summaryrefslogtreecommitdiff
path: root/test/object.cpp
blob: cbd0d3ececab63c5a30eea5ee58bcff7eec17e6d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
 * Copyright (C) 2019, Google Inc.
 *
 * object.cpp - Object tests
 */

#include <iostream>

#include <libcamera/base/message.h>
#include <libcamera/base/object.h>
#include <libcamera/base/thread.h>

#include "test.h"

using namespace std;
using namespace libcamera;

class InstrumentedObject : public Object
{
public:
	enum Status {
		NoMessage,
		MessageReceived,
	};

	InstrumentedObject(Object *parent = nullptr)
		: Object(parent), status_(NoMessage)
	{
	}

	Status status() const { return status_; }
	void reset() { status_ = NoMessage; }

protected:
	void message(Message *msg) override
	{
		if (msg->type() == Message::ThreadMoveMessage)
			status_ = MessageReceived;

		Object::message(msg);
	}

private:
	Status status_;
};

class ObjectTest : public Test
{
protected:
	int init()
	{
		/*
		 * Create a hierarchy of objects:
		 * A -> B -> C
		 *   \->D
		 * E
		 */
		a_ = new InstrumentedObject();
		b_ = new InstrumentedObject(a_);
		c_ = new InstrumentedObject(b_);
		d_ = new InstrumentedObject(a_);
		e_ = new InstrumentedObject();
		f_ = nullptr;

		return TestPass;
	}

	int run()
	{
		/* Verify the parent-child relationships. */
		if (a_->parent() != nullptr || b_->parent() != a_ ||
		    c_->parent() != b_ || d_->parent() != a_ ||
		    e_->parent() != nullptr) {
			cout << "Incorrect parent-child relationships" << endl;
			return TestFail;
		}

		/*
		 * Verify that moving an object with no parent to a different
		 * thread succeeds.
		 */
		e_->moveToThread(&thread_);

		if (e_->thread() != &thread_ || e_->thread() == Thread::current()) {
			cout << "Failed to move object to thread" << endl;
			return TestFail;
		}

		/*
		 * Verify that moving an object with a parent to a different
		 * thread fails. This results in an undefined behaviour, the
		 * test thus depends on the internal implementation returning
		 * without performing any change.
		 */
		b_->moveToThread(&thread_);

		if (b_->thread() != Thread::current()) {
			cout << "Moving object with parent to thread shouldn't succeed" << endl;
			return TestFail;
		}

		/*
		 * Verify that moving an object with children to a different
		 * thread moves all the children.
		 */
		a_->moveToThread(&thread_);

		if (a_->thread() != &thread_ || b_->thread() != &thread_ ||
		    c_->thread() != &thread_ || d_->thread() != &thread_) {
			cout << "Failed to move children to thread" << endl;
			return TestFail;
		}

		/* Verify that objects are bound to the thread of their parent. */
		f_ = new InstrumentedObject(d_);

		if (f_->thread() != &thread_) {
			cout << "Failed to bind child to parent thread" << endl;
			return TestFail;
		}

		/* Verify that objects receive a ThreadMoveMessage when moved. */
		if (a_->status() != InstrumentedObject::MessageReceived ||
		    b_->status() != InstrumentedObject::MessageReceived ||
		    c_->status() != InstrumentedObject::MessageReceived ||
		    d_->status() != InstrumentedObject::MessageReceived ||
		    e_->status() != InstrumentedObject::MessageReceived) {
			cout << "Moving object didn't deliver ThreadMoveMessage" << endl;
			return TestFail;
		}

		return TestPass;
	}

	void cleanup()
	{
		delete a_;
		delete b_;
		delete c_;
		delete d_;
		delete e_;
		delete f_;
	}

private:
	InstrumentedObject *a_;
	InstrumentedObject *b_;
	InstrumentedObject *c_;
	InstrumentedObject *d_;
	InstrumentedObject *e_;
	InstrumentedObject *f_;

