summaryrefslogtreecommitdiff
path: root/src/ipa/raspberrypi/controller/rpi/awb.cpp
blob: dabab726b6ce82ae76257cc7abd1e8e5a42a747e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
/* SPDX-License-Identifier: BSD-2-Clause */
/*
 * Copyright (C) 2019, Raspberry Pi (Trading) Limited
 *
 * awb.cpp - AWB control algorithm
 */

#include "libcamera/internal/log.h"

#include "../lux_status.h"

#include "awb.hpp"

using namespace RPiController;
using namespace libcamera;

LOG_DEFINE_CATEGORY(RPiAwb)

#define NAME "rpi.awb"

#define AWB_STATS_SIZE_X DEFAULT_AWB_REGIONS_X
#define AWB_STATS_SIZE_Y DEFAULT_AWB_REGIONS_Y

const double Awb::RGB::INVALID = -1.0;

// todo - the locking in this algorithm needs some tidying up as has been done
// elsewhere (ALSC and AGC).

void AwbMode::Read(boost::property_tree::ptree const &params)
{
	ct_lo = params.get<double>("lo");
	ct_hi = params.get<double>("hi");
}

void AwbPrior::Read(boost::property_tree::ptree const &params)
{
	lux = params.get<double>("lux");
	prior.Read(params.get_child("prior"));
}

static void read_ct_curve(Pwl &ct_r, Pwl &ct_b,
			  boost::property_tree::ptree const &params)
{
	int num = 0;
	for (auto it = params.begin(); it != params.end(); it++) {
		double ct = it->second.get_value<double>();
		assert(it == params.begin() || ct != ct_r.Domain().end);
		if (++it == params.end())
			throw std::runtime_error(
				"AwbConfig: incomplete CT curve entry");
		ct_r.Append(ct, it->second.get_value<double>());
		if (++it == params.end())
			throw std::runtime_error(
				"AwbConfig: incomplete CT curve entry");
		ct_b.Append(ct, it->second.get_value<double>());
		num++;
	}
	if (num < 2)
		throw std::runtime_error(
			"AwbConfig: insufficient points in CT curve");
}

void AwbConfig::Read(boost::property_tree::ptree const &params)
{
	bayes = params.get<int>("bayes", 1);
	frame_period = params.get<uint16_t>("frame_period", 10);
	startup_frames = params.get<uint16_t>("startup_frames", 10);
	convergence_frames = params.get<unsigned int>("convergence_frames", 3);
	speed = params.get<double>("speed", 0.05);
	if (params.get_child_optional("ct_curve"))
		read_ct_curve(ct_r, ct_b, params.get_child("ct_curve"));
	if (params.get_child_optional("priors")) {
		for (auto &p : params.get_child("priors")) {
			AwbPrior prior;
			prior.Read(p.second);
			if (!priors.empty() && prior.lux <= priors.back().lux)
				throw std::runtime_error(
					"AwbConfig: Prior must be ordered in increasing lux value");
			priors.push_back(prior);
		}
		if (priors.empty())
			throw std::runtime_error(
				"AwbConfig: no AWB priors configured");
	}
	if (params.get_child_optional("modes")) {
		for (auto &p : params.get_child("modes")) {
			modes[p.first].Read(p.second);
			if (default_mode == nullptr)
				default_mode = &modes[p.first];
		}
		if (default_mode == nullptr)
			throw std::runtime_error(
				"AwbConfig: no AWB modes configured");
	}
	min_pixels = params.get<double>("min_pixels", 16.0);
	min_G = params.get<uint16_t>("min_G", 32);
	min_regions = params.get<uint32_t>("min_regions", 10);
	delta_limit = params.get<double>("delta_limit", 0.2);
	coarse_step = params.get<double>("coarse_step", 0.2);
	transverse_pos = params.get<double>("transverse_pos", 0.01);
	transverse_neg = params.get<double>("transverse_neg", 0.01);
	if (transverse_pos <= 0 || transverse_neg <= 0)
		throw std::runtime_error(
			"AwbConfig: transverse_pos/neg must be > 0");
	sensitivity_r = params.get<double>("sensitivity_r", 1.0);
	sensitivity_b = params.get<double>("sensitivity_b", 1.0);
	if (bayes) {
		if (ct_r.Empty() || ct_b.Empty() || priors.empty() ||
		    default_mode == nullptr) {
			LOG(RPiAwb, Warning)
				<< "Bayesian AWB mis-configured - switch to Grey method";
			bayes = false;
		}
	}
	fast = params.get<int>(
		"fast", bayes); // default to fast for Bayesian, otherwise slow
	whitepoint_r = params.get<double>("whitepoint_r", 0.0);
	whitepoint_b = params.get<double>("whitepoint_b", 0.0);
	if (bayes == false)
		sensitivity_r = sensitivity_b =
			1.0; // nor do sensitivities make any sense
}

