ref='#n355'>355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
#!/usr/bin/env python3
#
# SPDX-License-Identifier: BSD-2-Clause
#
# Copyright (C) 2019, Raspberry Pi Ltd
#
# ctt.py - camera tuning tool
import os
import sys
from ctt_image_load import *
from ctt_ccm import *
from ctt_awb import *
from ctt_alsc import *
from ctt_lux import *
from ctt_noise import *
from ctt_geq import *
from ctt_pretty_print_json import pretty_print
import random
import json
import re
"""
This file houses the camera object, which is used to perform the calibrations.
The camera object houses all the calibration images as attributes in two lists:
- imgs (macbeth charts)
- imgs_alsc (alsc correction images)
Various calibrations are methods of the camera object, and the output is stored
in a dictionary called self.json.
Once all the caibration has been completed, the Camera.json is written into a
json file.
The camera object initialises its json dictionary by reading from a pre-written
blank json file. This has been done to avoid reproducing the entire json file
in the code here, thereby avoiding unecessary clutter.
"""
"""
Get the colour and lux values from the strings of each inidvidual image
"""
def get_col_lux(string):
"""
Extract colour and lux values from filename
"""
col = re.search(r'([0-9]+)[kK](\.(jpg|jpeg|brcm|dng)|_.*\.(jpg|jpeg|brcm|dng))$', string)
lux = re.search(r'([0-9]+)[lL](\.(jpg|jpeg|brcm|dng)|_.*\.(jpg|jpeg|brcm|dng))$', string)
try:
col = col.group(1)
except AttributeError:
"""
Catch error if images labelled incorrectly and pass reasonable defaults
"""
return None, None
try:
lux = lux.group(1)
except AttributeError:
"""
Catch error if images labelled incorrectly and pass reasonable defaults
Still returns colour if that has been found.
"""
return col, None
return int(col), int(lux)
"""
Camera object that is the backbone of the tuning tool.
Input is the desired path of the output json.
"""
class Camera:
def __init__(self, jfile):
self.path = os.path.dirname(os.path.expanduser(__file__)) + '/'
if self.path == '/':
self.path = ''
self.imgs = []
self.imgs_alsc = []
self.log = 'Log created : ' + time.asctime(time.localtime(time.time()))
self.log_separator = '\n'+'-'*70+'\n'
self.jf = jfile
"""
initial json dict populated by uncalibrated values
"""
self.json = {
"rpi.black_level": {
"black_level": 4096
},
"rpi.dpc": {
},
"rpi.lux": {
"reference_shutter_speed": 10000,
"reference_gain": 1,
"reference_aperture": 1.0
},
"rpi.noise": {
},
"rpi.geq": {
},
"rpi.sdn": {
},
"rpi.awb": {
"priors": [
{"lux": 0, "prior": [2000, 1.0, 3000, 0.0, 13000, 0.0]},
{"lux": 800, "prior": [2000, 0.0, 6000, 2.0, 13000, 2.0]},
{"lux": 1500, "prior": [2000, 0.0, 4000, 1.0, 6000, 6.0, 6500, 7.0, 7000, 1.0, 13000, 1.0]}
],
"modes": {
"auto": {"lo": 2500, "hi": 8000},
"incandescent": {"lo": 2500, "hi": 3000},
"tungsten": {"lo": 3000, "hi": 3500},
"fluorescent": {"lo": 4000, "hi": 4700},
"indoor": {"lo": 3000, "hi": 5000},
"daylight": {"lo": 5500, "hi": 6500},
"cloudy": {"lo": 7000, "hi": 8600}
},
"bayes": 1
},
"rpi.agc": {
"metering_modes": {
"centre-weighted": {
"weights": [3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0]
},
"spot": {
"weights": [2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
},
"matrix": {
"weights": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
}
},
"exposure_modes": {
"normal": {
"shutter": [100, 10000, 30000, 60000, 120000],
"gain": [1.0, 2.0, 4.0, 6.0, 6.0]
},
"short": {
"shutter": [100, 5000, 10000, 20000, 120000],
"gain": [1.0, 2.0, 4.0, 6.0, 6.0]
}
},
"constraint_modes": {
"normal": [
{"bound": "LOWER", "q_lo": 0.98, "q_hi": 1.0, "y_target": [0, 0.5, 1000, 0.5]}
],
"highlight": [
{"bound": "LOWER", "q_lo": 0.98, "q_hi": 1.0, "y_target": [0, 0.5, 1000, 0.5]},
{"bound": "UPPER", "q_lo": 0.98, "q_hi": 1.0, "y_target": [0, 0.8, 1000, 0.8]}
]
},
"y_target": [0, 0.16, 1000, 0.165, 10000, 0.17]
},
"rpi.alsc": {
'omega': 1.3,
'n_iter': 100,
'luminance_strength': 0.7,
},
"rpi.contrast": {
"ce_enable": 1,
"gamma_curve": [
0, 0,
1024, 5040,
2048, 9338,
3072, 12356,
4096, 15312,
5120, 18051,
6144, 20790,
7168, 23193,
8192, 25744,
9216, 27942,
10240, 30035,
11264, 32005,
12288, 33975,
13312, 35815,
14336, 37600,
15360, 39168,
16384, 40642,
18432, 43379,
20480, 45749,
22528, 47753,
24576, 49621,
26624, 51253,
28672, 52698,
30720, 53796,
32768, 54876,
36864, 57012,
40960, 58656,
45056, 59954,
49152, 61183,
53248, 62355,
57344, 63419,
61440, 64476,
65535, 65535
]
},
"rpi.ccm": {
},
"rpi.sharpen": {
}
}
"""
Perform colour correction calibrations by comparing macbeth patch colours
to standard macbeth chart colours.
