summaryrefslogtreecommitdiff
path: root/src/gstreamer/gstlibcamerapool.cpp
blob: 0c2be43ceeeab699eb63eb53a65ebca8f7caa6c8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
 * Copyright (C) 2020, Collabora Ltd.
 *     Author: Nicolas Dufresne <nicolas.dufresne@collabora.com>
 *
 * gstlibcamerapool.cpp - GStreamer Buffer Pool
 */

#include "gstlibcamerapool.h"

#include <libcamera/stream.h>

#include "gstlibcamera-utils.h"

using namespace libcamera;

enum {
	SIGNAL_BUFFER_NOTIFY,
	N_SIGNALS
};

static guint signals[N_SIGNALS];

struct _GstLibcameraPool {
	GstBufferPool parent;

	GstAtomicQueue *queue;
	GstLibcameraAllocator *allocator;
	Stream *stream;
};

G_DEFINE_TYPE(GstLibcameraPool, gst_libcamera_pool, GST_TYPE_BUFFER_POOL)

static GstFlowReturn
gst_libcamera_pool_acquire_buffer(GstBufferPool *pool, GstBuffer **buffer,
				  [[maybe_unused]] GstBufferPoolAcquireParams *params)
{
	GstLibcameraPool *self = GST_LIBCAMERA_POOL(pool);
	GstBuffer *buf = GST_BUFFER(gst_atomic_queue_pop(self->queue));
	if (!buf)
		return GST_FLOW_ERROR;

	if (!gst_libcamera_allocator_prepare_buffer(self->allocator, self->stream, buf)) {
		gst_atomic_queue_push(self->queue, buf);
		return GST_FLOW_ERROR;
	}

	*buffer = buf;
	return GST_FLOW_OK;
}

static void
gst_libcamera_pool_reset_buffer(GstBufferPool *pool, GstBuffer *buffer)
{
	GstBufferPoolClass *klass = GST_BUFFER_POOL_CLASS(gst_libcamera_pool_parent_class);

	/* Clears all the memories and only pool the GstBuffer objects */
	gst_buffer_remove_all_memory(buffer);
	klass->reset_buffer(pool, buffer);
	GST_BUFFER_FLAGS(buffer) = 0;
}

static void
gst_libcamera_pool_release_buffer(GstBufferPool *pool, GstBuffer *buffer)
{
	GstLibcameraPool *self = GST_LIBCAMERA_POOL(pool);
	bool do_notify = gst_atomic_queue_length(self->queue) == 0;

	gst_atomic_queue_push(self->queue, buffer);

	if (do_notify)
		g_signal_emit(self, signals[SIGNAL_BUFFER_NOTIFY], 0);
}

static void
gst_libcamera_pool_init(GstLibcameraPool *self)
{
	self->queue = gst_atomic_queue_new(4);
}

static void
gst_libcamera_pool_finalize(GObject *object)
{
	GstLibcameraPool *self = GST_LIBCAMERA_POOL(object);
	GstBuffer *buf;

	while ((buf = GST_BUFFER(gst_atomic_queue_pop(self->queue))))
		gst_buffer_unref(buf);

	gst_atomic_queue_unref(self->queue);
	g_object_unref(self->allocator);

	G_OBJECT_CLASS(gst_libcamera_pool_parent_class)->finalize(object);
}

static void
gst_libcamera_pool_class_init(GstLibcameraPoolClass *klass)
{
	auto *object_class = G_OBJECT_CLASS(klass);
	auto *pool_class = GST_BUFFER_POOL_CLASS(klass);

	object_class->finalize = gst_libcamera_pool_finalize;
	pool_class->start = nullptr;
	pool_class->acquire_buffer = gst_libcamera_pool_acquire_buffer;
	pool_class->reset_buffer = gst_libcamera_pool_reset_buffer;
	pool_class->release_buffer = gst_libcamera_pool_release_buffer;

	signals[SIGNAL_BUFFER_NOTIFY] = g_signal_new("buffer-notify",
						     G_OBJECT_CLASS_TYPE(klass), G_SIGNAL_RUN_LAST,
						     0, nullptr, nullptr, nullptr,
						     G_TYPE_NONE, 0);
}

GstLibcameraPool *
gst_libcamera_pool_new(GstLibcameraAllocator *allocator, Stream *stream)
{
	auto *pool = GST_LIBCAMERA_POOL(g_object_new(GST_TYPE_LIBCAMERA_POOL, nullptr));

	pool->allocator = GST_LIBCAMERA_ALLOCATOR(g_object_ref(allocator));
	pool->stream = stream;

	gsize pool_size = gst_libcamera_allocator_get_pool_size(allocator, stream);
	for (gsize i = 0; i < pool_size; i++) {
		GstBuffer *buffer = gst_buffer_new();
		gst_atomic_queue_push(pool->queue, buffer);
	}

	return pool;
}

Stream *
gst_libcamera_pool_get_stream(GstLibcameraPool *self)
{
	return self->stream;
}

FrameBuffer *
gst_libcamera_buffer_get_frame_buffer(GstBuffer *buffer)
{
	GstMemory *mem = gst_buffer_peek_memory(buffer, 0);
	return gst_libcamera_memory_get_frame_buffer(mem);
}
'n533' href='#n533'>533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
 * Copyright (C) 2019-2021, Raspberry Pi Ltd
 *
 * raspberrypi.cpp - Pipeline handler for Raspberry Pi devices
 */
#include <algorithm>
#include <assert.h>
#include <cmath>
#include <fcntl.h>
#include <memory>
#include <mutex>
#include <queue>
#include <unordered_set>
#include <utility>

#include <libcamera/base/file.h>
#include <libcamera/base/shared_fd.h>
#include <libcamera/base/utils.h>

#include <libcamera/camera.h>
#include <libcamera/control_ids.h>
#include <libcamera/formats.h>
#include <libcamera/ipa/raspberrypi_ipa_interface.h>
#include <libcamera/ipa/raspberrypi_ipa_proxy.h>
#include <libcamera/logging.h>
#include <libcamera/property_ids.h>
#include <libcamera/request.h>

#include <linux/bcm2835-isp.h>
#include <linux/media-bus-format.h>
#include <linux/videodev2.h>

#include "libcamera/internal/bayer_format.h"
#include "libcamera/internal/camera.h"
#include "libcamera/internal/camera_lens.h"
#include "libcamera/internal/camera_sensor.h"
#include "libcamera/internal/device_enumerator.h"
#include "libcamera/internal/framebuffer.h"
#include "libcamera/internal/ipa_manager.h"
#include "libcamera/internal/media_device.h"
#include "libcamera/internal/pipeline_handler.h"
#include "libcamera/internal/v4l2_videodevice.h"
#include "libcamera/internal/yaml_parser.h"

#include "delayed_controls.h"
#include "dma_heaps.h"
#include "rpi_stream.h"

using namespace std::chrono_literals;

namespace libcamera {

LOG_DEFINE_CATEGORY(RPI)

namespace {

constexpr unsigned int defaultRawBitDepth = 12;

/* Map of mbus codes to supported sizes reported by the sensor. */
using SensorFormats = std::map<unsigned int, std::vector<Size>>;

SensorFormats populateSensorFormats(std::unique_ptr<CameraSensor> &sensor)
{
	SensorFormats formats;

	for (auto const mbusCode : sensor->mbusCodes())
		formats.emplace(mbusCode, sensor->sizes(mbusCode));

	return formats;
}

bool isMonoSensor(std::unique_ptr<CameraSensor> &sensor)
{
	unsigned int mbusCode = sensor->mbusCodes()[0];
	const BayerFormat &bayer = BayerFormat::fromMbusCode(mbusCode);

	return bayer.order == BayerFormat::Order::MONO;
}

PixelFormat mbusCodeToPixelFormat(unsigned int mbus_code,
				  BayerFormat::Packing packingReq)
{
	BayerFormat bayer = BayerFormat::fromMbusCode(mbus_code);

	ASSERT(bayer.isValid());

	bayer.packing = packingReq;
	PixelFormat pix = bayer.toPixelFormat();

	/*
	 * Not all formats (e.g. 8-bit or 16-bit Bayer formats) can have packed
	 * variants. So if the PixelFormat returns as invalid, use the non-packed
	 * conversion instead.
	 */
	if (!pix.isValid()) {
		bayer.packing = BayerFormat::Packing::None;
		pix = bayer.toPixelFormat();
	}

	return pix;
}

V4L2DeviceFormat toV4L2DeviceFormat(const V4L2VideoDevice *dev,
				    const V4L2SubdeviceFormat &format,
				    BayerFormat::Packing packingReq)
{
	const PixelFormat pix = mbusCodeToPixelFormat(format.mbus_code, packingReq);
	V4L2DeviceFormat deviceFormat;

	deviceFormat.fourcc = dev->toV4L2PixelFormat(pix);
	deviceFormat.size = format.size;
	deviceFormat.colorSpace = format.colorSpace;
	return deviceFormat;
}

bool isRaw(const PixelFormat &pixFmt)
{
	/* This test works for both Bayer and raw mono formats. */
	return BayerFormat::fromPixelFormat(pixFmt).isValid();
}

double scoreFormat(double desired, double actual)
{
	double score = desired - actual;
	/* Smaller desired dimensions are preferred. */
	if (score < 0.0)
		score = (-score) / 8;
	/* Penalise non-exact matches. */
	if (actual != desired)
		score *= 2;

	return score;
}

V4L2SubdeviceFormat findBestFormat(const SensorFormats &formatsMap, const Size &req, unsigned int bitDepth)
{
	double bestScore = std::numeric_limits<double>::max(), score;
	V4L2SubdeviceFormat bestFormat;
	bestFormat.colorSpace = ColorSpace::Raw;

	constexpr float penaltyAr = 1500.0;
	constexpr float penaltyBitDepth = 500.0;

	/* Calculate the closest/best mode from the user requested size. */
	for (const auto &iter : formatsMap) {
		const unsigned int mbusCode = iter.first;
		const PixelFormat format = mbusCodeToPixelFormat(mbusCode,
								 BayerFormat::Packing::None);
		const PixelFormatInfo &info = PixelFormatInfo::info(format);

		for (const Size &size : iter.second) {
			double reqAr = static_cast<double>(req.width) / req.height;
			double fmtAr = static_cast<double>(size.width) / size.height;

			/* Score the dimensions for closeness. */
			score = scoreFormat(req.width, size.width);
			score += scoreFormat(req.height, size.height);
			score += penaltyAr * scoreFormat(reqAr, fmtAr);

			/* Add any penalties... this is not an exact science! */
			score += utils::abs_diff(info.bitsPerPixel, bitDepth) * penaltyBitDepth;

			if (score <= bestScore) {
				bestScore = score;
				bestFormat.mbus_code = mbusCode;
				bestFormat.size = size;
			}

			LOG(RPI, Debug) << "Format: " << size
					<< " fmt " << format
					<< " Score: " << score
					<< " (best " << bestScore << ")";
		}
	}

	return bestFormat;
}

enum class Unicam : unsigned int { Image, Embedded };
enum class Isp : unsigned int { Input, Output0, Output1, Stats };