Awb::Awb(Controller *controller)
	: AwbAlgorithm(controller)
{
	async_abort_ = async_start_ = async_started_ = async_finished_ = false;
	mode_ = nullptr;
	manual_r_ = manual_b_ = 0.0;
	first_switch_mode_ = true;
	async_thread_ = std::thread(std::bind(&Awb::asyncFunc, this));
}

Awb::~Awb()
{
	{
		std::lock_guard<std::mutex> lock(mutex_);
		async_abort_ = true;
		async_signal_.notify_one();
	}
	async_thread_.join();
}

char const *Awb::Name() const
{
	return NAME;
}

void Awb::Read(boost::property_tree::ptree const &params)
{
	config_.Read(params);
}

void Awb::Initialise()
{
	frame_count2_ = frame_count_ = frame_phase_ = 0;
	// Put something sane into the status that we are filtering towards,
	// just in case the first few frames don't have anything meaningful in
	// them.
	if (!config_.ct_r.Empty() && !config_.ct_b.Empty()) {
		sync_results_.temperature_K = config_.ct_r.Domain().Clip(4000);
		sync_results_.gain_r =
			1.0 / config_.ct_r.Eval(sync_results_.temperature_K);
		sync_results_.gain_g = 1.0;
		sync_results_.gain_b =
			1.0 / config_.ct_b.Eval(sync_results_.temperature_K);
	} else {
		// random values just to stop the world blowing up
		sync_results_.temperature_K = 4500;
		sync_results_.gain_r = sync_results_.gain_g =
			sync_results_.gain_b = 1.0;
	}
	prev_sync_results_ = sync_results_;
}

unsigned int Awb::GetConvergenceFrames() const
{
	// If colour gains have been explicitly set, there is no convergence
	// to happen, so no need to drop any frames - return zero.
	if (manual_r_ && manual_b_)
		return 0;
	else
		return config_.convergence_frames;
}

void Awb::SetMode(std::string const &mode_name)
{
	mode_name_ = mode_name;
}

void Awb::SetManualGains(double manual_r, double manual_b)
{
	// If any of these are 0.0, we swich back to auto.
	manual_r_ = manual_r;
	manual_b_ = manual_b;
}

void Awb::SwitchMode([[maybe_unused]] CameraMode const &camera_mode,
		     Metadata *metadata)
{
	// If fixed colour gains have been set, we should let other algorithms
	// know by writing it into the image metadata.
	if (manual_r_ != 0.0 && manual_b_ != 0.0) {
		prev_sync_results_.gain_r = manual_r_;
		prev_sync_results_.gain_g = 1.0;
		prev_sync_results_.gain_b = manual_b_;
		// If we're starting up for the first time, try and
		// "dead reckon" the corresponding colour temperature.
		if (first_switch_mode_ && config_.bayes) {
			Pwl ct_r_inverse = config_.ct_r.Inverse();
			Pwl ct_b_inverse = config_.ct_b.Inverse();
			double ct_r = ct_r_inverse.Eval(ct_r_inverse.Domain().Clip(1 / manual_r_));
			double ct_b = ct_b_inverse.Eval(ct_b_inverse.Domain().Clip(1 / manual_b_));
			prev_sync_results_.temperature_K = (ct_r + ct_b) / 2;
		}
		sync_results_ = prev_sync_results_;
	}
	metadata->Set("awb.status", prev_sync_results_);
	first_switch_mode_ = false;
}

void Awb::fetchAsyncResults()
{
	LOG(RPiAwb, Debug) << "Fetch AWB results";
	async_finished_ = false;
	async_started_ = false;
	sync_results_ = async_results_;
}

void Awb::restartAsync(StatisticsPtr &stats, double lux)
{
	LOG(RPiAwb, Debug) << "Starting AWB calculation";
	// this makes a new reference which belongs to the asynchronous thread
	statistics_ = stats;
	// store the mode as it could technically change
	auto m = config_.modes.find(mode_name_);
	mode_ = m != config_.modes.end()
			? &m->second
			: (mode_ == nullptr ? config_.default_mode : mode_);
	lux_ = lux;
	frame_phase_ = 0;
	async_start_ = true;
	async_started_ = true;
	size_t len = mode_name_.copy(async_results_.mode,
				     sizeof(async_results_.mode) - 1);
	async_results_.mode[len] = '\0';
	async_signal_.notify_one();
}

void Awb::Prepare(Metadata *image_metadata)
{
	if (frame_count_ < (int)config_.startup_frames)
		frame_count_++;
	double speed = frame_count_ < (int)config_.startup_frames
			       ? 1.0
			       : config_.speed;
	LOG(RPiAwb, Debug)
		<< "frame_count " << frame_count_ << " speed " << speed;
	{
		std::unique_lock<std::mutex> lock(mutex_);
		if (async_started_ && async_finished_)
			fetchAsyncResults();
	}
	// Finally apply IIR filter to results and put into metadata.
	memcpy(prev_sync_results_.mode, sync_results_.mode,
	       sizeof(prev_sync_results_.mode));
	prev_sync_results_.temperature_K =
		speed * sync_results_.temperature_K +
		(1.0 - speed) * prev_sync_results_.temperature_K;
	prev_sync_results_.gain_r = speed * sync_results_.gain_r +
				    (1.0 - speed) * prev_sync_results_.gain_r;
	prev_sync_results_.gain_g = speed * sync_results_.gain_g +
				    (1.0 - speed) * prev_sync_results_.gain_g;
	prev_sync_results_.gain_b = speed * sync_results_.gain_b +
				    (1.0 - speed) * prev_sync_results_.gain_b;
	image_metadata->Set("awb.status", prev_sync_results_);
	LOG(RPiAwb, Debug)
		<< "Using AWB gains r " << prev_sync_results_.gain_r << " g "
		<< prev_sync_results_.gain_g << " b "
		<< prev_sync_results_.gain_b;
}

void Awb::Process(StatisticsPtr &stats, Metadata *image_metadata)
{
	// Count frames since we last poked the async thread.
	if (frame_phase_ < (int)config_.frame_period)
		frame_phase_++;
	if (frame_count2_ < (int)config_.startup_frames)
		frame_count2_++;
	LOG(RPiAwb, Debug) << "frame_phase " << frame_phase_;
	if (frame_phase_ >= (int)config_.frame_period ||
	    frame_count2_ < (int)config_.startup_frames) {
		// Update any settings and any image metadata that we need.
		struct LuxStatus lux_status = {};
		lux_status.lux = 400; // in case no metadata
		if (image_metadata->Get("lux.status", lux_status) != 0)
			LOG(RPiAwb, Debug) << "No lux metadata found";
		LOG(RPiAwb, Debug) << "Awb lux value is " << lux_status.lux;

		std::unique_lock<std::mutex> lock(mutex_);
		if (async_started_ == false)
			restartAsync(stats, lux_status.lux);
	}
}

void Awb::asyncFunc()
{
	while (true) {
		{
			std::unique_lock<std::mutex> lock(mutex_);
			async_signal_.wait(lock, [&] {
				return async_start_ || async_abort_;
			});
			async_start_ = false;
			if (async_abort_)
				break;
		}
		doAwb();
		{
			std::lock_guard<std::mutex> lock(mutex_);
			async_finished_ = true;
			sync_signal_.notify_one();
		}
	}
}

static void generate_stats(std::vector<Awb::RGB> &zones,
			   bcm2835_isp_stats_region *stats, double min_pixels,
			   double min_G)
{
	for (int i = 0; i < AWB_STATS_SIZE_X * AWB_STATS_SIZE_Y; i++) {
		Awb::RGB zone; // this is "invalid", unless R gets overwritten later
		double counted = stats[i].counted;
		if (counted >= min_pixels) {
			zone.G = stats[i].g_sum / counted;
			if (zone.G >= min_G) {
				zone.R = stats[i].r_sum / counted;
				zone.B = stats[i].b_sum / counted;
			}
		}
		zones.push_back(zone);
	}
}