"""
def ccm_cal(self, do_alsc_colour):
if 'rpi.ccm' in self.disable:
return 1
print('\nStarting CCM calibration')
self.log_new_sec('CCM')
"""
if image is greyscale then CCm makes no sense
"""
if self.grey:
print('\nERROR: Can\'t do CCM on greyscale image!')
self.log += '\nERROR: Cannot perform CCM calibration '
self.log += 'on greyscale image!\nCCM aborted!'
del self.json['rpi.ccm']
return 0
a = time.time()
"""
Check if alsc tables have been generated, if not then do ccm without
alsc
"""
if ("rpi.alsc" not in self.disable) and do_alsc_colour:
"""
case where ALSC colour has been done, so no errors should be
expected...
"""
try:
cal_cr_list = self.json['rpi.alsc']['calibrations_Cr']
cal_cb_list = self.json['rpi.alsc']['calibrations_Cb']
self.log += '\nALSC tables found successfully'
except KeyError:
cal_cr_list, cal_cb_list = None, None
print('WARNING! No ALSC tables found for CCM!')
print('Performing CCM calibrations without ALSC correction...')
self.log += '\nWARNING: No ALSC tables found.\nCCM calibration '
self.log += 'performed without ALSC correction...'
else:
"""
case where config options result in CCM done without ALSC colour tables
"""
cal_cr_list, cal_cb_list = None, None
self.log += '\nWARNING: No ALSC tables found.\nCCM calibration '
self.log += 'performed without ALSC correction...'
"""
Do CCM calibration
"""
try:
ccms = ccm(self, cal_cr_list, cal_cb_list)
except ArithmeticError:
print('ERROR: Matrix is singular!\nTake new pictures and try again...')
self.log += '\nERROR: Singular matrix encountered during fit!'
self.log += '\nCCM aborted!'
return 1
"""
Write output to json
"""
self.json['rpi.ccm']['ccms'] = ccms
self.log += '\nCCM calibration written to json file'
print('Finished CCM calibration')
"""
Auto white balance calibration produces a colour curve for
various colour temperatures, as well as providing a maximum 'wiggle room'
distance from this curve (transverse_neg/pos).
"""
def awb_cal(self, greyworld, do_alsc_colour):
if 'rpi.awb' in self.disable:
return 1
print('\nStarting AWB calibration')
self.log_new_sec('AWB')
"""
if image is greyscale then AWB makes no sense
"""
if self.grey:
print('\nERROR: Can\'t do AWB on greyscale image!')
self.log += '\nERROR: Cannot perform AWB calibration '
self.log += 'on greyscale image!\nAWB aborted!'
del self.json['rpi.awb']
return 0
"""
optional set greyworld (e.g. for noir cameras)
"""
if greyworld:
self.json['rpi.awb']['bayes'] = 0
self.log += '\nGreyworld set'
"""
Check if alsc tables have been generated, if not then do awb without
alsc correction
"""
if ("rpi.alsc" not in self.disable) and do_alsc_colour:
try:
cal_cr_list = self.json['rpi.alsc']['calibrations_Cr']
cal_cb_list = self.json['rpi.alsc']['calibrations_Cb']
self.log += '\nALSC tables found successfully'
except KeyError:
cal_cr_list, cal_cb_list = None, None
print('ERROR, no ALSC calibrations found for AWB')
print('Performing AWB without ALSC tables')
self.log += '\nWARNING: No ALSC tables found.\nAWB calibration '
self.log += 'performed without ALSC correction...'
else:
cal_cr_list, cal_cb_list = None, None
self.log += '\nWARNING: No ALSC tables found.\nAWB calibration '
self.log += 'performed without ALSC correction...'
"""
call calibration function
"""
plot = "rpi.awb" in self.plot
awb_out = awb(self, cal_cr_list, cal_cb_list, plot)
ct_curve, transverse_neg, transverse_pos = awb_out
"""
write output to json
"""
self.json['rpi.awb']['ct_curve'] = ct_curve
self.json['rpi.awb']['sensitivity_r'] = 1.0
self.json['rpi.awb']['sensitivity_b'] = 1.0
self.json['rpi.awb']['transverse_pos'] = transverse_pos
self.json['rpi.awb']['transverse_neg'] = transverse_neg
self.log += '\nAWB calibration written to json file'
print('Finished AWB calibration')
"""
Auto lens shading correction completely mitigates the effects of lens shading for ech
colour channel seperately, and then partially corrects for vignetting.
The extent of the correction depends on the 'luminance_strength' parameter.
"""
def alsc_cal(self, luminance_strength, do_alsc_colour):
if 'rpi.alsc' in self.disable:
return 1
print('\nStarting ALSC calibration')
self.log_new_sec('ALSC')
"""
check if alsc images have been taken
"""
if len(self.imgs_alsc) == 0:
print('\nError:\nNo alsc calibration images found')
self.log += '\nERROR: No ALSC calibration images found!'
self.log += '\nALSC calibration aborted!'
return 1
self.json['rpi.alsc']['luminance_strength'] = luminance_strength
if self.grey and do_alsc_colour:
print('Greyscale camera so only luminance_lut calculated')
do_alsc_colour = False
self.log += '\nWARNING: ALSC colour correction cannot be done on '
self.log += 'greyscale image!\nALSC colour corrections forced off!'