and divide
    # the results to get our weighted average:

    for plane in range(3):
        p = rgb[..., plane]
        b = bayer[..., plane]
        pview = as_strided(p, shape=(
            p.shape[0] - borders[0],
            p.shape[1] - borders[1]) + window, strides=p.strides * 2)
        bview = as_strided(b, shape=(
            b.shape[0] - borders[0],
            b.shape[1] - borders[1]) + window, strides=b.strides * 2)
        psum = np.einsum('ijkl->ij', pview)
        bsum = np.einsum('ijkl->ij', bview)
        output[..., plane] = psum // bsum

    return output


def to_rgb(fmt, size, data):
    w = size.width
    h = size.height

    if fmt == libcam.formats.YUYV: