summaryrefslogtreecommitdiff
path: root/src/android/camera_device.cpp
blob: 8be846bb4c7abc6a288944d892143018ab8afdfb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436

		    e_->status() != InstrumentedObject::MessageReceived) {
			cout << "Moving object didn't deliver ThreadMoveMessage" << endl;
			return TestFail;
		}

		return TestPass;
	}

	void cleanup()
	{
		delete a_;
		delete b_;
		delete c_;
		delete d_;
		delete e_;
		delete f_;
	}

private:
	InstrumentedObject *a_;
	InstrumentedObject *b_;
	InstrumentedObject *c_;
	InstrumentedObject *d_;
	InstrumentedObject *e_;
	InstrumentedObject *f_;

	Thread thread_;
};

TEST_REGISTER(ObjectTest)
n503'>503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
 * Copyright (C) 2019, Google Inc.
 *
 * camera_device.cpp - libcamera Android Camera Device
 */

#include "camera_device.h"
#include "camera_ops.h"

#include <sys/mman.h>
#include <tuple>
#include <vector>

#include <libcamera/controls.h>
#include <libcamera/formats.h>
#include <libcamera/property_ids.h>

#include "libcamera/internal/formats.h"
#include "libcamera/internal/log.h"
#include "libcamera/internal/utils.h"

#include "camera_metadata.h"
#include "system/graphics.h"

#include "jpeg/encoder_libjpeg.h"

using namespace libcamera;

namespace {

/*
 * \var camera3Resolutions
 * \brief The list of image resolutions defined as mandatory to be supported by
 * the Android Camera3 specification
 */
const std::vector<Size> camera3Resolutions = {
	{ 320, 240 },
	{ 640, 480 },
	{ 1280, 720 },
	{ 1920, 1080 }
};

/*
 * \struct Camera3Format
 * \brief Data associated with an Android format identifier
 * \var libcameraFormats List of libcamera pixel formats compatible with the
 * Android format
 * \var name The human-readable representation of the Android format code
 */
struct Camera3Format {
	std::vector<PixelFormat> libcameraFormats;
	bool mandatory;
	const char *name;
};

/*
 * \var camera3FormatsMap
 * \brief Associate Android format code with ancillary data
 */
const std::map<int, const Camera3Format> camera3FormatsMap = {
	{
		HAL_PIXEL_FORMAT_BLOB, {
			{ formats::MJPEG },
			true,
			"BLOB"
		}
	}, {
		HAL_PIXEL_FORMAT_YCbCr_420_888, {
			{ formats::NV12, formats::NV21 },
			true,
			"YCbCr_420_888"
		}
	}, {
		/*
		 * \todo Translate IMPLEMENTATION_DEFINED inspecting the gralloc
		 * usage flag. For now, copy the YCbCr_420 configuration.
		 */
		HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED, {
			{ formats::NV12, formats::NV21 },
			true,
			"IMPLEMENTATION_DEFINED"
		}
	}, {
		HAL_PIXEL_FORMAT_RAW10, {
			{
				formats::SBGGR10_CSI2P,
				formats::SGBRG10_CSI2P,
				formats::SGRBG10_CSI2P,
				formats::SRGGB10_CSI2P
			},
			false,
			"RAW10"
		}
	}, {
		HAL_PIXEL_FORMAT_RAW12, {
			{
				formats::SBGGR12_CSI2P,
				formats::SGBRG12_CSI2P,
				formats::SGRBG12_CSI2P,
				formats::SRGGB12_CSI2P
			},
			false,
			"RAW12"
		}
	}, {
		HAL_PIXEL_FORMAT_RAW16, {
			{
				formats::SBGGR16,
				formats::SGBRG16,
				formats::SGRBG16,
				formats::SRGGB16
			},
			false,
			"RAW16"
		}
	}, {
		HAL_PIXEL_FORMAT_RAW_OPAQUE, {
			{
				formats::SBGGR10_IPU3,
				formats::SGBRG10_IPU3,
				formats::SGRBG10_IPU3,
				formats::SRGGB10_IPU3
			},
			false,
			"RAW_OPAQUE"
		}
	},
};