	Thread thread_;
};

TEST_REGISTER(ObjectTest)
a id='n585' href='#n585'>585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
 * Copyright (C) 2020, Google Inc.
 *
 * ipa_data_serializer.cpp - Image Processing Algorithm data serializer
 */

#include "libcamera/internal/ipa_data_serializer.h"

#include <unistd.h>

#include <libcamera/base/log.h>

/**
 * \file ipa_data_serializer.h
 * \brief IPA Data Serializer
 */

namespace libcamera {

LOG_DEFINE_CATEGORY(IPADataSerializer)

/**
 * \class IPADataSerializer
 * \brief IPA Data Serializer
 *
 * Static template class that provides functions for serializing and
 * deserializing IPA data.
 *
 * \todo Switch to Span instead of byte and fd vector
 *
 * \todo Harden the vector and map deserializer
 *
 * \todo For SharedFDs, instead of storing a validity flag, store an
 * index into the fd array. This will allow us to use views instead of copying.
 */

namespace {

/**
 * \fn template<typename T> void appendPOD(std::vector<uint8_t> &vec, T val)
 * \brief Append POD to end of byte vector, in little-endian order
 * \tparam T Type of POD to append
 * \param[in] vec Byte vector to append to
 * \param[in] val Value to append
 *
 * This function is meant to be used by the IPA data serializer, and the
 * generated IPA proxies.
 */

/**
 * \fn template<typename T> T readPOD(std::vector<uint8_t>::iterator it, size_t pos,
 * 				      std::vector<uint8_t>::iterator end)
 * \brief Read POD from byte vector, in little-endian order
 * \tparam T Type of POD to read
 * \param[in] it Iterator of byte vector to read from
 * \param[in] pos Index in byte vector to read from
 * \param[in] end Iterator marking end of byte vector
 *
 * This function is meant to be used by the IPA data serializer, and the
 * generated IPA proxies.
 *
 * If the \a pos plus the byte-width of the desired POD is past \a end, it is
 * a fata error will occur, as it means there is insufficient data for
 * deserialization, which should never happen.
 *
 * \return The POD read from \a it at index \a pos
 */

/**
 * \fn template<typename T> T readPOD(std::vector<uint8_t> &vec, size_t pos)
 * \brief Read POD from byte vector, in little-endian order
 * \tparam T Type of POD to read
 * \param[in] vec Byte vector to read from
 * \param[in] pos Index in vec to start reading from
 *
 * This function is meant to be used by the IPA data serializer, and the
 * generated IPA proxies.
 *
 * If the \a pos plus the byte-width of the desired POD is past the end of
 * \a vec, a fatal error will occur, as it means there is insufficient data
 * for deserialization, which should never happen.
 *
 * \return The POD read from \a vec at index \a pos
 */

} /* namespace */

/**
 * \fn template<typename T> IPADataSerializer<T>::serialize(
 * 	T data,
 * 	ControlSerializer *cs = nullptr)
 * \brief Serialize an object into byte vector and fd vector
 * \tparam T Type of object to serialize
 * \param[in] data Object to serialize
 * \param[in] cs ControlSerializer
 *
 * \a cs is only necessary if the object type \a T or its members contain
 * ControlList or ControlInfoMap.
 *
 * \return Tuple of byte vector and fd vector, that is the serialized form
 * of \a data
 */

/**
 * \fn template<typename T> IPADataSerializer<T>::deserialize(
 * 	const std::vector<uint8_t> &data,
 * 	ControlSerializer *cs = nullptr)
 * \brief Deserialize byte vector into an object
 * \tparam T Type of object to deserialize to
 * \param[in] data Byte vector to deserialize from
 * \param[in] cs ControlSerializer
 *
 * This version of deserialize() can be used if the object type \a T and its
 * members don't have any SharedFD.
 *
 * \a cs is only necessary if the object type \a T or its members contain
 * ControlList or ControlInfoMap.
 *
 * \return The deserialized object
 */

