1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
|
/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
* Copyright (C) 2020, Google Inc.
*
* camera_stream.cpp - Camera HAL stream
*/
#include "camera_stream.h"
#include "camera_device.h"
#include "camera_metadata.h"
#include "jpeg/encoder.h"
#include "jpeg/encoder_libjpeg.h"
#include "jpeg/exif.h"
using namespace libcamera;
LOG_DECLARE_CATEGORY(HAL);
/*
* \class CameraStream
* \brief Map a camera3_stream_t to a StreamConfiguration
*
* The CameraStream class maps a camera3_stream_t provided by Android
* camera framework to a libcamera::StreamConfiguration.
*
* The StreamConfiguration is represented by its index as recorded in the
* CameraConfiguration and not by pointer as StreamConfiguration is subject to
* relocation.
*
* A single StreamConfiguration may be used to deliver one or more streams to
* the Android framework. The mapping type between a camera3 stream to a
* StreamConfiguration is described by the CameraStream::Type.
*
* CameraStream handles all the aspects of producing a stream with the size
* and format requested by the camera3 stream from the data produced by
* the associated libcamera::Stream, including the creation of the encoder
* and buffer allocation.
*/
CameraStream::CameraStream(CameraDevice *cameraDevice, Type type,
camera3_stream_t *camera3Stream, unsigned int index)
: cameraDevice_(cameraDevice), type_(type),
camera3Stream_(camera3Stream), index_(index)
{
config_ = cameraDevice_->cameraConfiguration();
if (type_ == Type::Internal || type_ == Type::Mapped)
encoder_ = std::make_unique<EncoderLibJpeg>();
if (type == Type::Internal) {
allocator_ = std::make_unique<FrameBufferAllocator>(cameraDevice_->camera());
mutex_ = std::make_unique<std::mutex>();
}
}
const StreamConfiguration &CameraStream::configuration() const
{
return config_->at(index_);
}
Stream *CameraStream::stream() const
{
return configuration().stream();
}
int CameraStream::configure()
{
if (encoder_) {
int ret = encoder_->configure(configuration());
if (ret)
return ret;
}
if (allocator_) {
int ret = allocator_->allocate(stream());
if (ret < 0)
return ret;
/* Save a pointer to the reserved frame buffers */
for (const auto &frameBuffer : allocator_->buffers(stream()))
buffers_.push_back(frameBuffer.get());
}
camera3Stream_->max_buffers = configuration().bufferCount;
return 0;
}
int CameraStream::process(const libcamera::FrameBuffer &source,
MappedCamera3Buffer *dest, CameraMetadata *metadata)
{
if (!encoder_)
return 0;
/* Set EXIF metadata for various tags. */
Exif exif;
/* \todo Set Make and Model from external vendor tags. */
exif.setMake("libcamera");
exif.setModel("cameraModel");
exif.setOrientation(cameraDevice_->orientation());
exif.setSize(configuration().size);
/*
* We set the frame's EXIF timestamp as the time of encode.
* Since the precision we need for EXIF timestamp is only one
* second, it is good enough.
*/
exif.setTimestamp(std::time(nullptr));
if (exif.generate() != 0)
LOG(HAL, Error) << "Failed to generate valid EXIF data";
int jpeg_size = encoder_->encode(&source, dest->maps()[0], exif.data());
if (jpeg_size < 0) {
LOG(HAL, Error) << "Failed to encode stream image";
return jpeg_size;
}
/*
* Fill in the JPEG blob header.
*
* The mapped size of the buffer is being returned as
* substantially larger than the requested JPEG_MAX_SIZE
* (which is referenced from maxJpegBufferSize_). Utilise
* this static size to ensure the correct offset of the blob is
* determined.
*
* \todo Investigate if the buffer size mismatch is an issue or
* expected behaviour.
*/
uint8_t *resultPtr = dest->maps()[0].data() +
cameraDevice_->maxJpegBufferSize() -
sizeof(struct camera3_jpeg_blob);
auto *blob = reinterpret_cast<struct camera3_jpeg_blob *>(resultPtr);
blob->jpeg_blob_id = CAMERA3_JPEG_BLOB_ID;
blob->jpeg_size = jpeg_size;
/* Update the JPEG result Metadata. */
metadata->addEntry(ANDROID_JPEG_SIZE, &jpeg_size, 1);
const uint32_t jpeg_quality = 95;
metadata->addEntry(ANDROID_JPEG_QUALITY, &jpeg_quality, 1);
const uint32_t jpeg_orientation = 0;
metadata->addEntry(ANDROID_JPEG_ORIENTATION, &jpeg_orientation, 1);
return 0;
}
FrameBuffer *CameraStream::getBuffer()
{
if (!allocator_)
return nullptr;
std::lock_guard<std::mutex> locker(*mutex_);
if (buffers_.empty()) {
LOG(HAL, Error) << "Buffer underrun";
return nullptr;
}
FrameBuffer *buffer = buffers_.back();
buffers_.pop_back();
return buffer;
}
void CameraStream::putBuffer(libcamera::FrameBuffer *buffer)
{
if (!allocator_)
return;
std::lock_guard<std::mutex> locker(*mutex_);
buffers_.push_back(buffer);
}
|