1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
|
# SPDX-License-Identifier: BSD-2-Clause
#
# Copyright (C) 2019, Raspberry Pi Ltd
# Copyright (C) 2024, Ideas on Board Oy
#
# Locate and extract Macbeth charts from images
# (Copied from: ctt_macbeth_locator.py)
# \todo Add debugging
import cv2
import os
from pathlib import Path
import numpy as np
import warnings
import logging
from sklearn import cluster as cluster
from .ctt_ransac import get_square_verts, get_square_centres
from .image import Image
logger = logging.getLogger(__name__)
class MacbethError(Exception):
pass
# Reshape image to fixed width without distorting returns image and scale
# factor
def reshape(img, width):
factor = width / img.shape[0]
return cv2.resize(img, None, fx=factor, fy=factor), factor
# Correlation function to quantify match
def correlate(im1, im2):
f1 = im1.flatten()
f2 = im2.flatten()
cor = np.corrcoef(f1, f2)
return cor[0][1]
# @brief Compute coordinates of macbeth chart vertices and square centres
# @return (max_cor, best_map_col_norm, fit_coords, success)
#
# Also returns an error/success message for debugging purposes. Additionally,
# it scores the match with a confidence value.
#
# Brief explanation of the macbeth chart locating algorithm:
# - Find rectangles within image
# - Take rectangles within percentage offset of median perimeter. The
# assumption is that these will be the macbeth squares
# - For each potential square, find the 24 possible macbeth centre locations
# that would produce a square in that location
# - Find clusters of potential macbeth chart centres to find the potential
# macbeth centres with the most votes, i.e. the most likely ones
# - For each potential macbeth centre, use the centres of the squares that
# voted for it to find macbeth chart corners
# - For each set of corners, transform the possible match into normalised
# space and correlate with a reference chart to evaluate the match
# - Select the highest correlation as the macbeth chart match, returning the
# correlation as the confidence score
#
# \todo Clean this up
def get_macbeth_chart(img, ref_data):
ref, ref_w, ref_h, ref_corns = ref_data
# The code will raise and catch a MacbethError in case of a problem, trying
# to give some likely reasons why the problem occured, hence the try/except
try:
# Obtain image, convert to grayscale and normalise
src = img
src, factor = reshape(src, 200)
original = src.copy()
a = 125 / np.average(src)
src_norm = cv2.convertScaleAbs(src, alpha=a, beta=0)
# This code checks if there are seperate colour channels. In the past the
# macbeth locator ran on jpgs and this makes it robust to different
# filetypes. Note that running it on a jpg has 4x the pixels of the
# average bayer channel so coordinates must be doubled.
# This is best done in img_load.py in the get_patches method. The
# coordinates and image width, height must be divided by two if the
# macbeth locator has been run on a demosaicked image.
if len(src_norm.shape) == 3:
src_bw = cv2.cvtColor(src_norm, cv2.COLOR_BGR2GRAY)
else:
src_bw = src_norm
original_bw = src_bw.copy()
# Obtain image edges
sigma = 2
src_bw = cv2.GaussianBlur(src_bw, (0, 0), sigma)
t1, t2 = 50, 100
edges = cv2.Canny(src_bw, t1, t2)
# Dilate edges to prevent self-intersections in contours
k_size = 2
kernel = np.ones((k_size, k_size))
its = 1
edges = cv2.dilate(edges, kernel, iterations=its)
# Find contours in image
conts, _ = cv2.findContours(edges, cv2.RETR_TREE,
cv2.CHAIN_APPROX_NONE)
if len(conts) == 0:
raise MacbethError(
'\nWARNING: No macbeth chart found!'
'\nNo contours found in image\n'
'Possible problems:\n'
'- Macbeth chart is too dark or bright\n'
'- Macbeth chart is occluded\n'
)
# Find quadrilateral contours
epsilon = 0.07
conts_per = []
for i in range(len(conts)):
per = cv2.arcLength(conts[i], True)
poly = cv2.approxPolyDP(conts[i], epsilon * per, True)
if len(poly) == 4 and cv2.isContourConvex(poly):
conts_per.append((poly, per))
if len(conts_per) == 0:
raise MacbethError(
'\nWARNING: No macbeth chart found!'