void Awb::prepareStats()
{
	zones_.clear();
	// LSC has already been applied to the stats in this pipeline, so stop
	// any LSC compensation.  We also ignore config_.fast in this version.
	generate_stats(zones_, statistics_->awb_stats, config_.min_pixels,
		       config_.min_G);
	// we're done with these; we may as well relinquish our hold on the
	// pointer.
	statistics_.reset();
	// apply sensitivities, so values appear to come from our "canonical"
	// sensor.
	for (auto &zone : zones_)
		zone.R *= config_.sensitivity_r,
			zone.B *= config_.sensitivity_b;
}

double Awb::computeDelta2Sum(double gain_r, double gain_b)
{
	// Compute the sum of the squared colour error (non-greyness) as it
	// appears in the log likelihood equation.
	double delta2_sum = 0;
	for (auto &z : zones_) {
		double delta_r = gain_r * z.R - 1 - config_.whitepoint_r;
		double delta_b = gain_b * z.B - 1 - config_.whitepoint_b;
		double delta2 = delta_r * delta_r + delta_b * delta_b;
		//LOG(RPiAwb, Debug) << "delta_r " << delta_r << " delta_b " << delta_b << " delta2 " << delta2;
		delta2 = std::min(delta2, config_.delta_limit);
		delta2_sum += delta2;
	}
	return delta2_sum;
}

Pwl Awb::interpolatePrior()
{
	// Interpolate the prior log likelihood function for our current lux
	// value.
	if (lux_ <= config_.priors.front().lux)
		return config_.priors.front().prior;
	else if (lux_ >= config_.priors.back().lux)
		return config_.priors.back().prior;
	else {
		int idx = 0;
		// find which two we lie between
		while (config_.priors[idx + 1].lux < lux_)
			idx++;
		double lux0 = config_.priors[idx].lux,
		       lux1 = config_.priors[idx + 1].lux;
		return Pwl::Combine(config_.priors[idx].prior,
				    config_.priors[idx + 1].prior,
				    [&](double /*x*/, double y0, double y1) {
					    return y0 + (y1 - y0) *
							(lux_ - lux0) / (lux1 - lux0);
				    });
	}
}

static double interpolate_quadatric(Pwl::Point const &A, Pwl::Point const &B,
				    Pwl::Point const &C)
{
	// Given 3 points on a curve, find the extremum of the function in that
	// interval by fitting a quadratic.
	const double eps = 1e-3;
	Pwl::Point CA = C - A, BA = B - A;
	double denominator = 2 * (BA.y * CA.x - CA.y * BA.x);
	if (abs(denominator) > eps) {
		double numerator = BA.y * CA.x * CA.x - CA.y * BA.x * BA.x;
		double result = numerator / denominator + A.x;
		return std::max(A.x, std::min(C.x, result));
	}
	// has degenerated to straight line segment
	return A.y < C.y - eps ? A.x : (C.y < A.y - eps ? C.x : B.x);
}

double Awb::coarseSearch(Pwl const &prior)
{
	points_.clear(); // assume doesn't deallocate memory
	size_t best_point = 0;
	double t = mode_->ct_lo;
	int span_r = 0, span_b = 0;
	// Step down the CT curve evaluating log likelihood.
	while (true) {
		double r = config_.ct_r.Eval(t, &span_r);
		double b = config_.ct_b.Eval(t, &span_b);
		double gain_r = 1 / r, gain_b = 1 / b;
		double delta2_sum = computeDelta2Sum(gain_r, gain_b);
		double prior_log_likelihood =
			prior.Eval(prior.Domain().Clip(t));
		double final_log_likelihood = delta2_sum - prior_log_likelihood;
		LOG(RPiAwb, Debug)
			<< "t: " << t << " gain_r " << gain_r << " gain_b "
			<< gain_b << " delta2_sum " << delta2_sum
			<< " prior " << prior_log_likelihood << " final "
			<< final_log_likelihood;
		points_.push_back(Pwl::Point(t, final_log_likelihood));
		if (points_.back().y < points_[best_point].y)
			best_point = points_.size() - 1;
		if (t == mode_->ct_hi)
			break;
		// for even steps along the r/b curve scale them by the current t
		t = std::min(t + t / 10 * config_.coarse_step,
			     mode_->ct_hi);
	}
	t = points_[best_point].x;
	LOG(RPiAwb, Debug) << "Coarse search found CT " << t;
	// We have the best point of the search, but refine it with a quadratic
	// interpolation around its neighbours.
	if (points_.size() > 2) {
		unsigned long bp = std::min(best_point, points_.size() - 2);
		best_point = std::max(1UL, bp);
		t = interpolate_quadatric(points_[best_point - 1],
					  points_[best_point],
					  points_[best_point + 1]);
		LOG(RPiAwb, Debug)
			<< "After quadratic refinement, coarse search has CT "
			<< t;
	}
	return t;
}