/**
 * \fn template<typename T> IPADataSerializer<T>::deserialize(
 * 	std::vector<uint8_t>::const_iterator dataBegin,
 * 	std::vector<uint8_t>::const_iterator dataEnd,
 * 	ControlSerializer *cs = nullptr)
 * \brief Deserialize byte vector into an object
 * \tparam T Type of object to deserialize to
 * \param[in] dataBegin Begin iterator of byte vector to deserialize from
 * \param[in] dataEnd End iterator of byte vector to deserialize from
 * \param[in] cs ControlSerializer
 *
 * This version of deserialize() can be used if the object type \a T and its
 * members don't have any SharedFD.
 *
 * \a cs is only necessary if the object type \a T or its members contain
 * ControlList or ControlInfoMap.
 *
 * \return The deserialized object
 */

/**
 * \fn template<typename T> IPADataSerializer<T>::deserialize(
 * 	const std::vector<uint8_t> &data,
 * 	const std::vector<SharedFD> &fds,
 * 	ControlSerializer *cs = nullptr)
 * \brief Deserialize byte vector and fd vector into an object
 * \tparam T Type of object to deserialize to
 * \param[in] data Byte vector to deserialize from
 * \param[in] fds Fd vector to deserialize from
 * \param[in] cs ControlSerializer
 *
 * This version of deserialize() (or the iterator version) must be used if
 * the object type \a T or its members contain SharedFD.
 *
 * \a cs is only necessary if the object type \a T or its members contain
 * ControlList or ControlInfoMap.
 *
 * \return The deserialized object
 */

/**
 * \fn template<typename T> IPADataSerializer::deserialize(
 * 	std::vector<uint8_t>::const_iterator dataBegin,
 * 	std::vector<uint8_t>::const_iterator dataEnd,
 * 	std::vector<SharedFD>::const_iterator fdsBegin,
 * 	std::vector<SharedFD>::const_iterator fdsEnd,
 * 	ControlSerializer *cs = nullptr)
 * \brief Deserialize byte vector and fd vector into an object
 * \tparam T Type of object to deserialize to
 * \param[in] dataBegin Begin iterator of byte vector to deserialize from
 * \param[in] dataEnd End iterator of byte vector to deserialize from
 * \param[in] fdsBegin Begin iterator of fd vector to deserialize from
 * \param[in] fdsEnd End iterator of fd vector to deserialize from
 * \param[in] cs ControlSerializer
 *
 * This version of deserialize() (or the vector version) must be used if
 * the object type \a T or its members contain SharedFD.
 *
 * \a cs is only necessary if the object type \a T or its members contain
 * ControlList or ControlInfoMap.
 *
 * \return The deserialized object
 */

#ifndef __DOXYGEN__

#define DEFINE_POD_SERIALIZER(type)					\
									\
template<>								\
std::tuple<std::vector<uint8_t>, std::vector<SharedFD>>		\
IPADataSerializer<type>::serialize(const type &data,			\
				  [[maybe_unused]] ControlSerializer *cs) \
{									\
	std::vector<uint8_t> dataVec;					\
	dataVec.reserve(sizeof(type));					\
	appendPOD<type>(dataVec, data);					\
									\
	return { dataVec, {} };						\
}									\
									\
template<>								\
type IPADataSerializer<type>::deserialize(std::vector<uint8_t>::const_iterator dataBegin, \
					  std::vector<uint8_t>::const_iterator dataEnd, \
					  [[maybe_unused]] ControlSerializer *cs) \
{									\
	return readPOD<type>(dataBegin, 0, dataEnd);			\
}									\
									\
template<>								\
type IPADataSerializer<type>::deserialize(const std::vector<uint8_t> &data, \
					  ControlSerializer *cs)	\
{									\
	return deserialize(data.cbegin(), data.end(), cs);		\
}									\
									\
template<>								\
type IPADataSerializer<type>::deserialize(const std::vector<uint8_t> &data, \
					  [[maybe_unused]] const std::vector<SharedFD> &fds, \
					  ControlSerializer *cs)	\
{									\
	return deserialize(data.cbegin(), data.end(), cs);		\
}									\
									\
template<>								\
type IPADataSerializer<type>::deserialize(std::vector<uint8_t>::const_iterator dataBegin, \
					  std::vector<uint8_t>::const_iterator dataEnd, \
					  [[maybe_unused]] std::vector<SharedFD>::const_iterator fdsBegin, \
					  [[maybe_unused]] std::vector<SharedFD>::const_iterator fdsEnd, \
					  ControlSerializer *cs)	\
{									\
	return deserialize(dataBegin, dataEnd, cs);			\
}