'\nNo quadrilateral contours found'
'\nPossible problems:\n'
'- Macbeth chart is too dark or bright\n'
'- Macbeth chart is occluded\n'
'- Macbeth chart is out of camera plane\n'
)
# Sort contours by perimeter and get perimeters within percent of median
conts_per = sorted(conts_per, key=lambda x: x[1])
med_per = conts_per[int(len(conts_per) / 2)][1]
side = med_per / 4
perc = 0.1
med_low, med_high = med_per * (1 - perc), med_per * (1 + perc)
squares = []
for i in conts_per:
if med_low <= i[1] and med_high >= i[1]:
squares.append(i[0])
# Obtain coordinates of nomralised macbeth and squares
square_verts, mac_norm = get_square_verts(0.06)
# For each square guess, find 24 possible macbeth chart centres
mac_mids = []
squares_raw = []
for i in range(len(squares)):
square = squares[i]
squares_raw.append(square)
# Convert quads to rotated rectangles. This is required as the
# 'squares' are usually quite irregular quadrilaterls, so
# performing a transform would result in exaggerated warping and
# inaccurate macbeth chart centre placement
rect = cv2.minAreaRect(square)
square = cv2.boxPoints(rect).astype(np.float32)
# Reorder vertices to prevent 'hourglass shape'
square = sorted(square, key=lambda x: x[0])
square_1 = sorted(square[:2], key=lambda x: x[1])
square_2 = sorted(square[2:], key=lambda x: -x[1])
square = np.array(np.concatenate((square_1, square_2)), np.float32)
square = np.reshape(square, (4, 2)).astype(np.float32)
squares[i] = square
# Find 24 possible macbeth chart centres by trasnforming normalised
# macbeth square vertices onto candidate square vertices found in image
for j in range(len(square_verts)):
verts = square_verts[j]
p_mat = cv2.getPerspectiveTransform(verts, square)
mac_guess = cv2.perspectiveTransform(mac_norm, p_mat)
mac_guess = np.round(mac_guess).astype(np.int32)
mac_mid = np.mean(mac_guess, axis=1)
mac_mids.append([mac_mid, (i, j)])
if len(mac_mids) == 0:
raise MacbethError(
'\nWARNING: No macbeth chart found!'
'\nNo possible macbeth charts found within image'
'\nPossible problems:\n'
'- Part of the macbeth chart is outside the image\n'
'- Quadrilaterals in image background\n'
)
# Reshape data
for i in range(len(mac_mids)):
mac_mids[i][0] = mac_mids[i][0][0]
# Find where midpoints cluster to identify most likely macbeth centres
clustering = cluster.AgglomerativeClustering(
n_clusters=None,
compute_full_tree=True,
distance_threshold=side * 2
)
mac_mids_list = [x[0] for x in mac_mids]
if len(mac_mids_list) == 1:
# Special case of only one valid centre found (probably not needed)
clus_list = []
clus_list.append([mac_mids, len(mac_mids)])
else:
clustering.fit(mac_mids_list)
# Create list of all clusters
clus_list = []
if clustering.n_clusters_ > 1:
for i in range(clustering.labels_.max() + 1):
indices = [j for j, x in enumerate(clustering.labels_) if x == i]
clus = []
for index in indices:
clus.append(mac_mids[index])
clus_list.append([clus, len(clus)])
clus_list.sort(key=lambda x: -x[1])
elif clustering.n_clusters_ == 1:
# Special case of only one cluster found
clus_list.append([mac_mids, len(mac_mids)])
else:
raise MacbethError(
'\nWARNING: No macebth chart found!'
'\nNo clusters found'
'\nPossible problems:\n'
'- NA\n'
)
# Keep only clusters with enough votes
clus_len_max = clus_list[0][1]
clus_tol = 0.7
for i in range(len(clus_list)):
if clus_list[i][1] < clus_len_max * clus_tol:
clus_list = clus_list[:i]
break
cent = np.mean(clus_list[i][0], axis=0)[0]
clus_list[i].append(cent)
# Get centres of each normalised square
reference = get_square_centres(0.06)
# For each possible macbeth chart, transform image into
# normalised space and find correlation with reference
max_cor = 0
best_map = None
best_fit = None
best_cen_fit = None
best_ref_mat = None
for clus in clus_list:
clus = clus[0]
sq_cents = []
ref_cents = []
i_list = [p[1][0] for p in clus]
for point in clus:
i, j = point[1]
# Remove any square that voted for two different points within
# the same cluster. This causes the same point in the image to be
# mapped to two different reference square centres, resulting in
# a very distorted perspective transform since cv2.findHomography
# simply minimises error.
# This phenomenon is not particularly likely to occur due to the
# enforced distance threshold in the clustering fit but it is
# best to keep this in just in case.
if i_list.count(i) == 1:
square = squares_raw[i]
sq_cent = np.mean(square, axis=0)
ref_cent = reference[j]
sq_cents.append(sq_cent)
ref_cents.append(ref_cent)
# At least four squares need to have voted for a centre in
# order for a transform to be found
if len(sq_cents) < 4:
raise MacbethError(
'\nWARNING: No macbeth chart found!'