} /* namespace */

class RPiCameraData : public Camera::Private
{
public:
	RPiCameraData(PipelineHandler *pipe)
		: Camera::Private(pipe), state_(State::Stopped),
		  flipsAlterBayerOrder_(false), dropFrameCount_(0),
		  buffersAllocated_(false), ispOutputCount_(0)
	{
	}

	~RPiCameraData()
	{
		freeBuffers();
	}

	void freeBuffers();
	void frameStarted(uint32_t sequence);

	int loadIPA(ipa::RPi::IPAInitResult *result);
	int configureIPA(const CameraConfiguration *config, ipa::RPi::IPAConfigResult *result);
	int loadPipelineConfiguration();

	void enumerateVideoDevices(MediaLink *link);

	void statsMetadataComplete(uint32_t bufferId, const ControlList &controls);
	void runIsp(uint32_t bufferId);
	void embeddedComplete(uint32_t bufferId);
	void setIspControls(const ControlList &controls);
	void setDelayedControls(const ControlList &controls, uint32_t delayContext);
	void setLensControls(const ControlList &controls);
	void setSensorControls(ControlList &controls);
	void unicamTimeout();

	/* bufferComplete signal handlers. */
	void unicamBufferDequeue(FrameBuffer *buffer);
	void ispInputDequeue(FrameBuffer *buffer);
	void ispOutputDequeue(FrameBuffer *buffer);

	void clearIncompleteRequests();
	void handleStreamBuffer(FrameBuffer *buffer, RPi::Stream *stream);
	void handleExternalBuffer(FrameBuffer *buffer, RPi::Stream *stream);
	void handleState();
	Rectangle scaleIspCrop(const Rectangle &ispCrop) const;
	void applyScalerCrop(const ControlList &controls);

	std::unique_ptr<ipa::RPi::IPAProxyRPi> ipa_;

	std::unique_ptr<CameraSensor> sensor_;
	SensorFormats sensorFormats_;
	/* Array of Unicam and ISP device streams and associated buffers/streams. */
	RPi::Device<Unicam, 2> unicam_;
	RPi::Device<Isp, 4> isp_;
	/* The vector below is just for convenience when iterating over all streams. */
	std::vector<RPi::Stream *> streams_;
	/* Stores the ids of the buffers mapped in the IPA. */
	std::unordered_set<unsigned int> ipaBuffers_;
	/*
	 * Stores a cascade of Video Mux or Bridge devices between the sensor and
	 * Unicam together with media link across the entities.
	 */
	std::vector<std::pair<std::unique_ptr<V4L2Subdevice>, MediaLink *>> bridgeDevices_;

	/* DMAHEAP allocation helper. */
	RPi::DmaHeap dmaHeap_;
	SharedFD lsTable_;

	std::unique_ptr<RPi::DelayedControls> delayedCtrls_;
	bool sensorMetadata_;

	/*
	 * All the functions in this class are called from a single calling
	 * thread. So, we do not need to have any mutex to protect access to any
	 * of the variables below.
	 */
	enum class State { Stopped, Idle, Busy, IpaComplete, Error };
	State state_;

	bool isRunning()
	{
		return state_ != State::Stopped && state_ != State::Error;
	}

	struct BayerFrame {
		FrameBuffer *buffer;
		ControlList controls;
		unsigned int delayContext;
	};

	std::queue<BayerFrame> bayerQueue_;
	std::queue<FrameBuffer *> embeddedQueue_;
	std::deque<Request *> requestQueue_;

	/*
	 * Store the "native" Bayer order (that is, with no transforms
	 * applied).
	 */
	bool flipsAlterBayerOrder_;
	BayerFormat::Order nativeBayerOrder_;

	/* For handling digital zoom. */
	IPACameraSensorInfo sensorInfo_;
	Rectangle ispCrop_; /* crop in ISP (camera mode) pixels */
	Rectangle scalerCrop_; /* crop in sensor native pixels */
	Size ispMinCropSize_;

	unsigned int dropFrameCount_;

	/*
	 * If set, this stores the value that represets a gain of one for
	 * the V4L2_CID_NOTIFY_GAINS control.
	 */
	std::optional<int32_t> notifyGainsUnity_;

	/* Have internal buffers been allocated? */
	bool buffersAllocated_;

	struct Config {
		/*
		 * The minimum number of internal buffers to be allocated for
		 * the Unicam Image stream.
		 */
		unsigned int minUnicamBuffers;
		/*
		 * The minimum total (internal + external) buffer count used for
		 * the Unicam Image stream.
		 *
		 * Note that:
		 * minTotalUnicamBuffers must be >= 1, and
		 * minTotalUnicamBuffers >= minUnicamBuffers
		 */
		unsigned int minTotalUnicamBuffers;
		/*
		 * Override any request from the IPA to drop a number of startup
		 * frames.
		 */
		bool disableStartupFrameDrops;
	};

	Config config_;

private:
	void checkRequestCompleted();
	void fillRequestMetadata(const ControlList &bufferControls,
				 Request *request);
	void tryRunPipeline();
	bool findMatchingBuffers(BayerFrame &bayerFrame, FrameBuffer *&embeddedBuffer);

	unsigned int ispOutputCount_;
};

class RPiCameraConfiguration : public CameraConfiguration
{
public:
	RPiCameraConfiguration(const RPiCameraData *data);

	CameraConfiguration::Status validateColorSpaces(ColorSpaceFlags flags);
	Status validate() override;

	/* Cache the combinedTransform_ that will be applied to the sensor */
	Transform combinedTransform_;

private:
	const RPiCameraData *data_;

	/*
	 * Store the colour spaces that all our streams will have. RGB format streams
	 * will have the same colorspace as YUV streams, with YCbCr field cleared and
	 * range set to full.
         */
	std::optional<ColorSpace> yuvColorSpace_;
	std::optional<ColorSpace> rgbColorSpace_;
};

class PipelineHandlerRPi : public PipelineHandler
{
public:
	PipelineHandlerRPi(CameraManager *manager);

	std::unique_ptr<CameraConfiguration> generateConfiguration(Camera *camera,
		const StreamRoles &roles) override;
	int configure(Camera *camera, CameraConfiguration *config) override;

	int exportFrameBuffers(Camera *camera, Stream *stream,
			       std::vector<std::unique_ptr<FrameBuffer>> *buffers) override;

	int start(Camera *camera, const ControlList *controls) override;
	void stopDevice(Camera *camera) override;

	int queueRequestDevice(Camera *camera, Request *request) override;

	bool match(DeviceEnumerator *enumerator) override;

	void releaseDevice(Camera *camera) override;

private:
	RPiCameraData *cameraData(Camera *camera)
	{
		return static_cast<RPiCameraData *>(camera->_d());
	}

	int registerCamera(MediaDevice *unicam, MediaDevice *isp, MediaEntity *sensorEntity);
	int queueAllBuffers(Camera *camera);
	int prepareBuffers(Camera *camera);
	void mapBuffers(Camera *camera, const RPi::BufferMap &buffers, unsigned int mask);
};

RPiCameraConfiguration::RPiCameraConfiguration(const RPiCameraData *data)
	: CameraConfiguration(), data_(data)
{
}

static const std::vector<ColorSpace> validColorSpaces = {
	ColorSpace::Sycc,
	ColorSpace::Smpte170m,
	ColorSpace::Rec709
};

static std::optional<ColorSpace> findValidColorSpace(const ColorSpace &colourSpace)
{
	for (auto cs : validColorSpaces) {
		if (colourSpace.primaries == cs.primaries &&
		    colourSpace.transferFunction == cs.transferFunction)
			return cs;
	}

	return std::nullopt;
}

static bool isRgb(const PixelFormat &pixFmt)
{
	const PixelFormatInfo &info = PixelFormatInfo::info(pixFmt);
	return info.colourEncoding == PixelFormatInfo::ColourEncodingRGB;
}

static bool isYuv(const PixelFormat &pixFmt)
{
	/* The code below would return true for raw mono streams, so weed those out first. */
	if (isRaw(pixFmt))
		return false;

	const PixelFormatInfo &info = PixelFormatInfo::info(pixFmt);
	return info.colourEncoding == PixelFormatInfo::ColourEncodingYUV;
}

/*
 * Raspberry Pi drivers expect the following colour spaces:
 * - V4L2_COLORSPACE_RAW for raw streams.
 * - One of V4L2_COLORSPACE_JPEG, V4L2_COLORSPACE_SMPTE170M, V4L2_COLORSPACE_REC709 for
 *   non-raw streams. Other fields such as transfer function, YCbCr encoding and
 *   quantisation are not used.
 *
 * The libcamera colour spaces that we wish to use corresponding to these are therefore:
 * - ColorSpace::Raw for V4L2_COLORSPACE_RAW
 * - ColorSpace::Sycc for V4L2_COLORSPACE_JPEG
 * - ColorSpace::Smpte170m for V4L2_COLORSPACE_SMPTE170M
 * - ColorSpace::Rec709 for V4L2_COLORSPACE_REC709
 */

CameraConfiguration::Status RPiCameraConfiguration::validateColorSpaces([[maybe_unused]] ColorSpaceFlags flags)
{
	Status status = Valid;
	yuvColorSpace_.reset();

	for (auto cfg : config_) {
		/* First fix up raw streams to have the "raw" colour space. */
		if (isRaw(cfg.pixelFormat)) {
			/* If there was no value here, that doesn't count as "adjusted". */
			if (cfg.colorSpace && cfg.colorSpace != ColorSpace::Raw) {
				status = Adjusted;
				cfg.colorSpace = ColorSpace::Raw;
			}
			continue;
		}

		/* Next we need to find our shared colour space. The first valid one will do. */
		if (cfg.colorSpace && !yuvColorSpace_)
			yuvColorSpace_ = findValidColorSpace(cfg.colorSpace.value());
	}

	/* If no colour space was given anywhere, choose sYCC. */
	if (!yuvColorSpace_)
		yuvColorSpace_ = ColorSpace::Sycc;

	/* Note the version of this that any RGB streams will have to use. */
	rgbColorSpace_ = yuvColorSpace_;
	rgbColorSpace_->ycbcrEncoding = ColorSpace::YcbcrEncoding::None;
	rgbColorSpace_->range = ColorSpace::Range::Full;

	/* Go through the streams again and force everyone to the same colour space. */
	for (auto cfg : config_) {
		if (cfg.colorSpace == ColorSpace::Raw)
			continue;

		if (isYuv(cfg.pixelFormat) && cfg.colorSpace != yuvColorSpace_) {
			/* Again, no value means "not adjusted". */
			if (cfg.colorSpace)
				status = Adjusted;
			cfg.colorSpace = yuvColorSpace_;
		}
		if (isRgb(cfg.pixelFormat) && cfg.colorSpace != rgbColorSpace_) {
			/* Be nice, and let the YUV version count as non-adjusted too. */
			if (cfg.colorSpace && cfg.colorSpace != yuvColorSpace_)
				status = Adjusted;
			cfg.colorSpace = rgbColorSpace_;
		}
	}

	return status;
}

CameraConfiguration::Status RPiCameraConfiguration::validate()
{
	Status status = Valid;

	if (config_.empty())
		return Invalid;

	status = validateColorSpaces(ColorSpaceFlag::StreamsShareColorSpace);