void Awb::fineSearch(double &t, double &r, double &b, Pwl const &prior)
{
	int span_r = -1, span_b = -1;
	config_.ct_r.Eval(t, &span_r);
	config_.ct_b.Eval(t, &span_b);
	double step = t / 10 * config_.coarse_step * 0.1;
	int nsteps = 5;
	double r_diff = config_.ct_r.Eval(t + nsteps * step, &span_r) -
			config_.ct_r.Eval(t - nsteps * step, &span_r);
	double b_diff = config_.ct_b.Eval(t + nsteps * step, &span_b) -
			config_.ct_b.Eval(t - nsteps * step, &span_b);
	Pwl::Point transverse(b_diff, -r_diff);
	if (transverse.Len2() < 1e-6)
		return;
	// unit vector orthogonal to the b vs. r function (pointing outwards
	// with r and b increasing)
	transverse = transverse / transverse.Len();
	double best_log_likelihood = 0, best_t = 0, best_r = 0, best_b = 0;
	double transverse_range =
		config_.transverse_neg + config_.transverse_pos;
	const int MAX_NUM_DELTAS = 12;
	// a transverse step approximately every 0.01 r/b units
	int num_deltas = floor(transverse_range * 100 + 0.5) + 1;
	num_deltas = num_deltas < 3 ? 3 :
		     (num_deltas > MAX_NUM_DELTAS ? MAX_NUM_DELTAS : num_deltas);
	// Step down CT curve. March a bit further if the transverse range is
	// large.
	nsteps += num_deltas;
	for (int i = -nsteps; i <= nsteps; i++) {
		double t_test = t + i * step;
		double prior_log_likelihood =
			prior.Eval(prior.Domain().Clip(t_test));
		double r_curve = config_.ct_r.Eval(t_test, &span_r);
		double b_curve = config_.ct_b.Eval(t_test, &span_b);
		// x will be distance off the curve, y the log likelihood there
		Pwl::Point points[MAX_NUM_DELTAS];
		int best_point = 0;
		// Take some measurements transversely *off* the CT curve.
		for (int j = 0; j < num_deltas; j++) {
			points[j].x = -config_.transverse_neg +
				      (transverse_range * j) / (num_deltas - 1);
			Pwl::Point rb_test = Pwl::Point(r_curve, b_curve) +
					     transverse * points[j].x;
			double r_test = rb_test.x, b_test = rb_test.y;
			double gain_r = 1 / r_test, gain_b = 1 / b_test;
			double delta2_sum = computeDelta2Sum(gain_r, gain_b);
			points[j].y = delta2_sum - prior_log_likelihood;
			LOG(RPiAwb, Debug)
				<< "At t " << t_test << " r " << r_test << " b "
				<< b_test << ": " << points[j].y;
			if (points[j].y < points[best_point].y)
				best_point = j;
		}
		// We have NUM_DELTAS points transversely across the CT curve,
		// now let's do a quadratic interpolation for the best result.
		best_point = std::max(1, std::min(best_point, num_deltas - 2));
		Pwl::Point rb_test =
			Pwl::Point(r_curve, b_curve) +
			transverse *
				interpolate_quadatric(points[best_point - 1],
						      points[best_point],
						      points[best_point + 1]);
		double r_test = rb_test.x, b_test = rb_test.y;
		double gain_r = 1 / r_test, gain_b = 1 / b_test;
		double delta2_sum = computeDelta2Sum(gain_r, gain_b);
		double final_log_likelihood = delta2_sum - prior_log_likelihood;
		LOG(RPiAwb, Debug)
			<< "Finally "
			<< t_test << " r " << r_test << " b " << b_test << ": "
			<< final_log_likelihood
			<< (final_log_likelihood < best_log_likelihood ? " BEST" : "");
		if (best_t == 0 || final_log_likelihood < best_log_likelihood)
			best_log_likelihood = final_log_likelihood,
			best_t = t_test, best_r = r_test, best_b = b_test;
	}
	t = best_t, r = best_r, b = best_b;
	LOG(RPiAwb, Debug)
		<< "Fine search found t " << t << " r " << r << " b " << b;
}