'\nNot enough squares found'
'\nPossible problems:\n'
'- Macbeth chart is occluded\n'
'- Macbeth chart is too dark of bright\n'
)
ref_cents = np.array(ref_cents)
sq_cents = np.array(sq_cents)
# Find best fit transform from normalised centres to image
h_mat, mask = cv2.findHomography(ref_cents, sq_cents)
if 'None' in str(type(h_mat)):
raise MacbethError(
'\nERROR\n'
)
# Transform normalised corners and centres into image space
mac_fit = cv2.perspectiveTransform(mac_norm, h_mat)
mac_cen_fit = cv2.perspectiveTransform(np.array([reference]), h_mat)
# Transform located corners into reference space
ref_mat = cv2.getPerspectiveTransform(
mac_fit,
np.array([ref_corns])
)
map_to_ref = cv2.warpPerspective(
original_bw, ref_mat,
(ref_w, ref_h)
)
# Normalise brigthness
a = 125 / np.average(map_to_ref)
map_to_ref = cv2.convertScaleAbs(map_to_ref, alpha=a, beta=0)
# Find correlation with bw reference macbeth
cor = correlate(map_to_ref, ref)
# Keep only if best correlation
if cor > max_cor:
max_cor = cor
best_map = map_to_ref
best_fit = mac_fit
best_cen_fit = mac_cen_fit
best_ref_mat = ref_mat
# Rotate macbeth by pi and recorrelate in case macbeth chart is
# upside-down
mac_fit_inv = np.array(
([[mac_fit[0][2], mac_fit[0][3],
mac_fit[0][0], mac_fit[0][1]]])
)
mac_cen_fit_inv = np.flip(mac_cen_fit, axis=1)
ref_mat = cv2.getPerspectiveTransform(
mac_fit_inv,
np.array([ref_corns])
)
map_to_ref = cv2.warpPerspective(
original_bw, ref_mat,
(ref_w, ref_h)
)
a = 125 / np.average(map_to_ref)
map_to_ref = cv2.convertScaleAbs(map_to_ref, alpha=a, beta=0)
cor = correlate(map_to_ref, ref)
if cor > max_cor:
max_cor = cor
best_map = map_to_ref
best_fit = mac_fit_inv
best_cen_fit = mac_cen_fit_inv
best_ref_mat = ref_mat
# Check best match is above threshold
cor_thresh = 0.6
if max_cor < cor_thresh:
raise MacbethError(
'\nWARNING: Correlation too low'
'\nPossible problems:\n'
'- Bad lighting conditions\n'
'- Macbeth chart is occluded\n'
'- Background is too noisy\n'
'- Macbeth chart is out of camera plane\n'
)
# Represent coloured macbeth in reference space
best_map_col = cv2.warpPerspective(
original, best_ref_mat, (ref_w, ref_h)
)
best_map_col = cv2.resize(
best_map_col, None, fx=4, fy=4
)
a = 125 / np.average(best_map_col)
best_map_col_norm = cv2.convertScaleAbs(
best_map_col, alpha=a, beta=0
)
# Rescale coordinates to original image size
fit_coords = (best_fit / factor, best_cen_fit / factor)
return (max_cor, best_map_col_norm, fit_coords, True)
# Catch macbeth errors and continue with code
except MacbethError as error:
# \todo: This happens so many times in a normal run, that it shadows
# all the relevant output
# logger.warning(error)
return (0, None, None, False)
def find_macbeth(img, mac_config):
small_chart = mac_config['small']
show = mac_config['show']
# Catch the warnings
warnings.simplefilter("ignore")
warnings.warn("runtime", RuntimeWarning)
# Reference macbeth chart is created that will be correlated with the
# located macbeth chart guess to produce a confidence value for the match.
script_dir = Path(os.path.realpath(os.path.dirname(__file__)))
macbeth_ref_path = script_dir.joinpath('macbeth_ref.pgm')
ref = cv2.imread(str(macbeth_ref_path), flags=cv2.IMREAD_GRAYSCALE)
ref_w = 120
ref_h = 80
rc1 = (0, 0)
rc2 = (0, ref_h)
rc3 = (ref_w, ref_h)
rc4 = (ref_w, 0)
ref_corns = np.array((rc1, rc2, rc3, rc4), np.float32)
ref_data = (ref, ref_w, ref_h, ref_corns)
# Locate macbeth chart
cor, mac, coords, ret = get_macbeth_chart(img, ref_data)