	/*
	 * Validate the requested transform against the sensor capabilities and
	 * rotation and store the final combined transform that configure() will
	 * need to apply to the sensor to save us working it out again.
	 */
	Transform requestedTransform = transform;
	combinedTransform_ = data_->sensor_->validateTransform(&transform);
	if (transform != requestedTransform)
		status = Adjusted;

	unsigned int rawCount = 0, outCount = 0, count = 0, maxIndex = 0;
	std::pair<int, Size> outSize[2];
	Size maxSize;
	for (StreamConfiguration &cfg : config_) {
		if (isRaw(cfg.pixelFormat)) {
			/*
			 * Calculate the best sensor mode we can use based on
			 * the user request.
			 */
			V4L2VideoDevice *unicam = data_->unicam_[Unicam::Image].dev();
			const PixelFormatInfo &info = PixelFormatInfo::info(cfg.pixelFormat);
			unsigned int bitDepth = info.isValid() ? info.bitsPerPixel : defaultRawBitDepth;
			V4L2SubdeviceFormat sensorFormat = findBestFormat(data_->sensorFormats_, cfg.size, bitDepth);
			BayerFormat::Packing packing = BayerFormat::Packing::CSI2;
			if (info.isValid() && !info.packed)
				packing = BayerFormat::Packing::None;
			V4L2DeviceFormat unicamFormat = toV4L2DeviceFormat(unicam, sensorFormat, packing);
			int ret = unicam->tryFormat(&unicamFormat);
			if (ret)
				return Invalid;

			/*
			 * Some sensors change their Bayer order when they are
			 * h-flipped or v-flipped, according to the transform.
			 * If this one does, we must advertise the transformed
			 * Bayer order in the raw stream. Note how we must
			 * fetch the "native" (i.e. untransformed) Bayer order,
			 * because the sensor may currently be flipped!
			 */
			V4L2PixelFormat fourcc = unicamFormat.fourcc;
			if (data_->flipsAlterBayerOrder_) {
				BayerFormat bayer = BayerFormat::fromV4L2PixelFormat(fourcc);
				bayer.order = data_->nativeBayerOrder_;
				bayer = bayer.transform(combinedTransform_);
				fourcc = bayer.toV4L2PixelFormat();
			}

			PixelFormat unicamPixFormat = fourcc.toPixelFormat();
			if (cfg.size != unicamFormat.size ||
			    cfg.pixelFormat != unicamPixFormat) {
				cfg.size = unicamFormat.size;
				cfg.pixelFormat = unicamPixFormat;
				status = Adjusted;
			}

			cfg.stride = unicamFormat.planes[0].bpl;
			cfg.frameSize = unicamFormat.planes[0].size;

			rawCount++;
		} else {
			outSize[outCount] = std::make_pair(count, cfg.size);
			/* Record the largest resolution for fixups later. */
			if (maxSize < cfg.size) {
				maxSize = cfg.size;
				maxIndex = outCount;
			}
			outCount++;
		}

		count++;

		/* Can only output 1 RAW stream, or 2 YUV/RGB streams. */
		if (rawCount > 1 || outCount > 2) {
			LOG(RPI, Error) << "Invalid number of streams requested";
			return Invalid;
		}
	}

	/*
	 * Now do any fixups needed. For the two ISP outputs, one stream must be
	 * equal or smaller than the other in all dimensions.
	 */
	for (unsigned int i = 0; i < outCount; i++) {
		outSize[i].second.width = std::min(outSize[i].second.width,
						   maxSize.width);
		outSize[i].second.height = std::min(outSize[i].second.height,
						    maxSize.height);

		if (config_.at(outSize[i].first).size != outSize[i].second) {
			config_.at(outSize[i].first).size = outSize[i].second;
			status = Adjusted;
		}

		/*
		 * Also validate the correct pixel formats here.
		 * Note that Output0 and Output1 support a different
		 * set of formats.
		 *
		 * Output 0 must be for the largest resolution. We will
		 * have that fixed up in the code above.
		 *
		 */
		StreamConfiguration &cfg = config_.at(outSize[i].first);
		PixelFormat &cfgPixFmt = cfg.pixelFormat;
		V4L2VideoDevice *dev;

		if (i == maxIndex)
			dev = data_->isp_[Isp::Output0].dev();
		else
			dev = data_->isp_[Isp::Output1].dev();

		V4L2VideoDevice::Formats fmts = dev->formats();

		if (fmts.find(dev->toV4L2PixelFormat(cfgPixFmt)) == fmts.end()) {
			/* If we cannot find a native format, use a default one. */
			cfgPixFmt = formats::NV12;
			status = Adjusted;
		}

		V4L2DeviceFormat format;
		format.fourcc = dev->toV4L2PixelFormat(cfg.pixelFormat);
		format.size = cfg.size;
		/* We want to send the associated YCbCr info through to the driver. */
		format.colorSpace = yuvColorSpace_;

		LOG(RPI, Debug)
			<< "Try color space " << ColorSpace::toString(cfg.colorSpace);

		int ret = dev->tryFormat(&format);
		if (ret)
			return Invalid;

		/*
		 * But for RGB streams, the YCbCr info gets overwritten on the way back
		 * so we must check against what the stream cfg says, not what we actually
		 * requested (which carefully included the YCbCr info)!
		 */
		if (cfg.colorSpace != format.colorSpace) {
			status = Adjusted;
			LOG(RPI, Debug)
				<< "Color space changed from "
				<< ColorSpace::toString(cfg.colorSpace) << " to "
				<< ColorSpace::toString(format.colorSpace);
		}

		cfg.colorSpace = format.colorSpace;

		cfg.stride = format.planes[0].bpl;
		cfg.frameSize = format.planes[0].size;

	}

	return status;
}

PipelineHandlerRPi::PipelineHandlerRPi(CameraManager *manager)
	: PipelineHandler(manager)
{
}

std::unique_ptr<CameraConfiguration>
PipelineHandlerRPi::generateConfiguration(Camera *camera, const StreamRoles &roles)
{
	RPiCameraData *data = cameraData(camera);
	std::unique_ptr<CameraConfiguration> config =
		std::make_unique<RPiCameraConfiguration>(data);
	V4L2SubdeviceFormat sensorFormat;
	unsigned int bufferCount;
	PixelFormat pixelFormat;
	V4L2VideoDevice::Formats fmts;
	Size size;
	std::optional<ColorSpace> colorSpace;

	if (roles.empty())
		return config;

	unsigned int rawCount = 0;
	unsigned int outCount = 0;
	Size sensorSize = data->sensor_->resolution();
	for (const StreamRole role : roles) {
		switch (role) {
		case StreamRole::Raw:
			size = sensorSize;
			sensorFormat = findBestFormat(data->sensorFormats_, size, defaultRawBitDepth);
			pixelFormat = mbusCodeToPixelFormat(sensorFormat.mbus_code,
							    BayerFormat::Packing::CSI2);
			ASSERT(pixelFormat.isValid());
			colorSpace = ColorSpace::Raw;
			bufferCount = 2;
			rawCount++;
			break;

		case StreamRole::StillCapture:
			fmts = data->isp_[Isp::Output0].dev()->formats();
			pixelFormat = formats::NV12;
			/*
			 * Still image codecs usually expect the sYCC color space.
			 * Even RGB codecs will be fine as the RGB we get with the
			 * sYCC color space is the same as sRGB.
			 */
			colorSpace = ColorSpace::Sycc;
			/* Return the largest sensor resolution. */
			size = sensorSize;
			bufferCount = 1;
			outCount++;
			break;

		case StreamRole::VideoRecording:
			/*
			 * The colour denoise algorithm requires the analysis
			 * image, produced by the second ISP output, to be in
			 * YUV420 format. Select this format as the default, to
			 * maximize chances that it will be picked by
			 * applications and enable usage of the colour denoise
			 * algorithm.
			 */
			fmts = data->isp_[Isp::Output0].dev()->formats();
			pixelFormat = formats::YUV420;
			/*
			 * Choose a color space appropriate for video recording.
			 * Rec.709 will be a good default for HD resolutions.
			 */
			colorSpace = ColorSpace::Rec709;
			size = { 1920, 1080 };
			bufferCount = 4;
			outCount++;
			break;

		case StreamRole::Viewfinder:
			fmts = data->isp_[Isp::Output0].dev()->formats();
			pixelFormat = formats::ARGB8888;
			colorSpace = ColorSpace::Sycc;
			size = { 800, 600 };
			bufferCount = 4;
			outCount++;
			break;

		default:
			LOG(RPI, Error) << "Requested stream role not supported: "
					<< role;
			return nullptr;
		}

		if (rawCount > 1 || outCount > 2) {
			LOG(RPI, Error) << "Invalid stream roles requested";
			return nullptr;
		}

		std::map<PixelFormat, std::vector<SizeRange>> deviceFormats;
		if (role == StreamRole::Raw) {
			/* Translate the MBUS codes to a PixelFormat. */
			for (const auto &format : data->sensorFormats_) {
				PixelFormat pf = mbusCodeToPixelFormat(format.first,
								       BayerFormat::Packing::CSI2);
				if (pf.isValid())
					deviceFormats.emplace(std::piecewise_construct,	std::forward_as_tuple(pf),
						std::forward_as_tuple(format.second.begin(), format.second.end()));
			}
		} else {
			/*
			 * Translate the V4L2PixelFormat to PixelFormat. Note that we
			 * limit the recommended largest ISP output size to match the
			 * sensor resolution.
			 */
			for (const auto &format : fmts) {
				PixelFormat pf = format.first.toPixelFormat();
				if (pf.isValid()) {
					const SizeRange &ispSizes = format.second[0];
					deviceFormats[pf].emplace_back(ispSizes.min, sensorSize,
								       ispSizes.hStep, ispSizes.vStep);
				}
			}
		}

		/* Add the stream format based on the device node used for the use case. */
		StreamFormats formats(deviceFormats);
		StreamConfiguration cfg(formats);
		cfg.size = size;
		cfg.pixelFormat = pixelFormat;
		cfg.colorSpace = colorSpace;
		cfg.bufferCount = bufferCount;
		config->addConfiguration(cfg);
	}

	config->validate();

	return config;
}

int PipelineHandlerRPi::configure(Camera *camera, CameraConfiguration *config)
{
	RPiCameraData *data = cameraData(camera);
	int ret;

	/* Start by freeing all buffers and reset the Unicam and ISP stream states. */
	data->freeBuffers();
	for (auto const stream : data->streams_)
		stream->setExternal(false);

	BayerFormat::Packing packing = BayerFormat::Packing::CSI2;
	Size maxSize, sensorSize;
	unsigned int maxIndex = 0;
	bool rawStream = false;
	unsigned int bitDepth = defaultRawBitDepth;

	/*
	 * Look for the RAW stream (if given) size as well as the largest
	 * ISP output size.
	 */
	for (unsigned i = 0; i < config->size(); i++) {
		StreamConfiguration &cfg = config->at(i);

		if (isRaw(cfg.pixelFormat)) {
			/*
			 * If we have been given a RAW stream, use that size
			 * for setting up the sensor.
			 */
			sensorSize = cfg.size;
			rawStream = true;
			/* Check if the user has explicitly set an unpacked format. */
			BayerFormat bayerFormat = BayerFormat::fromPixelFormat(cfg.pixelFormat);
			packing = bayerFormat.packing;
			bitDepth = bayerFormat.bitDepth;
		} else {
			if (cfg.size > maxSize) {
				maxSize = config->at(i).size;
				maxIndex = i;
			}
		}
	}