DEFINE_POD_SERIALIZER(bool)
DEFINE_POD_SERIALIZER(uint8_t)
DEFINE_POD_SERIALIZER(uint16_t)
DEFINE_POD_SERIALIZER(uint32_t)
DEFINE_POD_SERIALIZER(uint64_t)
DEFINE_POD_SERIALIZER(int8_t)
DEFINE_POD_SERIALIZER(int16_t)
DEFINE_POD_SERIALIZER(int32_t)
DEFINE_POD_SERIALIZER(int64_t)
DEFINE_POD_SERIALIZER(float)
DEFINE_POD_SERIALIZER(double)

/*
 * Strings are serialized simply by converting by {string.cbegin(), string.end()}.
 * The size of the string is recorded by the container (struct, vector, map, or
 * function parameter serdes).
 */
template<>
std::tuple<std::vector<uint8_t>, std::vector<SharedFD>>
IPADataSerializer<std::string>::serialize(const std::string &data,
					  [[maybe_unused]] ControlSerializer *cs)
{
	return { { data.cbegin(), data.end() }, {} };
}

template<>
std::string
IPADataSerializer<std::string>::deserialize(const std::vector<uint8_t> &data,
					    [[maybe_unused]] ControlSerializer *cs)
{
	return { data.cbegin(), data.cend() };
}

template<>
std::string
IPADataSerializer<std::string>::deserialize(std::vector<uint8_t>::const_iterator dataBegin,
					    std::vector<uint8_t>::const_iterator dataEnd,
					    [[maybe_unused]] ControlSerializer *cs)
{
	return { dataBegin, dataEnd };
}

template<>
std::string
IPADataSerializer<std::string>::deserialize(const std::vector<uint8_t> &data,
					    [[maybe_unused]] const std::vector<SharedFD> &fds,
					    [[maybe_unused]] ControlSerializer *cs)
{
	return { data.cbegin(), data.cend() };
}

template<>
std::string
IPADataSerializer<std::string>::deserialize(std::vector<uint8_t>::const_iterator dataBegin,
					    std::vector<uint8_t>::const_iterator dataEnd,
					    [[maybe_unused]] std::vector<SharedFD>::const_iterator fdsBegin,
					    [[maybe_unused]] std::vector<SharedFD>::const_iterator fdsEnd,
					    [[maybe_unused]] ControlSerializer *cs)
{
	return { dataBegin, dataEnd };
}

/*
 * ControlList is serialized as:
 *
 * 4 bytes - uint32_t Size of serialized ControlInfoMap, in bytes
 * 4 bytes - uint32_t Size of serialized ControlList, in bytes
 * X bytes - Serialized ControlInfoMap (using ControlSerializer)
 * X bytes - Serialized ControlList (using ControlSerializer)
 *
 * If data.infoMap() is nullptr, then the default controls::controls will
 * be used. The serialized ControlInfoMap will have zero length.
 */
template<>
std::tuple<std::vector<uint8_t>, std::vector<SharedFD>>
IPADataSerializer<ControlList>::serialize(const ControlList &data, ControlSerializer *cs)
{
	if (!cs)
		LOG(IPADataSerializer, Fatal)
			<< "ControlSerializer not provided for serialization of ControlList";

	size_t size;
	std::vector<uint8_t> infoData;
	int ret;