# Following bits of code try to fix common problems with simple techniques.
# If now or at any point the best correlation is of above 0.75, then
# nothing more is tried as this is a high enough confidence to ensure
# reliable macbeth square centre placement.
# Keep a list that will include this and any brightened up versions of
# the image for reuse.
all_images = [img]
for brightness in [2, 4]:
if cor >= 0.75:
break
img_br = cv2.convertScaleAbs(img, alpha=brightness, beta=0)
all_images.append(img_br)
cor_b, mac_b, coords_b, ret_b = get_macbeth_chart(img_br, ref_data)
if cor_b > cor:
cor, mac, coords, ret = cor_b, mac_b, coords_b, ret_b
# In case macbeth chart is too small, take a selection of the image and
# attempt to locate macbeth chart within that. The scale increment is
# root 2
# These variables will be used to transform the found coordinates at
# smaller scales back into the original. If ii is still -1 after this
# section that means it was not successful
ii = -1
w_best = 0
h_best = 0
d_best = 100
# d_best records the scale of the best match. Macbeth charts are only looked
# for at one scale increment smaller than the current best match in order to avoid
# unecessarily searching for macbeth charts at small scales.
# If a macbeth chart ha already been found then set d_best to 0
if cor != 0:
d_best = 0
for index, pair in enumerate([{'sel': 2 / 3, 'inc': 1 / 6},
{'sel': 1 / 2, 'inc': 1 / 8},
{'sel': 1 / 3, 'inc': 1 / 12},
{'sel': 1 / 4, 'inc': 1 / 16}]):
if cor >= 0.75:
break
# Check if we need to check macbeth charts at even smaller scales. This
# slows the code down significantly and has therefore been omitted by
# default, however it is not unusably slow so might be useful if the
# macbeth chart is too small to be picked up to by the current
# subselections. Use this for macbeth charts with side lengths around
# 1/5 image dimensions (and smaller...?) it is, however, recommended
# that macbeth charts take up as large as possible a proportion of the
# image.
if index >= 2 and (not small_chart or d_best <= index - 1):
break
w, h = list(img.shape[:2])
# Set dimensions of the subselection and the step along each axis
# between selections
w_sel = int(w * pair['sel'])
h_sel = int(h * pair['sel'])
w_inc = int(w * pair['inc'])
h_inc = int(h * pair['inc'])
loop = int(((1 - pair['sel']) / pair['inc']) + 1)
# For each subselection, look for a macbeth chart
for img_br in all_images:
for i in range(loop):
for j in range(loop):
w_s, h_s = i * w_inc, j * h_inc
img_sel = img_br[w_s:w_s + w_sel, h_s:h_s + h_sel]
cor_ij, mac_ij, coords_ij, ret_ij = get_macbeth_chart(img_sel, ref_data)
# If the correlation is better than the best then record the
# scale and current subselection at which macbeth chart was
# found. Also record the coordinates, macbeth chart and message.
if cor_ij > cor:
cor = cor_ij
mac, coords, ret = mac_ij, coords_ij, ret_ij
ii, jj = i, j
w_best, h_best = w_inc, h_inc
d_best = index + 1
# Transform coordinates from subselection to original image
if ii != -1:
for a in range(len(coords)):
for b in range(len(coords[a][0])):
coords[a][0][b][1] += ii * w_best
coords[a][0][b][0] += jj * h_best
if not ret:
return None
coords_fit = coords
if cor < 0.75:
logger.warning(f'Low confidence {cor:.3f} for macbeth chart')
if show:
draw_macbeth_results(img, coords_fit)
return coords_fit
def locate_macbeth(image: Image, config: dict):
# Find macbeth centres
av_chan = (np.mean(np.array(image.channels), axis=0) / (2**16))
av_val = np.mean(av_chan)
if av_val < image.blacklevel_16 / (2**16) + 1 / 64:
logger.warning(f'Image {image.path.name} too dark')
return None
macbeth = find_macbeth(av_chan, config['general']['macbeth'])
if macbeth is None:
logger.warning(f'No macbeth chart found in {image.path.name}')
return None
mac_cen_coords = macbeth[1]
if not image.get_patches(mac_cen_coords):
logger.warning(f'Macbeth patches have saturated in {image.path.name}')
return None
image.macbeth = macbeth
return macbeth
|