	/* First calculate the best sensor mode we can use based on the user request. */
	V4L2SubdeviceFormat sensorFormat = findBestFormat(data->sensorFormats_, rawStream ? sensorSize : maxSize, bitDepth);
	/* Apply any cached transform. */
	const RPiCameraConfiguration *rpiConfig = static_cast<const RPiCameraConfiguration *>(config);
	sensorFormat.transform = rpiConfig->combinedTransform_;
	/* Finally apply the format on the sensor. */
	ret = data->sensor_->setFormat(&sensorFormat);
	if (ret)
		return ret;

	V4L2VideoDevice *unicam = data->unicam_[Unicam::Image].dev();
	V4L2DeviceFormat unicamFormat = toV4L2DeviceFormat(unicam, sensorFormat, packing);
	ret = unicam->setFormat(&unicamFormat);
	if (ret)
		return ret;

	LOG(RPI, Info) << "Sensor: " << camera->id()
		       << " - Selected sensor format: " << sensorFormat
		       << " - Selected unicam format: " << unicamFormat;

	ret = data->isp_[Isp::Input].dev()->setFormat(&unicamFormat);
	if (ret)
		return ret;

	/*
	 * See which streams are requested, and route the user
	 * StreamConfiguration appropriately.
	 */
	V4L2DeviceFormat format;
	bool output0Set = false, output1Set = false;
	for (unsigned i = 0; i < config->size(); i++) {
		StreamConfiguration &cfg = config->at(i);

		if (isRaw(cfg.pixelFormat)) {
			cfg.setStream(&data->unicam_[Unicam::Image]);
			data->unicam_[Unicam::Image].setExternal(true);
			continue;
		}

		/* The largest resolution gets routed to the ISP Output 0 node. */
		RPi::Stream *stream = i == maxIndex ? &data->isp_[Isp::Output0]
						    : &data->isp_[Isp::Output1];

		V4L2PixelFormat fourcc = stream->dev()->toV4L2PixelFormat(cfg.pixelFormat);
		format.size = cfg.size;
		format.fourcc = fourcc;
		format.colorSpace = cfg.colorSpace;

		LOG(RPI, Debug) << "Setting " << stream->name() << " to "
				<< format;

		ret = stream->dev()->setFormat(&format);
		if (ret)
			return -EINVAL;

		if (format.size != cfg.size || format.fourcc != fourcc) {
			LOG(RPI, Error)
				<< "Failed to set requested format on " << stream->name()
				<< ", returned " << format;
			return -EINVAL;
		}

		LOG(RPI, Debug)
			<< "Stream " << stream->name() << " has color space "
			<< ColorSpace::toString(cfg.colorSpace);

		cfg.setStream(stream);
		stream->setExternal(true);

		if (i != maxIndex)
			output1Set = true;
		else
			output0Set = true;
	}

	/*
	 * If ISP::Output0 stream has not been configured by the application,
	 * we must allow the hardware to generate an output so that the data
	 * flow in the pipeline handler remains consistent, and we still generate
	 * statistics for the IPA to use. So enable the output at a very low
	 * resolution for internal use.
	 *
	 * \todo Allow the pipeline to work correctly without Output0 and only
	 * statistics coming from the hardware.
	 */
	if (!output0Set) {
		V4L2VideoDevice *dev = data->isp_[Isp::Output0].dev();

		maxSize = Size(320, 240);
		format = {};
		format.size = maxSize;
		format.fourcc = dev->toV4L2PixelFormat(formats::YUV420);
		/* No one asked for output, so the color space doesn't matter. */
		format.colorSpace = ColorSpace::Sycc;
		ret = dev->setFormat(&format);
		if (ret) {
			LOG(RPI, Error)
				<< "Failed to set default format on ISP Output0: "
				<< ret;
			return -EINVAL;
		}

		LOG(RPI, Debug) << "Defaulting ISP Output0 format to "
				<< format;
	}

	/*
	 * If ISP::Output1 stream has not been requested by the application, we
	 * set it up for internal use now. This second stream will be used for
	 * fast colour denoise, and must be a quarter resolution of the ISP::Output0
	 * stream. However, also limit the maximum size to 1200 pixels in the
	 * larger dimension, just to avoid being wasteful with buffer allocations
	 * and memory bandwidth.
	 *
	 * \todo If Output 1 format is not YUV420, Output 1 ought to be disabled as
	 * colour denoise will not run.
	 */
	if (!output1Set) {
		V4L2VideoDevice *dev = data->isp_[Isp::Output1].dev();

		V4L2DeviceFormat output1Format;
		constexpr Size maxDimensions(1200, 1200);
		const Size limit = maxDimensions.boundedToAspectRatio(format.size);

		output1Format.size = (format.size / 2).boundedTo(limit).alignedDownTo(2, 2);
		output1Format.colorSpace = format.colorSpace;
		output1Format.fourcc = dev->toV4L2PixelFormat(formats::YUV420);

		LOG(RPI, Debug) << "Setting ISP Output1 (internal) to "
				<< output1Format;

		ret = dev->setFormat(&output1Format);
		if (ret) {
			LOG(RPI, Error) << "Failed to set format on ISP Output1: "
					<< ret;
			return -EINVAL;
		}
	}

	/* ISP statistics output format. */
	format = {};
	format.fourcc = V4L2PixelFormat(V4L2_META_FMT_BCM2835_ISP_STATS);
	ret = data->isp_[Isp::Stats].dev()->setFormat(&format);
	if (ret) {
		LOG(RPI, Error) << "Failed to set format on ISP stats stream: "
				<< format;
		return ret;
	}

	/* Figure out the smallest selection the ISP will allow. */
	Rectangle testCrop(0, 0, 1, 1);
	data->isp_[Isp::Input].dev()->setSelection(V4L2_SEL_TGT_CROP, &testCrop);
	data->ispMinCropSize_ = testCrop.size();

	/* Adjust aspect ratio by providing crops on the input image. */
	Size size = unicamFormat.size.boundedToAspectRatio(maxSize);
	Rectangle crop = size.centeredTo(Rectangle(unicamFormat.size).center());
	Rectangle defaultCrop = crop;
	data->ispCrop_ = crop;

	data->isp_[Isp::Input].dev()->setSelection(V4L2_SEL_TGT_CROP, &crop);

	ipa::RPi::IPAConfigResult result;
	ret = data->configureIPA(config, &result);
	if (ret)
		LOG(RPI, Error) << "Failed to configure the IPA: " << ret;

	/*
	 * Set the scaler crop to the value we are using (scaled to native sensor
	 * coordinates).
	 */
	data->scalerCrop_ = data->scaleIspCrop(data->ispCrop_);

	/*
	 * Configure the Unicam embedded data output format only if the sensor
	 * supports it.
	 */
	if (data->sensorMetadata_) {
		V4L2SubdeviceFormat embeddedFormat;

		data->sensor_->device()->getFormat(1, &embeddedFormat);
		format.fourcc = V4L2PixelFormat(V4L2_META_FMT_SENSOR_DATA);
		format.planes[0].size = embeddedFormat.size.width * embeddedFormat.size.height;

		LOG(RPI, Debug) << "Setting embedded data format.";
		ret = data->unicam_[Unicam::Embedded].dev()->setFormat(&format);
		if (ret) {
			LOG(RPI, Error) << "Failed to set format on Unicam embedded: "
					<< format;
			return ret;
		}
	}

	/*
	 * Update the ScalerCropMaximum to the correct value for this camera mode.
	 * For us, it's the same as the "analogue crop".
	 *
	 * \todo Make this property the ScalerCrop maximum value when dynamic
	 * controls are available and set it at validate() time
	 */
	data->properties_.set(properties::ScalerCropMaximum, data->sensorInfo_.analogCrop);

	/* Store the mode sensitivity for the application. */
	data->properties_.set(properties::SensorSensitivity, result.modeSensitivity);

	/* Update the controls that the Raspberry Pi IPA can handle. */
	ControlInfoMap::Map ctrlMap;
	for (auto const &c : result.controlInfo)
		ctrlMap.emplace(c.first, c.second);

	/* Add the ScalerCrop control limits based on the current mode. */
	Rectangle ispMinCrop = data->scaleIspCrop(Rectangle(data->ispMinCropSize_));
	defaultCrop = data->scaleIspCrop(defaultCrop);
	ctrlMap[&controls::ScalerCrop] = ControlInfo(ispMinCrop, data->sensorInfo_.analogCrop, defaultCrop);

	data->controlInfo_ = ControlInfoMap(std::move(ctrlMap), result.controlInfo.idmap());

	/* Setup the Video Mux/Bridge entities. */
	for (auto &[device, link] : data->bridgeDevices_) {
		/*
		 * Start by disabling all the sink pad links on the devices in the
		 * cascade, with the exception of the link connecting the device.
		 */
		for (const MediaPad *p : device->entity()->pads()) {
			if (!(p->flags() & MEDIA_PAD_FL_SINK))
				continue;

			for (MediaLink *l : p->links()) {
				if (l != link)
					l->setEnabled(false);
			}
		}

		/*
		 * Next, enable the entity -> entity links, and setup the pad format.
		 *
		 * \todo Some bridge devices may chainge the media bus code, so we
		 * ought to read the source pad format and propagate it to the sink pad.
		 */
		link->setEnabled(true);
		const MediaPad *sinkPad = link->sink();
		ret = device->setFormat(sinkPad->index(), &sensorFormat);
		if (ret) {
			LOG(RPI, Error) << "Failed to set format on " << device->entity()->name()
					<< " pad " << sinkPad->index()
					<< " with format  " << format
					<< ": " << ret;
			return ret;
		}

		LOG(RPI, Debug) << "Configured media link on device " << device->entity()->name()
				<< " on pad " << sinkPad->index();
	}

	return ret;
}

int PipelineHandlerRPi::exportFrameBuffers([[maybe_unused]] Camera *camera, Stream *stream,
					   std::vector<std::unique_ptr<FrameBuffer>> *buffers)
{
	RPi::Stream *s = static_cast<RPi::Stream *>(stream);
	unsigned int count = stream->configuration().bufferCount;
	int ret = s->dev()->exportBuffers(count, buffers);

	s->setExportedBuffers(buffers);

	return ret;
}

int PipelineHandlerRPi::start(Camera *camera, const ControlList *controls)
{
	RPiCameraData *data = cameraData(camera);
	int ret;

	/* Check if a ScalerCrop control was specified. */
	if (controls)
		data->applyScalerCrop(*controls);

	/* Start the IPA. */
	ipa::RPi::StartConfig startConfig;
	data->ipa_->start(controls ? *controls : ControlList{ controls::controls },
			  &startConfig);

	/* Apply any gain/exposure settings that the IPA may have passed back. */
	if (!startConfig.controls.empty())
		data->setSensorControls(startConfig.controls);

	/* Configure the number of dropped frames required on startup. */
	data->dropFrameCount_ = data->config_.disableStartupFrameDrops
			      ? 0 : startConfig.dropFrameCount;

	for (auto const stream : data->streams_)
		stream->resetBuffers();

	if (!data->buffersAllocated_) {
		/* Allocate buffers for internal pipeline usage. */
		ret = prepareBuffers(camera);
		if (ret) {
			LOG(RPI, Error) << "Failed to allocate buffers";
			data->freeBuffers();
			stop(camera);
			return ret;
		}
		data->buffersAllocated_ = true;
	}