	/*
	 * \todo Revisit this opportunistic serialization of the
	 * ControlInfoMap, as it could be fragile
	 */
	if (data.infoMap() && !cs->isCached(*data.infoMap())) {
		size = cs->binarySize(*data.infoMap());
		infoData.resize(size);
		ByteStreamBuffer buffer(infoData.data(), infoData.size());
		ret = cs->serialize(*data.infoMap(), buffer);

		if (ret < 0 || buffer.overflow()) {
			LOG(IPADataSerializer, Error) << "Failed to serialize ControlList's ControlInfoMap";
			return { {}, {} };
		}
	}

	size = cs->binarySize(data);
	std::vector<uint8_t> listData(size);
	ByteStreamBuffer buffer(listData.data(), listData.size());
	ret = cs->serialize(data, buffer);

	if (ret < 0 || buffer.overflow()) {
		LOG(IPADataSerializer, Error) << "Failed to serialize ControlList";
		return { {}, {} };
	}

	std::vector<uint8_t> dataVec;
	dataVec.reserve(8 + infoData.size() + listData.size());
	appendPOD<uint32_t>(dataVec, infoData.size());
	appendPOD<uint32_t>(dataVec, listData.size());
	dataVec.insert(dataVec.end(), infoData.begin(), infoData.end());
	dataVec.insert(dataVec.end(), listData.begin(), listData.end());

	return { dataVec, {} };
}

template<>
ControlList
IPADataSerializer<ControlList>::deserialize(std::vector<uint8_t>::const_iterator dataBegin,
					    std::vector<uint8_t>::const_iterator dataEnd,
					    ControlSerializer *cs)
{
	if (!cs)
		LOG(IPADataSerializer, Fatal)
			<< "ControlSerializer not provided for deserialization of ControlList";

	if (std::distance(dataBegin, dataEnd) < 8)
		return {};

	uint32_t infoDataSize = readPOD<uint32_t>(dataBegin, 0, dataEnd);
	uint32_t listDataSize = readPOD<uint32_t>(dataBegin, 4, dataEnd);

	std::vector<uint8_t>::const_iterator it = dataBegin + 8;

	if (infoDataSize + listDataSize < infoDataSize ||
	    static_cast<uint32_t>(std::distance(it, dataEnd)) < infoDataSize + listDataSize)
		return {};

	if (infoDataSize > 0) {
		ByteStreamBuffer buffer(&*it, infoDataSize);
		ControlInfoMap map = cs->deserialize<ControlInfoMap>(buffer);
		/* It's fine if map is empty. */
		if (buffer.overflow()) {
			LOG(IPADataSerializer, Error)
				<< "Failed to deserialize ControlLists's ControlInfoMap: buffer overflow";
			return ControlList();
		}
	}

	it += infoDataSize;
	ByteStreamBuffer buffer(&*it, listDataSize);
	ControlList list = cs->deserialize<ControlList>(buffer);
	if (buffer.overflow())
		LOG(IPADataSerializer, Error) << "Failed to deserialize ControlList: buffer overflow";

	return list;
}

template<>
ControlList
IPADataSerializer<ControlList>::deserialize(const std::vector<uint8_t> &data,
					    ControlSerializer *cs)
{
	return deserialize(data.cbegin(), data.end(), cs);
}

template<>
ControlList
IPADataSerializer<ControlList>::deserialize(const std::vector<uint8_t> &data,
					    [[maybe_unused]] const std::vector<SharedFD> &fds,
					    ControlSerializer *cs)
{
	return deserialize(data.cbegin(), data.end(), cs);
}

template<>
ControlList
IPADataSerializer<ControlList>::deserialize(std::vector<uint8_t>::const_iterator dataBegin,
					    std::vector<uint8_t>::const_iterator dataEnd,
					    [[maybe_unused]] std::vector<SharedFD>::const_iterator fdsBegin,
					    [[maybe_unused]] std::vector<SharedFD>::const_iterator fdsEnd,
					    ControlSerializer *cs)
{
	return deserialize(dataBegin, dataEnd, cs);
}

