summaryrefslogtreecommitdiff
path: root/utils/raspberrypi/ctt/ctt_geq.py
diff options
context:
space:
mode:
authorLaurent Pinchart <laurent.pinchart@ideasonboard.com>2020-05-02 03:32:00 +0300
committerLaurent Pinchart <laurent.pinchart@ideasonboard.com>2020-05-13 16:56:39 +0300
commit93a133fb17ea6997a42e9d7f07e3c7785abc7d14 (patch)
tree5c413f35b907dd2b9fb0902834c43881cb2adea8 /utils/raspberrypi/ctt/ctt_geq.py
parent7a653369cb42e1611b884f4a16de60d1b60aa8e7 (diff)
utils: raspberrypi: ctt: Fix pycodestyle E231
E231 missing whitespace after ',' E231 missing whitespace after ':' Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Reviewed-by: Kieran Bingham <kieran.bingham@ideasonboard.com> Reviewed-by: David Plowman <david.plowman@raspberrypi.com>
Diffstat (limited to 'utils/raspberrypi/ctt/ctt_geq.py')
-rw-r--r--utils/raspberrypi/ctt/ctt_geq.py48
1 files changed, 24 insertions, 24 deletions
diff --git a/utils/raspberrypi/ctt/ctt_geq.py b/utils/raspberrypi/ctt/ctt_geq.py
index dd798f4a..f8395e43 100644
--- a/utils/raspberrypi/ctt/ctt_geq.py
+++ b/utils/raspberrypi/ctt/ctt_geq.py
@@ -13,25 +13,25 @@ Uses green differences in macbeth patches to fit green equalisation threshold
model. Ideally, all macbeth chart centres would fall below the threshold as
these should be corrected by geq.
"""
-def geq_fit(Cam,plot):
+def geq_fit(Cam, plot):
imgs = Cam.imgs
"""
green equalisation to mitigate mazing.
Fits geq model by looking at difference
between greens in macbeth patches
"""
- geqs = np.array([ geq(Cam,Img)*Img.againQ8_norm for Img in imgs ])
+ geqs = np.array([ geq(Cam, Img)*Img.againQ8_norm for Img in imgs ])
Cam.log += '\nProcessed all images'
- geqs = geqs.reshape((-1,2))
+ geqs = geqs.reshape((-1, 2))
"""
data is sorted by green difference and top half is selected since higher
green difference data define the decision boundary.
"""
- geqs = np.array(sorted(geqs,key = lambda r:np.abs((r[1]-r[0])/r[0])))
+ geqs = np.array(sorted(geqs, key = lambda r: np.abs((r[1]-r[0])/r[0])))
length = len(geqs)
- g0 = geqs[length//2:,0]
- g1 = geqs[length//2:,1]
+ g0 = geqs[length//2:, 0]
+ g1 = geqs[length//2:, 1]
gdiff = np.abs(g0-g1)
"""
find linear fit by minimising asymmetric least square errors
@@ -40,7 +40,7 @@ def geq_fit(Cam,plot):
threshold, hence the upper bound approach
"""
def f(params):
- m,c = params
+ m, c = params
a = gdiff - (m*g0+c)
"""
asymmetric square error returns:
@@ -49,29 +49,29 @@ def geq_fit(Cam,plot):
"""
return(np.sum(a**2+0.95*np.abs(a)*a))
- initial_guess = [0.01,500]
+ initial_guess = [0.01, 500]
"""
Nelder-Mead is usually not the most desirable optimisation method
but has been chosen here due to its robustness to undifferentiability
(is that a word?)
"""
- result = optimize.minimize(f,initial_guess,method='Nelder-Mead')
+ result = optimize.minimize(f, initial_guess, method='Nelder-Mead')
"""
need to check if the fit worked correectly
"""
if result.success:
- slope,offset = result.x
+ slope, offset = result.x
Cam.log += '\nFit result: slope = {:.5f} '.format(slope)
Cam.log += 'offset = {}'.format(int(offset))
"""
optional plotting code
"""
if plot:
- x = np.linspace(max(g0)*1.1,100)
+ x = np.linspace(max(g0)*1.1, 100)
y = slope*x + offset
plt.title('GEQ Asymmetric \'Upper Bound\' Fit')
- plt.plot(x,y,color='red',ls='--',label='fit')
- plt.scatter(g0,gdiff,color='b',label='data')
+ plt.plot(x, y, color='red', ls='--', label='fit')
+ plt.scatter(g0, gdiff, color='b', label='data')
plt.ylabel('Difference in green channels')
plt.xlabel('Green value')
@@ -103,7 +103,7 @@ def geq_fit(Cam,plot):
"""
if plot:
y2 = slope*x + offset
- plt.plot(x,y2,color='green',ls='--',label='scaled fit')
+ plt.plot(x, y2, color='green', ls='--', label='scaled fit')
plt.grid()
plt.legend()
plt.show()
@@ -122,19 +122,19 @@ def geq_fit(Cam,plot):
print(result.message)
Cam.log += '\nWARNING: Asymmetric least squares fit failed! '
Cam.log += 'Standard fit used could possibly lead to worse results'
- fit = np.polyfit(gdiff,g0,1)
- offset,slope = -fit[1]/fit[0],1/fit[0]
+ fit = np.polyfit(gdiff, g0, 1)
+ offset, slope = -fit[1]/fit[0], 1/fit[0]
Cam.log += '\nFit result: slope = {:.5f} '.format(slope)
Cam.log += 'offset = {}'.format(int(offset))
"""
optional plotting code
"""
if plot:
- x = np.linspace(max(g0)*1.1,100)
+ x = np.linspace(max(g0)*1.1, 100)
y = slope*x + offset
plt.title('GEQ Linear Fit')
- plt.plot(x,y,color='red',ls='--',label='fit')
- plt.scatter(g0,gdiff,color='b',label='data')
+ plt.plot(x, y, color='red', ls='--', label='fit')
+ plt.scatter(g0, gdiff, color='b', label='data')
plt.ylabel('Difference in green channels')
plt.xlabel('Green value')
"""
@@ -158,22 +158,22 @@ def geq_fit(Cam,plot):
"""
if plot:
y2 = slope*x + offset
- plt.plot(x,y2,color='green',ls='--',label='scaled fit')
+ plt.plot(x, y2, color='green', ls='--', label='scaled fit')
plt.legend()
plt.grid()
plt.show()
- return round(slope,5),int(offset)
+ return round(slope, 5), int(offset)
""""
Return green channels of macbeth patches
-returns g0,g1 where
+returns g0, g1 where
> g0 is green next to red
> g1 is green next to blue
"""
-def geq(Cam,Img):
+def geq(Cam, Img):
Cam.log += '\nProcessing image {}'.format(Img.name)
patches = [Img.patches[i] for i in Img.order][1:3]
- g_patches = np.array([(np.mean(patches[0][i]),np.mean(patches[1][i])) for i in range(24)])
+ g_patches = np.array([(np.mean(patches[0][i]), np.mean(patches[1][i])) for i in range(24)])
Cam.log += '\n'
return(g_patches)