	/* We need to set the dropFrameCount_ before queueing buffers. */
	ret = queueAllBuffers(camera);
	if (ret) {
		LOG(RPI, Error) << "Failed to queue buffers";
		stop(camera);
		return ret;
	}

	/* Enable SOF event generation. */
	data->unicam_[Unicam::Image].dev()->setFrameStartEnabled(true);

	/*
	 * Reset the delayed controls with the gain and exposure values set by
	 * the IPA.
	 */
	data->delayedCtrls_->reset(0);

	data->state_ = RPiCameraData::State::Idle;

	/* Start all streams. */
	for (auto const stream : data->streams_) {
		ret = stream->dev()->streamOn();
		if (ret) {
			stop(camera);
			return ret;
		}
	}

	/*
	 * Set the dequeue timeout to the larger of 2x the maximum possible
	 * frame duration or 1 second.
	 */
	utils::Duration timeout =
		std::max<utils::Duration>(1s, 2 * startConfig.maxSensorFrameLengthMs * 1ms);
	data->unicam_[Unicam::Image].dev()->setDequeueTimeout(timeout);

	return 0;
}

void PipelineHandlerRPi::stopDevice(Camera *camera)
{
	RPiCameraData *data = cameraData(camera);

	data->state_ = RPiCameraData::State::Stopped;

	/* Disable SOF event generation. */
	data->unicam_[Unicam::Image].dev()->setFrameStartEnabled(false);

	for (auto const stream : data->streams_)
		stream->dev()->streamOff();

	data->clearIncompleteRequests();
	data->bayerQueue_ = {};
	data->embeddedQueue_ = {};

	/* Stop the IPA. */
	data->ipa_->stop();
}

int PipelineHandlerRPi::queueRequestDevice(Camera *camera, Request *request)
{
	RPiCameraData *data = cameraData(camera);

	if (!data->isRunning())
		return -EINVAL;

	LOG(RPI, Debug) << "queueRequestDevice: New request.";

	/* Push all buffers supplied in the Request to the respective streams. */
	for (auto stream : data->streams_) {
		if (!stream->isExternal())
			continue;

		FrameBuffer *buffer = request->findBuffer(stream);
		if (buffer && stream->getBufferId(buffer) == -1) {
			/*
			 * This buffer is not recognised, so it must have been allocated
			 * outside the v4l2 device. Store it in the stream buffer list
			 * so we can track it.
			 */
			stream->setExternalBuffer(buffer);
		}

		/*
		 * If no buffer is provided by the request for this stream, we
		 * queue a nullptr to the stream to signify that it must use an
		 * internally allocated buffer for this capture request. This
		 * buffer will not be given back to the application, but is used
		 * to support the internal pipeline flow.
		 *
		 * The below queueBuffer() call will do nothing if there are not
		 * enough internal buffers allocated, but this will be handled by
		 * queuing the request for buffers in the RPiStream object.
		 */
		int ret = stream->queueBuffer(buffer);
		if (ret)
			return ret;
	}

	/* Push the request to the back of the queue. */
	data->requestQueue_.push_back(request);
	data->handleState();

	return 0;
}

bool PipelineHandlerRPi::match(DeviceEnumerator *enumerator)
{
	DeviceMatch unicam("unicam");
	MediaDevice *unicamDevice = acquireMediaDevice(enumerator, unicam);

	if (!unicamDevice) {
		LOG(RPI, Debug) << "Unable to acquire a Unicam instance";
		return false;
	}

	DeviceMatch isp("bcm2835-isp");
	MediaDevice *ispDevice = acquireMediaDevice(enumerator, isp);

	if (!ispDevice) {
		LOG(RPI, Debug) << "Unable to acquire ISP instance";
		return false;
	}

	/*
	 * The loop below is used to register multiple cameras behind one or more
	 * video mux devices that are attached to a particular Unicam instance.
	 * Obviously these cameras cannot be used simultaneously.
	 */
	unsigned int numCameras = 0;
	for (MediaEntity *entity : unicamDevice->entities()) {
		if (entity->function() != MEDIA_ENT_F_CAM_SENSOR)
			continue;

		int ret = registerCamera(unicamDevice, ispDevice, entity);
		if (ret)
			LOG(RPI, Error) << "Failed to register camera "
					<< entity->name() << ": " << ret;
		else
			numCameras++;
	}

	return !!numCameras;
}

void PipelineHandlerRPi::releaseDevice(Camera *camera)
{
	RPiCameraData *data = cameraData(camera);
	data->freeBuffers();
}

int PipelineHandlerRPi::registerCamera(MediaDevice *unicam, MediaDevice *isp, MediaEntity *sensorEntity)
{
	std::unique_ptr<RPiCameraData> data = std::make_unique<RPiCameraData>(this);

	if (!data->dmaHeap_.isValid())
		return -ENOMEM;

	MediaEntity *unicamImage = unicam->getEntityByName("unicam-image");
	MediaEntity *ispOutput0 = isp->getEntityByName("bcm2835-isp0-output0");
	MediaEntity *ispCapture1 = isp->getEntityByName("bcm2835-isp0-capture1");
	MediaEntity *ispCapture2 = isp->getEntityByName("bcm2835-isp0-capture2");
	MediaEntity *ispCapture3 = isp->getEntityByName("bcm2835-isp0-capture3");

	if (!unicamImage || !ispOutput0 || !ispCapture1 || !ispCapture2 || !ispCapture3)
		return -ENOENT;

	/* Locate and open the unicam video streams. */
	data->unicam_[Unicam::Image] = RPi::Stream("Unicam Image", unicamImage);

	/* An embedded data node will not be present if the sensor does not support it. */
	MediaEntity *unicamEmbedded = unicam->getEntityByName("unicam-embedded");
	if (unicamEmbedded) {
		data->unicam_[Unicam::Embedded] = RPi::Stream("Unicam Embedded", unicamEmbedded);
		data->unicam_[Unicam::Embedded].dev()->bufferReady.connect(data.get(),
									   &RPiCameraData::unicamBufferDequeue);
	}

	/* Tag the ISP input stream as an import stream. */
	data->isp_[Isp::Input] = RPi::Stream("ISP Input", ispOutput0, true);
	data->isp_[Isp::Output0] = RPi::Stream("ISP Output0", ispCapture1);
	data->isp_[Isp::Output1] = RPi::Stream("ISP Output1", ispCapture2);
	data->isp_[Isp::Stats] = RPi::Stream("ISP Stats", ispCapture3);

	/* Wire up all the buffer connections. */
	data->unicam_[Unicam::Image].dev()->dequeueTimeout.connect(data.get(), &RPiCameraData::unicamTimeout);
	data->unicam_[Unicam::Image].dev()->frameStart.connect(data.get(), &RPiCameraData::frameStarted);
	data->unicam_[Unicam::Image].dev()->bufferReady.connect(data.get(), &RPiCameraData::unicamBufferDequeue);
	data->isp_[Isp::Input].dev()->bufferReady.connect(data.get(), &RPiCameraData::ispInputDequeue);
	data->isp_[Isp::Output0].dev()->bufferReady.connect(data.get(), &RPiCameraData::ispOutputDequeue);
	data->isp_[Isp::Output1].dev()->bufferReady.connect(data.get(), &RPiCameraData::ispOutputDequeue);
	data->isp_[Isp::Stats].dev()->bufferReady.connect(data.get(), &RPiCameraData::ispOutputDequeue);

	data->sensor_ = std::make_unique<CameraSensor>(sensorEntity);
	if (!data->sensor_)
		return -EINVAL;

	if (data->sensor_->init())
		return -EINVAL;

	/*
	 * Enumerate all the Video Mux/Bridge devices across the sensor -> unicam
	 * chain. There may be a cascade of devices in this chain!
	 */
	MediaLink *link = sensorEntity->getPadByIndex(0)->links()[0];
	data->enumerateVideoDevices(link);

	data->sensorFormats_ = populateSensorFormats(data->sensor_);

	ipa::RPi::IPAInitResult result;
	if (data->loadIPA(&result)) {
		LOG(RPI, Error) << "Failed to load a suitable IPA library";
		return -EINVAL;
	}

	if (result.sensorConfig.sensorMetadata ^ !!unicamEmbedded) {
		LOG(RPI, Warning) << "Mismatch between Unicam and CamHelper for embedded data usage!";
		result.sensorConfig.sensorMetadata = false;
		if (unicamEmbedded)
			data->unicam_[Unicam::Embedded].dev()->bufferReady.disconnect();
	}

	/*
	 * Open all Unicam and ISP streams. The exception is the embedded data
	 * stream, which only gets opened below if the IPA reports that the sensor
	 * supports embedded data.
	 *
	 * The below grouping is just for convenience so that we can easily
	 * iterate over all streams in one go.
	 */
	data->streams_.push_back(&data->unicam_[Unicam::Image]);
	if (result.sensorConfig.sensorMetadata)
		data->streams_.push_back(&data->unicam_[Unicam::Embedded]);

	for (auto &stream : data->isp_)
		data->streams_.push_back(&stream);

	for (auto stream : data->streams_) {
		int ret = stream->dev()->open();
		if (ret)
			return ret;
	}

	if (!data->unicam_[Unicam::Image].dev()->caps().hasMediaController()) {
		LOG(RPI, Error) << "Unicam driver does not use the MediaController, please update your kernel!";
		return -EINVAL;
	}

	/*
	 * Setup our delayed control writer with the sensor default
	 * gain and exposure delays. Mark VBLANK for priority write.
	 */
	std::unordered_map<uint32_t, RPi::DelayedControls::ControlParams> params = {
		{ V4L2_CID_ANALOGUE_GAIN, { result.sensorConfig.gainDelay, false } },
		{ V4L2_CID_EXPOSURE, { result.sensorConfig.exposureDelay, false } },
		{ V4L2_CID_HBLANK, { result.sensorConfig.hblankDelay, false } },
		{ V4L2_CID_VBLANK, { result.sensorConfig.vblankDelay, true } }
	};
	data->delayedCtrls_ = std::make_unique<RPi::DelayedControls>(data->sensor_->device(), params);
	data->sensorMetadata_ = result.sensorConfig.sensorMetadata;

	/* Register initial controls that the Raspberry Pi IPA can handle. */
	data->controlInfo_ = std::move(result.controlInfo);

	/* Initialize the camera properties. */
	data->properties_ = data->sensor_->properties();

	/*
	 * The V4L2_CID_NOTIFY_GAINS control, if present, is used to inform the
	 * sensor of the colour gains. It is defined to be a linear gain where
	 * the default value represents a gain of exactly one.
	 */
	auto it = data->sensor_->controls().find(V4L2_CID_NOTIFY_GAINS);
	if (it != data->sensor_->controls().end())
		data->notifyGainsUnity_ = it->second.def().get<int32_t>();

	/*
	 * Set a default value for the ScalerCropMaximum property to show
	 * that we support its use, however, initialise it to zero because
	 * it's not meaningful until a camera mode has been chosen.
	 */
	data->properties_.set(properties::ScalerCropMaximum, Rectangle{});