/*
 * const ControlInfoMap is serialized as:
 *
 * 4 bytes - uint32_t Size of serialized ControlInfoMap, in bytes
 * X bytes - Serialized ControlInfoMap (using ControlSerializer)
 */
template<>
std::tuple<std::vector<uint8_t>, std::vector<SharedFD>>
IPADataSerializer<ControlInfoMap>::serialize(const ControlInfoMap &map,
					     ControlSerializer *cs)
{
	if (!cs)
		LOG(IPADataSerializer, Fatal)
			<< "ControlSerializer not provided for serialization of ControlInfoMap";

	size_t size = cs->binarySize(map);
	std::vector<uint8_t> infoData(size);
	ByteStreamBuffer buffer(infoData.data(), infoData.size());
	int ret = cs->serialize(map, buffer);

	if (ret < 0 || buffer.overflow()) {
		LOG(IPADataSerializer, Error) << "Failed to serialize ControlInfoMap";
		return { {}, {} };
	}

	std::vector<uint8_t> dataVec;
	appendPOD<uint32_t>(dataVec, infoData.size());
	dataVec.insert(dataVec.end(), infoData.begin(), infoData.end());

	return { dataVec, {} };
}

template<>
ControlInfoMap
IPADataSerializer<ControlInfoMap>::deserialize(std::vector<uint8_t>::const_iterator dataBegin,
					       std::vector<uint8_t>::const_iterator dataEnd,
					       ControlSerializer *cs)
{
	if (!cs)
		LOG(IPADataSerializer, Fatal)
			<< "ControlSerializer not provided for deserialization of ControlInfoMap";

	if (std::distance(dataBegin, dataEnd) < 4)
		return {};

	uint32_t infoDataSize = readPOD<uint32_t>(dataBegin, 0, dataEnd);

	std::vector<uint8_t>::const_iterator it = dataBegin + 4;

	if (static_cast<uint32_t>(std::distance(it, dataEnd)) < infoDataSize)
		return {};

	ByteStreamBuffer buffer(&*it, infoDataSize);
	ControlInfoMap map = cs->deserialize<ControlInfoMap>(buffer);

	return map;
}

template<>
ControlInfoMap
IPADataSerializer<ControlInfoMap>::deserialize(const std::vector<uint8_t> &data,
					       ControlSerializer *cs)
{
	return deserialize(data.cbegin(), data.end(), cs);
}

template<>
ControlInfoMap
IPADataSerializer<ControlInfoMap>::deserialize(const std::vector<uint8_t> &data,
					       [[maybe_unused]] const std::vector<SharedFD> &fds,
					       ControlSerializer *cs)
{
	return deserialize(data.cbegin(), data.end(), cs);
}

template<>
ControlInfoMap
IPADataSerializer<ControlInfoMap>::deserialize(std::vector<uint8_t>::const_iterator dataBegin,
					       std::vector<uint8_t>::const_iterator dataEnd,
					       [[maybe_unused]] std::vector<SharedFD>::const_iterator fdsBegin,
					       [[maybe_unused]] std::vector<SharedFD>::const_iterator fdsEnd,
					       ControlSerializer *cs)
{
	return deserialize(dataBegin, dataEnd, cs);
}

/*
 * SharedFD instances are serialized into four bytes that tells if the SharedFD
 * is valid or not. If it is valid, then for serialization the fd will be
 * written to the fd vector, or for deserialization the fd vector const_iterator
 * will be valid.
 *