void Awb::awbBayes()
{
	// May as well divide out G to save computeDelta2Sum from doing it over
	// and over.
	for (auto &z : zones_)
		z.R = z.R / (z.G + 1), z.B = z.B / (z.G + 1);
	// Get the current prior, and scale according to how many zones are
	// valid... not entirely sure about this.
	Pwl prior = interpolatePrior();
	prior *= zones_.size() / (double)(AWB_STATS_SIZE_X * AWB_STATS_SIZE_Y);
	prior.Map([](double x, double y) {
		LOG(RPiAwb, Debug) << "(" << x << "," << y << ")";
	});
	double t = coarseSearch(prior);
	double r = config_.ct_r.Eval(t);
	double b = config_.ct_b.Eval(t);
	LOG(RPiAwb, Debug)
		<< "After coarse search: r " << r << " b " << b << " (gains r "
		<< 1 / r << " b " << 1 / b << ")";
	// Not entirely sure how to handle the fine search yet. Mostly the
	// estimated CT is already good enough, but the fine search allows us to
	// wander transverely off the CT curve. Under some illuminants, where
	// there may be more or less green light, this may prove beneficial,
	// though I probably need more real datasets before deciding exactly how
	// this should be controlled and tuned.
	fineSearch(t, r, b, prior);
	LOG(RPiAwb, Debug)
		<< "After fine search: r " << r << " b " << b << " (gains r "
		<< 1 / r << " b " << 1 / b << ")";
	// Write results out for the main thread to pick up. Remember to adjust
	// the gains from the ones that the "canonical sensor" would require to
	// the ones needed by *this* sensor.
	async_results_.temperature_K = t;
	async_results_.gain_r = 1.0 / r * config_.sensitivity_r;
	async_results_.gain_g = 1.0;
	async_results_.gain_b = 1.0 / b * config_.sensitivity_b;
}

void Awb::awbGrey()
{
	LOG(RPiAwb, Debug) << "Grey world AWB";
	// Make a separate list of the derivatives for each of red and blue, so
	// that we can sort them to exclude the extreme gains.  We could
	// consider some variations, such as normalising all the zones first, or
	// doing an L2 average etc.
	std::vector<RGB> &derivs_R(zones_);
	std::vector<RGB> derivs_B(derivs_R);
	std::sort(derivs_R.begin(), derivs_R.end(),
		  [](RGB const &a, RGB const &b) {
			  return a.G * b.R < b.G * a.R;
		  });
	std::sort(derivs_B.begin(), derivs_B.end(),
		  [](RGB const &a, RGB const &b) {
			  return a.G * b.B < b.G * a.B;
		  });
	// Average the middle half of the values.
	int discard = derivs_R.size() / 4;
	RGB sum_R(0, 0, 0), sum_B(0, 0, 0);
	for (auto ri = derivs_R.begin() + discard,
		  bi = derivs_B.begin() + discard;
	     ri != derivs_R.end() - discard; ri++, bi++)
		sum_R += *ri, sum_B += *bi;
	double gain_r = sum_R.G / (sum_R.R + 1),
	       gain_b = sum_B.G / (sum_B.B + 1);
	async_results_.temperature_K = 4500; // don't know what it is
	async_results_.gain_r = gain_r;
	async_results_.gain_g = 1.0;
	async_results_.gain_b = gain_b;
}

void Awb::doAwb()
{
	if (manual_r_ != 0.0 && manual_b_ != 0.0) {
		async_results_.temperature_K = 4500; // don't know what it is
		async_results_.gain_r = manual_r_;
		async_results_.gain_g = 1.0;
		async_results_.gain_b = manual_b_;
		LOG(RPiAwb, Debug)
			<< "Using manual white balance: gain_r "
			<< async_results_.gain_r << " gain_b "
			<< async_results_.gain_b;
	} else {
		prepareStats();
		LOG(RPiAwb, Debug) << "Valid zones: " << zones_.size();
		if (zones_.size() > config_.min_regions) {
			if (config_.bayes)
				awbBayes();
			else
				awbGrey();
			LOG(RPiAwb, Debug)
				<< "CT found is "
				<< async_results_.temperature_K
				<< " with gains r " << async_results_.gain_r
				<< " and b " << async_results_.gain_b;
		}
	}
}

// Register algorithm with the system.
static Algorithm *Create(Controller *controller)
{
	return (Algorithm *)new Awb(controller);
}
static RegisterAlgorithm reg(NAME, &Create);