	/*
	 * We cache two things about the sensor in relation to transforms
	 * (meaning horizontal and vertical flips): if they affect the Bayer
	 * ordering, and what the "native" Bayer order is, when no transforms
	 * are applied.
	 *
	 * We note that the sensor's cached list of supported formats is
	 * already in the "native" order, with any flips having been undone.
	 */
	const V4L2Subdevice *sensor = data->sensor_->device();
	const struct v4l2_query_ext_ctrl *hflipCtrl = sensor->controlInfo(V4L2_CID_HFLIP);
	if (hflipCtrl) {
		/* We assume it will support vflips too... */
		data->flipsAlterBayerOrder_ = hflipCtrl->flags & V4L2_CTRL_FLAG_MODIFY_LAYOUT;
	}

	/* Look for a valid Bayer format. */
	BayerFormat bayerFormat;
	for (const auto &iter : data->sensorFormats_) {
		bayerFormat = BayerFormat::fromMbusCode(iter.first);
		if (bayerFormat.isValid())
			break;
	}

	if (!bayerFormat.isValid()) {
		LOG(RPI, Error) << "No Bayer format found";
		return -EINVAL;
	}
	data->nativeBayerOrder_ = bayerFormat.order;

	/*
	 * List the available streams an application may request. At present, we
	 * do not advertise Unicam Embedded and ISP Statistics streams, as there
	 * is no mechanism for the application to request non-image buffer formats.
	 */
	std::set<Stream *> streams;
	streams.insert(&data->unicam_[Unicam::Image]);
	streams.insert(&data->isp_[Isp::Output0]);
	streams.insert(&data->isp_[Isp::Output1]);

	int ret = data->loadPipelineConfiguration();
	if (ret) {
		LOG(RPI, Error) << "Unable to load pipeline configuration";
		return ret;
	}

	/* Create and register the camera. */
	const std::string &id = data->sensor_->id();
	std::shared_ptr<Camera> camera =
		Camera::create(std::move(data), id, streams);
	PipelineHandler::registerCamera(std::move(camera));

	LOG(RPI, Info) << "Registered camera " << id
		       << " to Unicam device " << unicam->deviceNode()
		       << " and ISP device " << isp->deviceNode();
	return 0;
}

int PipelineHandlerRPi::queueAllBuffers(Camera *camera)
{
	RPiCameraData *data = cameraData(camera);
	int ret;

	for (auto const stream : data->streams_) {
		if (!stream->isExternal()) {
			ret = stream->queueAllBuffers();
			if (ret < 0)
				return ret;
		} else {
			/*
			 * For external streams, we must queue up a set of internal
			 * buffers to handle the number of drop frames requested by
			 * the IPA. This is done by passing nullptr in queueBuffer().
			 *
			 * The below queueBuffer() call will do nothing if there
			 * are not enough internal buffers allocated, but this will
			 * be handled by queuing the request for buffers in the
			 * RPiStream object.
			 */
			unsigned int i;
			for (i = 0; i < data->dropFrameCount_; i++) {
				ret = stream->queueBuffer(nullptr);
				if (ret)
					return ret;
			}
		}
	}

	return 0;
}

int PipelineHandlerRPi::prepareBuffers(Camera *camera)
{
	RPiCameraData *data = cameraData(camera);
	unsigned int numRawBuffers = 0;
	int ret;

	for (Stream *s : camera->streams()) {
		if (isRaw(s->configuration().pixelFormat)) {
			numRawBuffers = s->configuration().bufferCount;
			break;
		}
	}

	/* Decide how many internal buffers to allocate. */
	for (auto const stream : data->streams_) {
		unsigned int numBuffers;
		/*
		 * For Unicam, allocate a minimum number of buffers for internal
		 * use as we want to avoid any frame drops.
		 */
		const unsigned int minBuffers = data->config_.minTotalUnicamBuffers;
		if (stream == &data->unicam_[Unicam::Image]) {
			/*
			 * If an application has configured a RAW stream, allocate
			 * additional buffers to make up the minimum, but ensure
			 * we have at least minUnicamBuffers of internal buffers
			 * to use to minimise frame drops.
			 */
			numBuffers = std::max<int>(data->config_.minUnicamBuffers,
						   minBuffers - numRawBuffers);
		} else if (stream == &data->isp_[Isp::Input]) {
			/*
			 * ISP input buffers are imported from Unicam, so follow
			 * similar logic as above to count all the RAW buffers
			 * available.
			 */
			numBuffers = numRawBuffers +
				     std::max<int>(data->config_.minUnicamBuffers,
						   minBuffers - numRawBuffers);

		} else if (stream == &data->unicam_[Unicam::Embedded]) {
			/*
			 * Embedded data buffers are (currently) for internal use,
			 * so allocate the minimum required to avoid frame drops.
			 */
			numBuffers = minBuffers;
		} else {
			/*
			 * Since the ISP runs synchronous with the IPA and requests,
			 * we only ever need one set of internal buffers. Any buffers
			 * the application wants to hold onto will already be exported
			 * through PipelineHandlerRPi::exportFrameBuffers().
			 */
			numBuffers = 1;
		}

		ret = stream->prepareBuffers(numBuffers);
		if (ret < 0)
			return ret;
	}

	/*
	 * Pass the stats and embedded data buffers to the IPA. No other
	 * buffers need to be passed.
	 */
	mapBuffers(camera, data->isp_[Isp::Stats].getBuffers(), RPi::MaskStats);
	if (data->sensorMetadata_)
		mapBuffers(camera, data->unicam_[Unicam::Embedded].getBuffers(),
			   RPi::MaskEmbeddedData);

	return 0;
}

void PipelineHandlerRPi::mapBuffers(Camera *camera, const RPi::BufferMap &buffers, unsigned int mask)
{
	RPiCameraData *data = cameraData(camera);
	std::vector<IPABuffer> ipaBuffers;
	/*
	 * Link the FrameBuffers with the id (key value) in the map stored in
	 * the RPi stream object - along with an identifier mask.
	 *
	 * This will allow us to identify buffers passed between the pipeline
	 * handler and the IPA.
	 */
	for (auto const &it : buffers) {
		ipaBuffers.push_back(IPABuffer(mask | it.first,
					       it.second->planes()));
		data->ipaBuffers_.insert(mask | it.first);
	}

	data->ipa_->mapBuffers(ipaBuffers);
}

void RPiCameraData::freeBuffers()
{
	if (ipa_) {
		/*
		 * Copy the buffer ids from the unordered_set to a vector to
		 * pass to the IPA.
		 */
		std::vector<unsigned int> ipaBuffers(ipaBuffers_.begin(),
						     ipaBuffers_.end());
		ipa_->unmapBuffers(ipaBuffers);
		ipaBuffers_.clear();
	}

	for (auto const stream : streams_)
		stream->releaseBuffers();

	buffersAllocated_ = false;
}

void RPiCameraData::frameStarted(uint32_t sequence)
{
	LOG(RPI, Debug) << "frame start " << sequence;

	/* Write any controls for the next frame as soon as we can. */
	delayedCtrls_->applyControls(sequence);
}

int RPiCameraData::loadIPA(ipa::RPi::IPAInitResult *result)
{
	ipa_ = IPAManager::createIPA<ipa::RPi::IPAProxyRPi>(pipe(), 1, 1);

	if (!ipa_)
		return -ENOENT;

	ipa_->statsMetadataComplete.connect(this, &RPiCameraData::statsMetadataComplete);
	ipa_->runIsp.connect(this, &RPiCameraData::runIsp);
	ipa_->embeddedComplete.connect(this, &RPiCameraData::embeddedComplete);
	ipa_->setIspControls.connect(this, &RPiCameraData::setIspControls);
	ipa_->setDelayedControls.connect(this, &RPiCameraData::setDelayedControls);
	ipa_->setLensControls.connect(this, &RPiCameraData::setLensControls);

	/*
	 * The configuration (tuning file) is made from the sensor name unless
	 * the environment variable overrides it.
	 */
	std::string configurationFile;
	char const *configFromEnv = utils::secure_getenv("LIBCAMERA_RPI_TUNING_FILE");
	if (!configFromEnv || *configFromEnv == '\0') {
		std::string model = sensor_->model();
		if (isMonoSensor(sensor_))
			model += "_mono";
		configurationFile = ipa_->configurationFile(model + ".json");
	} else {
		configurationFile = std::string(configFromEnv);
	}

	IPASettings settings(configurationFile, sensor_->model());

	return ipa_->init(settings, !!sensor_->focusLens(), result);
}

int RPiCameraData::configureIPA(const CameraConfiguration *config, ipa::RPi::IPAConfigResult *result)
{
	std::map<unsigned int, ControlInfoMap> entityControls;
	ipa::RPi::IPAConfig ipaConfig;

	/* \todo Move passing of ispControls and lensControls to ipa::init() */
	ipaConfig.sensorControls = sensor_->controls();
	ipaConfig.ispControls = isp_[Isp::Input].dev()->controls();
	if (sensor_->focusLens())
		ipaConfig.lensControls = sensor_->focusLens()->controls();

	/* Always send the user transform to the IPA. */
	ipaConfig.transform = static_cast<unsigned int>(config->transform);

	/* Allocate the lens shading table via dmaHeap and pass to the IPA. */
	if (!lsTable_.isValid()) {
		lsTable_ = SharedFD(dmaHeap_.alloc("ls_grid", ipa::RPi::MaxLsGridSize));
		if (!lsTable_.isValid())
			return -ENOMEM;

		/* Allow the IPA to mmap the LS table via the file descriptor. */
		/*
		 * \todo Investigate if mapping the lens shading table buffer
		 * could be handled with mapBuffers().
		 */
		ipaConfig.lsTableHandle = lsTable_;
	}

	/* We store the IPACameraSensorInfo for digital zoom calculations. */
	int ret = sensor_->sensorInfo(&sensorInfo_);
	if (ret) {
		LOG(RPI, Error) << "Failed to retrieve camera sensor info";
		return ret;
	}

	/* Ready the IPA - it must know about the sensor resolution. */
	ControlList controls;
	ret = ipa_->configure(sensorInfo_, ipaConfig, &controls, result);
	if (ret < 0) {
		LOG(RPI, Error) << "IPA configuration failed!";
		return -EPIPE;
	}

	if (!controls.empty())
		setSensorControls(controls);

	return 0;
}

int RPiCameraData::loadPipelineConfiguration()
{
	config_ = {
		.minUnicamBuffers = 2,
		.minTotalUnicamBuffers = 4,
		.disableStartupFrameDrops = false,
	};

	char const *configFromEnv = utils::secure_getenv("LIBCAMERA_RPI_CONFIG_FILE");
	if (!configFromEnv || *configFromEnv == '\0')
		return 0;

	std::string filename = std::string(configFromEnv);
	File file(filename);

	if (!file.open(File::OpenModeFlag::ReadOnly)) {
		LOG(RPI, Error) << "Failed to open configuration file '" << filename << "'";
		return -EIO;
	}

