1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
|
/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
* Copyright (C) 2020, Google Inc.
*
* camera_stream.cpp - Camera HAL stream
*/
#include "camera_stream.h"
#include <errno.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/poll.h>
#include <unistd.h>
#include <libcamera/formats.h>
#include "jpeg/post_processor_jpeg.h"
#include "yuv/post_processor_yuv.h"
#include "camera_buffer.h"
#include "camera_capabilities.h"
#include "camera_device.h"
#include "camera_metadata.h"
using namespace libcamera;
LOG_DECLARE_CATEGORY(HAL)
/*
* \class CameraStream
* \brief Map a camera3_stream_t to a StreamConfiguration
*
* The CameraStream class maps a camera3_stream_t provided by Android
* camera framework to a libcamera::StreamConfiguration.
*
* The StreamConfiguration is represented by its index as recorded in the
* CameraConfiguration and not by pointer as StreamConfiguration is subject to
* relocation.
*
* A single StreamConfiguration may be used to deliver one or more streams to
* the Android framework. The mapping type between a camera3 stream to a
* StreamConfiguration is described by the CameraStream::Type.
*
* CameraStream handles all the aspects of producing a stream with the size
* and format requested by the camera3 stream from the data produced by
* the associated libcamera::Stream, including the creation of the encoder
* and buffer allocation.
*/
CameraStream::CameraStream(CameraDevice *const cameraDevice,
CameraConfiguration *config, Type type,
camera3_stream_t *camera3Stream, unsigned int index)
: cameraDevice_(cameraDevice), config_(config), type_(type),
camera3Stream_(camera3Stream), index_(index)
{
}
const StreamConfiguration &CameraStream::configuration() const
{
return config_->at(index_);
}
Stream *CameraStream::stream() const
{
return configuration().stream();
}
int CameraStream::configure()
{
if (type_ == Type::Internal || type_ == Type::Mapped) {
const PixelFormat outFormat =
cameraDevice_->capabilities()->toPixelFormat(camera3Stream_->format);
StreamConfiguration output = configuration();
output.pixelFormat = outFormat;
output.size.width = camera3Stream_->width;
output.size.height = camera3Stream_->height;
switch (outFormat) {
case formats::NV12:
postProcessor_ = std::make_unique<PostProcessorYuv>();
break;
case formats::MJPEG:
postProcessor_ = std::make_unique<PostProcessorJpeg>(cameraDevice_);
break;
default:
LOG(HAL, Error) << "Unsupported format: " << outFormat;
return -EINVAL;
}
int ret = postProcessor_->configure(configuration(), output);
if (ret)
return ret;
}
if (type_ == Type::Internal) {
allocator_ = std::make_unique<FrameBufferAllocator>(cameraDevice_->camera());
mutex_ = std::make_unique<std::mutex>();
int ret = allocator_->allocate(stream());
if (ret < 0)
return ret;
/* Save a pointer to the reserved frame buffers */
for (const auto &frameBuffer : allocator_->buffers(stream()))
buffers_.push_back(frameBuffer.get());
}
camera3Stream_->max_buffers = configuration().bufferCount;
return 0;
}
int CameraStream::waitFence(int fence)
{
/*
* \todo The implementation here is copied from camera_worker.cpp
* and both should be removed once libcamera is instrumented to handle
* fences waiting in the core.
*
* \todo Better characterize the timeout. Currently equal to the one
* used by the Rockchip Camera HAL on ChromeOS.
*/
constexpr unsigned int timeoutMs = 300;
struct pollfd fds = { fence, POLLIN, 0 };
do {
int ret = poll(&fds, 1, timeoutMs);
if (ret == 0)
return -ETIME;
if (ret > 0) {
if (fds.revents & (POLLERR | POLLNVAL))
return -EINVAL;
return 0;
}
} while (errno == EINTR || errno == EAGAIN);
return -errno;
}
int CameraStream::process(const FrameBuffer &source,
camera3_stream_buffer_t &camera3Dest,
const CameraMetadata &requestMetadata,
CameraMetadata *resultMetadata)
{
/* Handle waiting on fences on the destination buffer. */
int fence = camera3Dest.acquire_fence;
if (fence != -1) {
int ret = waitFence(fence);
::close(fence);
camera3Dest.acquire_fence = -1;
if (ret < 0) {
LOG(HAL, Error) << "Failed waiting for fence: "
<< fence << ": " << strerror(-ret);
return ret;
}
}
if (!postProcessor_)
return 0;
/*
* \todo Buffer mapping and processing should be moved to a
* separate thread.
*/
const StreamConfiguration &output = configuration();
CameraBuffer dest(*camera3Dest.buffer, formats::MJPEG, output.size,
PROT_READ | PROT_WRITE);
if (!dest.isValid()) {
LOG(HAL, Error) << "Failed to map android blob buffer";
return -EINVAL;
}
return postProcessor_->process(source, &dest, requestMetadata, resultMetadata);
}
FrameBuffer *CameraStream::getBuffer()
{
if (!allocator_)
return nullptr;
std::lock_guard<std::mutex> locker(*mutex_);
if (buffers_.empty()) {
LOG(HAL, Error) << "Buffer underrun";
return nullptr;
}
FrameBuffer *buffer = buffers_.back();
buffers_.pop_back();
return buffer;
}
void CameraStream::putBuffer(FrameBuffer *buffer)
{
if (!allocator_)
return;
std::lock_guard<std::mutex> locker(*mutex_);
buffers_.push_back(buffer);
}
|