	LOG(RPI, Info) << "Using configuration file '" << filename << "'";

	std::unique_ptr<YamlObject> root = YamlParser::parse(file);
	if (!root) {
		LOG(RPI, Warning) << "Failed to parse configuration file, using defaults";
		return 0;
	}

	std::optional<double> ver = (*root)["version"].get<double>();
	if (!ver || *ver != 1.0) {
		LOG(RPI, Error) << "Unexpected configuration file version reported";
		return -EINVAL;
	}

	const YamlObject &phConfig = (*root)["pipeline_handler"];
	config_.minUnicamBuffers =
		phConfig["min_unicam_buffers"].get<unsigned int>(config_.minUnicamBuffers);
	config_.minTotalUnicamBuffers =
		phConfig["min_total_unicam_buffers"].get<unsigned int>(config_.minTotalUnicamBuffers);
	config_.disableStartupFrameDrops =
		phConfig["disable_startup_frame_drops"].get<bool>(config_.disableStartupFrameDrops);

	if (config_.minTotalUnicamBuffers < config_.minUnicamBuffers) {
		LOG(RPI, Error) << "Invalid configuration: min_total_unicam_buffers must be >= min_unicam_buffers";
		return -EINVAL;
	}

	if (config_.minTotalUnicamBuffers < 1) {
		LOG(RPI, Error) << "Invalid configuration: min_total_unicam_buffers must be >= 1";
		return -EINVAL;
	}

	return 0;
}

/*
 * enumerateVideoDevices() iterates over the Media Controller topology, starting
 * at the sensor and finishing at Unicam. For each sensor, RPiCameraData stores
 * a unique list of any intermediate video mux or bridge devices connected in a
 * cascade, together with the entity to entity link.
 *
 * Entity pad configuration and link enabling happens at the end of configure().
 * We first disable all pad links on each entity device in the chain, and then
 * selectively enabling the specific links to link sensor to Unicam across all
 * intermediate muxes and bridges.
 *
 * In the cascaded topology below, if Sensor1 is used, the Mux2 -> Mux1 link
 * will be disabled, and Sensor1 -> Mux1 -> Unicam links enabled. Alternatively,
 * if Sensor3 is used, the Sensor2 -> Mux2 and Sensor1 -> Mux1 links are disabled,
 * and Sensor3 -> Mux2 -> Mux1 -> Unicam links are enabled. All other links will
 * remain unchanged.
 *
 *  +----------+
 *  |  Unicam  |
 *  +-----^----+
 *        |
 *    +---+---+
 *    |  Mux1 <-------+
 *    +--^----+       |
 *       |            |
 * +-----+---+    +---+---+
 * | Sensor1 |    |  Mux2 |<--+
 * +---------+    +-^-----+   |
 *                  |         |
 *          +-------+-+   +---+-----+
 *          | Sensor2 |   | Sensor3 |
 *          +---------+   +---------+
 */
void RPiCameraData::enumerateVideoDevices(MediaLink *link)
{
	const MediaPad *sinkPad = link->sink();
	const MediaEntity *entity = sinkPad->entity();
	bool unicamFound = false;

	/* We only deal with Video Mux and Bridge devices in cascade. */
	if (entity->function() != MEDIA_ENT_F_VID_MUX &&
	    entity->function() != MEDIA_ENT_F_VID_IF_BRIDGE)
		return;

	/* Find the source pad for this Video Mux or Bridge device. */
	const MediaPad *sourcePad = nullptr;
	for (const MediaPad *pad : entity->pads()) {
		if (pad->flags() & MEDIA_PAD_FL_SOURCE) {
			/*
			 * We can only deal with devices that have a single source
			 * pad. If this device has multiple source pads, ignore it
			 * and this branch in the cascade.
			 */
			if (sourcePad)
				return;

			sourcePad = pad;
		}
	}

	LOG(RPI, Debug) << "Found video mux device " << entity->name()
			<< " linked to sink pad " << sinkPad->index();

	bridgeDevices_.emplace_back(std::make_unique<V4L2Subdevice>(entity), link);
	bridgeDevices_.back().first->open();

	/*
	 * Iterate through all the sink pad links down the cascade to find any
	 * other Video Mux and Bridge devices.
	 */
	for (MediaLink *l : sourcePad->links()) {
		enumerateVideoDevices(l);
		/* Once we reach the Unicam entity, we are done. */
		if (l->sink()->entity()->name() == "unicam-image") {
			unicamFound = true;
			break;
		}
	}

	/* This identifies the end of our entity enumeration recursion. */
	if (link->source()->entity()->function() == MEDIA_ENT_F_CAM_SENSOR) {
		/*
		* If Unicam is not at the end of this cascade, we cannot configure
		* this topology automatically, so remove all entity references.
		*/
		if (!unicamFound) {
			LOG(RPI, Warning) << "Cannot automatically configure this MC topology!";
			bridgeDevices_.clear();
		}
	}
}

void RPiCameraData::statsMetadataComplete(uint32_t bufferId, const ControlList &controls)
{
	if (!isRunning())
		return;

	FrameBuffer *buffer = isp_[Isp::Stats].getBuffers().at(bufferId & RPi::MaskID);

	handleStreamBuffer(buffer, &isp_[Isp::Stats]);

	/* Add to the Request metadata buffer what the IPA has provided. */
	Request *request = requestQueue_.front();
	request->metadata().merge(controls);

	/*
	 * Inform the sensor of the latest colour gains if it has the
	 * V4L2_CID_NOTIFY_GAINS control (which means notifyGainsUnity_ is set).
	 */
	const auto &colourGains = controls.get(libcamera::controls::ColourGains);
	if (notifyGainsUnity_ && colourGains) {
		/* The control wants linear gains in the order B, Gb, Gr, R. */
		ControlList ctrls(sensor_->controls());
		std::array<int32_t, 4> gains{
			static_cast<int32_t>((*colourGains)[1] * *notifyGainsUnity_),
			*notifyGainsUnity_,
			*notifyGainsUnity_,
			static_cast<int32_t>((*colourGains)[0] * *notifyGainsUnity_)
		};
		ctrls.set(V4L2_CID_NOTIFY_GAINS, Span<const int32_t>{ gains });

		sensor_->setControls(&ctrls);
	}

	state_ = State::IpaComplete;
	handleState();
}

void RPiCameraData::runIsp(uint32_t bufferId)
{
	if (!isRunning())
		return;

	FrameBuffer *buffer = unicam_[Unicam::Image].getBuffers().at(bufferId & RPi::MaskID);

	LOG(RPI, Debug) << "Input re-queue to ISP, buffer id " << (bufferId & RPi::MaskID)
			<< ", timestamp: " << buffer->metadata().timestamp;

	isp_[Isp::Input].queueBuffer(buffer);
	ispOutputCount_ = 0;
	handleState();
}

void RPiCameraData::embeddedComplete(uint32_t bufferId)
{
	if (!isRunning())
		return;

	FrameBuffer *buffer = unicam_[Unicam::Embedded].getBuffers().at(bufferId & RPi::MaskID);
	handleStreamBuffer(buffer, &unicam_[Unicam::Embedded]);
	handleState();
}

void RPiCameraData::setIspControls(const ControlList &controls)
{
	ControlList ctrls = controls;

	if (ctrls.contains(V4L2_CID_USER_BCM2835_ISP_LENS_SHADING)) {
		ControlValue &value =
			const_cast<ControlValue &>(ctrls.get(V4L2_CID_USER_BCM2835_ISP_LENS_SHADING));
		Span<uint8_t> s = value.data();
		bcm2835_isp_lens_shading *ls =
			reinterpret_cast<bcm2835_isp_lens_shading *>(s.data());
		ls->dmabuf = lsTable_.get();
	}

	isp_[Isp::Input].dev()->setControls(&ctrls);
	handleState();
}

void RPiCameraData::setDelayedControls(const ControlList &controls, uint32_t delayContext)
{
	if (!delayedCtrls_->push(controls, delayContext))
		LOG(RPI, Error) << "V4L2 DelayedControl set failed";
	handleState();
}

void RPiCameraData::setLensControls(const ControlList &controls)
{
	CameraLens *lens = sensor_->focusLens();

	if (lens && controls.contains(V4L2_CID_FOCUS_ABSOLUTE)) {
		ControlValue const &focusValue = controls.get(V4L2_CID_FOCUS_ABSOLUTE);
		lens->setFocusPosition(focusValue.get<int32_t>());
	}
}

void RPiCameraData::setSensorControls(ControlList &controls)
{
	/*
	 * We need to ensure that if both VBLANK and EXPOSURE are present, the
	 * former must be written ahead of, and separately from EXPOSURE to avoid
	 * V4L2 rejecting the latter. This is identical to what DelayedControls
	 * does with the priority write flag.
	 *
	 * As a consequence of the below logic, VBLANK gets set twice, and we
	 * rely on the v4l2 framework to not pass the second control set to the
	 * driver as the actual control value has not changed.
	 */
	if (controls.contains(V4L2_CID_EXPOSURE) && controls.contains(V4L2_CID_VBLANK)) {
		ControlList vblank_ctrl;

		vblank_ctrl.set(V4L2_CID_VBLANK, controls.get(V4L2_CID_VBLANK));
		sensor_->setControls(&vblank_ctrl);
	}

	sensor_->setControls(&controls);
}

void RPiCameraData::unicamTimeout()
{
	LOG(RPI, Error) << "Unicam has timed out!";
	LOG(RPI, Error) << "Please check that your camera sensor connector is attached securely.";
	LOG(RPI, Error) << "Alternatively, try another cable and/or sensor.";

	state_ = RPiCameraData::State::Error;
	/*
	 * To allow the application to attempt a recovery from this timeout,
	 * stop all devices streaming, and return any outstanding requests as
	 * incomplete and cancelled.
	 */
	for (auto const stream : streams_)
		stream->dev()->streamOff();

	clearIncompleteRequests();
}

void RPiCameraData::unicamBufferDequeue(FrameBuffer *buffer)
{
	RPi::Stream *stream = nullptr;
	int index;

	if (!isRunning())
		return;

	for (RPi::Stream &s : unicam_) {
		index = s.getBufferId(buffer);
		if (index != -1) {
			stream = &s;
			break;
		}
	}

	/* The buffer must belong to one of our streams. */
	ASSERT(stream);

	LOG(RPI, Debug) << "Stream " << stream->name() << " buffer dequeue"
			<< ", buffer id " << index
			<< ", timestamp: " << buffer->metadata().timestamp;

	if (stream == &unicam_[Unicam::Image]) {
		/*
		 * Lookup the sensor controls used for this frame sequence from
		 * DelayedControl and queue them along with the frame buffer.
		 */
		auto [ctrl, delayContext] = delayedCtrls_->get(buffer->metadata().sequence);
		/*
		 * Add the frame timestamp to the ControlList for the IPA to use
		 * as it does not receive the FrameBuffer object.
		 */
		ctrl.set(controls::SensorTimestamp, buffer->metadata().timestamp);
		bayerQueue_.push({ buffer, std::move(ctrl), delayContext });
	} else {
		embeddedQueue_.push(buffer);
	}

	handleState();
}

void RPiCameraData::ispInputDequeue(FrameBuffer *buffer)
{
	if (!isRunning())
		return;

	LOG(RPI, Debug) << "Stream ISP Input buffer complete"
			<< ", buffer id " << unicam_[Unicam::Image].getBufferId(buffer)
			<< ", timestamp: " << buffer->metadata().timestamp;

	/* The ISP input buffer gets re-queued into Unicam. */
	handleStreamBuffer(buffer, &unicam_[Unicam::Image]);
	handleState();
}

void RPiCameraData::ispOutputDequeue(FrameBuffer *buffer)
{
	RPi::Stream *stream = nullptr;
	int index;

	if (!isRunning())
		return;

	for (RPi::Stream &s : isp_) {
		index = s.getBufferId(buffer);
		if (index != -1) {
			stream = &s;
			break;
		}
	}

	/* The buffer must belong to one of our ISP output streams. */
	ASSERT(stream);

	LOG(RPI, Debug) << "Stream " << stream->name() << " buffer complete"
			<< ", buffer id " << index
			<< ", timestamp: " << buffer->metadata().timestamp;

	/*
	 * ISP statistics buffer must not be re-queued or sent back to the
	 * application until after the IPA signals so.
	 */
	if (stream == &isp_[Isp::Stats]) {
		ipa_->signalStatReady(RPi::MaskStats | static_cast<unsigned int>(index),
				      requestQueue_.front()->sequence());
	} else {
		/* Any other ISP output can be handed back to the application now. */
		handleStreamBuffer(buffer, stream);
	}

	/*
	 * Increment the number of ISP outputs generated.
	 * This is needed to track dropped frames.
	 */
	ispOutputCount_++;

	handleState();
}

void RPiCameraData::clearIncompleteRequests()
{
	/*
	 * All outstanding requests (and associated buffers) must be returned
	 * back to the application.
	 */
	while (!requestQueue_.empty()) {
		Request *request = requestQueue_.front();

		for (auto &b : request->buffers()) {
			FrameBuffer *buffer = b.second;
			/*
			 * Has the buffer already been handed back to the
			 * request? If not, do so now.
			 */
			if (buffer->request()) {
				buffer->_d()->cancel();
				pipe()->completeBuffer(request, buffer);
			}
		}

		pipe()->completeRequest(request);
		requestQueue_.pop_front();
	}
}

void RPiCameraData::handleStreamBuffer(FrameBuffer *buffer, RPi::Stream *stream)
{
	/*
	 * It is possible to be here without a pending request, so check
	 * that we actually have one to action, otherwise we just return
	 * buffer back to the stream.
	 */
	Request *request = requestQueue_.empty() ? nullptr : requestQueue_.front();
	if (!dropFrameCount_ && request && request->findBuffer(stream) == buffer) {
		/*
		 * Check if this is an externally provided buffer, and if
		 * so, we must stop tracking it in the pipeline handler.
		 */
		handleExternalBuffer(buffer, stream);
		/*
		 * Tag the buffer as completed, returning it to the
		 * application.
		 */
		pipe()->completeBuffer(request, buffer);
	} else {
		/*
		 * This buffer was not part of the Request (which happens if an
		 * internal buffer was used for an external stream, or
		 * unconditionally for internal streams), or there is no pending
		 * request, so we can recycle it.
		 */
		stream->returnBuffer(buffer);
	}
}

void RPiCameraData::handleExternalBuffer(FrameBuffer *buffer, RPi::Stream *stream)
{
	unsigned int id = stream->getBufferId(buffer);

	if (!(id & RPi::MaskExternalBuffer))
		return;

	/* Stop the Stream object from tracking the buffer. */
	stream->removeExternalBuffer(buffer);
}

void RPiCameraData::handleState()
{
	switch (state_) {
	case State::Stopped:
	case State::Busy:
	case State::Error:
		break;

	case State::IpaComplete:
		/* If the request is completed, we will switch to Idle state. */
		checkRequestCompleted();
		/*
		 * No break here, we want to try running the pipeline again.
		 * The fallthrough clause below suppresses compiler warnings.
		 */
		[[fallthrough]];

	case State::Idle:
		tryRunPipeline();
		break;
	}
}

void RPiCameraData::checkRequestCompleted()
{
	bool requestCompleted = false;
	/*
	 * If we are dropping this frame, do not touch the request, simply
	 * change the state to IDLE when ready.
	 */
	if (!dropFrameCount_) {
		Request *request = requestQueue_.front();
		if (request->hasPendingBuffers())
			return;

		/* Must wait for metadata to be filled in before completing. */
		if (state_ != State::IpaComplete)
			return;

		pipe()->completeRequest(request);
		requestQueue_.pop_front();
		requestCompleted = true;
	}

	/*
	 * Make sure we have three outputs completed in the case of a dropped
	 * frame.
	 */
	if (state_ == State::IpaComplete &&
	    ((ispOutputCount_ == 3 && dropFrameCount_) || requestCompleted)) {
		state_ = State::Idle;
		if (dropFrameCount_) {
			dropFrameCount_--;
			LOG(RPI, Debug) << "Dropping frame at the request of the IPA ("
					<< dropFrameCount_ << " left)";
		}
	}
}

Rectangle RPiCameraData::scaleIspCrop(const Rectangle &ispCrop) const
{
	/*
	 * Scale a crop rectangle defined in the ISP's coordinates into native sensor
	 * coordinates.
	 */
	Rectangle nativeCrop = ispCrop.scaledBy(sensorInfo_.analogCrop.size(),
						sensorInfo_.outputSize);
	nativeCrop.translateBy(sensorInfo_.analogCrop.topLeft());
	return nativeCrop;
}

void RPiCameraData::applyScalerCrop(const ControlList &controls)
{
	const auto &scalerCrop = controls.get<Rectangle>(controls::ScalerCrop);
	if (scalerCrop) {
		Rectangle nativeCrop = *scalerCrop;

		if (!nativeCrop.width || !nativeCrop.height)
			nativeCrop = { 0, 0, 1, 1 };

		/* Create a version of the crop scaled to ISP (camera mode) pixels. */
		Rectangle ispCrop = nativeCrop.translatedBy(-sensorInfo_.analogCrop.topLeft());
		ispCrop.scaleBy(sensorInfo_.outputSize, sensorInfo_.analogCrop.size());

		/*
		 * The crop that we set must be:
		 * 1. At least as big as ispMinCropSize_, once that's been
		 *    enlarged to the same aspect ratio.
		 * 2. With the same mid-point, if possible.
		 * 3. But it can't go outside the sensor area.
		 */
		Size minSize = ispMinCropSize_.expandedToAspectRatio(nativeCrop.size());
		Size size = ispCrop.size().expandedTo(minSize);
		ispCrop = size.centeredTo(ispCrop.center()).enclosedIn(Rectangle(sensorInfo_.outputSize));

		if (ispCrop != ispCrop_) {
			isp_[Isp::Input].dev()->setSelection(V4L2_SEL_TGT_CROP, &ispCrop);
			ispCrop_ = ispCrop;

			/*
			 * Also update the ScalerCrop in the metadata with what we actually
			 * used. But we must first rescale that from ISP (camera mode) pixels
			 * back into sensor native pixels.
			 */
			scalerCrop_ = scaleIspCrop(ispCrop_);
		}
	}
}

void RPiCameraData::fillRequestMetadata(const ControlList &bufferControls,
					Request *request)
{
	request->metadata().set(controls::SensorTimestamp,
				bufferControls.get(controls::SensorTimestamp).value_or(0));

	request->metadata().set(controls::ScalerCrop, scalerCrop_);
}

void RPiCameraData::tryRunPipeline()
{
	FrameBuffer *embeddedBuffer;
	BayerFrame bayerFrame;

	/* If any of our request or buffer queues are empty, we cannot proceed. */
	if (state_ != State::Idle || requestQueue_.empty() ||
	    bayerQueue_.empty() || (embeddedQueue_.empty() && sensorMetadata_))
		return;

	if (!findMatchingBuffers(bayerFrame, embeddedBuffer))
		return;

	/* Take the first request from the queue and action the IPA. */
	Request *request = requestQueue_.front();

	/* See if a new ScalerCrop value needs to be applied. */
	applyScalerCrop(request->controls());

	/*
	 * Clear the request metadata and fill it with some initial non-IPA
	 * related controls. We clear it first because the request metadata
	 * may have been populated if we have dropped the previous frame.
	 */
	request->metadata().clear();
	fillRequestMetadata(bayerFrame.controls, request);

	/*
	 * Process all the user controls by the IPA. Once this is complete, we
	 * queue the ISP output buffer listed in the request to start the HW
	 * pipeline.
	 */
	ipa_->signalQueueRequest(request->controls());

	/* Set our state to say the pipeline is active. */
	state_ = State::Busy;

	unsigned int bayerId = unicam_[Unicam::Image].getBufferId(bayerFrame.buffer);

	LOG(RPI, Debug) << "Signalling signalIspPrepare:"
			<< " Bayer buffer id: " << bayerId;

	ipa::RPi::ISPConfig ispPrepare;
	ispPrepare.bayerBufferId = RPi::MaskBayerData | bayerId;
	ispPrepare.controls = std::move(bayerFrame.controls);
	ispPrepare.ipaContext = request->sequence();
	ispPrepare.delayContext = bayerFrame.delayContext;

	if (embeddedBuffer) {
		unsigned int embeddedId = unicam_[Unicam::Embedded].getBufferId(embeddedBuffer);

		ispPrepare.embeddedBufferId = RPi::MaskEmbeddedData | embeddedId;
		ispPrepare.embeddedBufferPresent = true;

		LOG(RPI, Debug) << "Signalling signalIspPrepare:"
				<< " Embedded buffer id: " << embeddedId;
	}

	ipa_->signalIspPrepare(ispPrepare);
}

bool RPiCameraData::findMatchingBuffers(BayerFrame &bayerFrame, FrameBuffer *&embeddedBuffer)
{
	if (bayerQueue_.empty())
		return false;

	/*
	 * Find the embedded data buffer with a matching timestamp to pass to
	 * the IPA. Any embedded buffers with a timestamp lower than the
	 * current bayer buffer will be removed and re-queued to the driver.
	 */
	uint64_t ts = bayerQueue_.front().buffer->metadata().timestamp;
	embeddedBuffer = nullptr;
	while (!embeddedQueue_.empty()) {
		FrameBuffer *b = embeddedQueue_.front();
		if (b->metadata().timestamp < ts) {
			embeddedQueue_.pop();
			unicam_[Unicam::Embedded].returnBuffer(b);
			LOG(RPI, Debug) << "Dropping unmatched input frame in stream "
					<< unicam_[Unicam::Embedded].name();
		} else if (b->metadata().timestamp == ts) {
			/* Found a match! */
			embeddedBuffer = b;
			embeddedQueue_.pop();
			break;
		} else {
			break; /* Only higher timestamps from here. */
		}
	}

	if (!embeddedBuffer && sensorMetadata_) {
		if (embeddedQueue_.empty()) {
			/*
			 * If the embedded buffer queue is empty, wait for the next
			 * buffer to arrive - dequeue ordering may send the image
			 * buffer first.
			 */
			LOG(RPI, Debug) << "Waiting for next embedded buffer.";
			return false;
		}

		/* Log if there is no matching embedded data buffer found. */
		LOG(RPI, Debug) << "Returning bayer frame without a matching embedded buffer.";
	}

	bayerFrame = std::move(bayerQueue_.front());
	bayerQueue_.pop();

	return true;
}

REGISTER_PIPELINE_HANDLER(PipelineHandlerRPi)

} /* namespace libcamera */