} /* namespace */

LOG_DECLARE_CATEGORY(HAL);

class MappedCamera3Buffer : public MappedBuffer
{
public:
	MappedCamera3Buffer(const buffer_handle_t camera3buffer, int flags);
};

MappedCamera3Buffer::MappedCamera3Buffer(const buffer_handle_t camera3buffer,
					 int flags)
{
	maps_.reserve(camera3buffer->numFds);
	error_ = 0;

	for (int i = 0; i < camera3buffer->numFds; i++) {
		if (camera3buffer->data[i] == -1)
			continue;

		off_t length = lseek(camera3buffer->data[i], 0, SEEK_END);
		if (length < 0) {
			error_ = -errno;
			LOG(HAL, Error) << "Failed to query plane length";
			break;
		}

		void *address = mmap(nullptr, length, flags, MAP_SHARED,
				     camera3buffer->data[i], 0);
		if (address == MAP_FAILED) {
			error_ = -errno;
			LOG(HAL, Error) << "Failed to mmap plane";
			break;
		}

		maps_.emplace_back(static_cast<uint8_t *>(address),
				   static_cast<size_t>(length));
	}
}

CameraStream::CameraStream(PixelFormat f, Size s)
	: index(-1), format(f), size(s), jpeg(nullptr)
{
}

CameraStream::~CameraStream()
{
	delete jpeg;
};

/*
 * \struct Camera3RequestDescriptor
 *
 * A utility structure that groups information about a capture request to be
 * later re-used at request complete time to notify the framework.
 */

CameraDevice::Camera3RequestDescriptor::Camera3RequestDescriptor(
		unsigned int frameNumber, unsigned int numBuffers)
	: frameNumber(frameNumber), numBuffers(numBuffers)
{
	buffers = new camera3_stream_buffer_t[numBuffers];
	frameBuffers.reserve(numBuffers);
}

CameraDevice::Camera3RequestDescriptor::~Camera3RequestDescriptor()
{
	delete[] buffers;
}

/*
 * \class CameraDevice
 *
 * The CameraDevice class wraps a libcamera::Camera instance, and implements
 * the camera3_device_t interface, bridging calls received from the Android
 * camera service to the CameraDevice.
 *
 * The class translates parameters and operations from the Camera HALv3 API to
 * the libcamera API to provide static information for a Camera, create request
 * templates for it, process capture requests and then deliver capture results
 * back to the framework using the designated callbacks.
 */

CameraDevice::CameraDevice(unsigned int id, const std::shared_ptr<Camera> &camera)
	: id_(id), running_(false), camera_(camera), staticMetadata_(nullptr),
	  facing_(CAMERA_FACING_FRONT), orientation_(0)
{
	camera_->requestCompleted.connect(this, &CameraDevice::requestComplete);

	/*
	 * \todo Determine a more accurate value for this during
	 *  streamConfiguration.
	 */
	maxJpegBufferSize_ = 13 << 20; /* 13631488 from USB HAL */
}

CameraDevice::~CameraDevice()
{
	if (staticMetadata_)
		delete staticMetadata_;

	for (auto &it : requestTemplates_)
		delete it.second;
}

std::shared_ptr<CameraDevice> CameraDevice::create(unsigned int id,
						   const std::shared_ptr<Camera> &cam)
{
	CameraDevice *camera = new CameraDevice(id, cam);
	return std::shared_ptr<CameraDevice>(camera);
}

/*
 * Initialize the camera static information.
 * This method is called before the camera device is opened.
 */
int CameraDevice::initialize()
{
	/* Initialize orientation and facing side of the camera. */
	const ControlList &properties = camera_->properties();

	if (properties.contains(properties::Location)) {
		int32_t location = properties.get(properties::Location);
		switch (location) {
		case properties::CameraLocationFront:
			facing_ = CAMERA_FACING_FRONT;
			break;
		case properties::CameraLocationBack:
			facing_ = CAMERA_FACING_BACK;
			break;
		case properties::CameraLocationExternal:
			facing_ = CAMERA_FACING_EXTERNAL;
			break;
		}
	}

	/*
	 * The Android orientation metadata specifies its rotation correction
	 * value in clockwise direction whereas libcamera specifies the
	 * rotation property in anticlockwise direction. Read the libcamera's
	 * rotation property (anticlockwise) and compute the corresponding
	 * value for clockwise direction as required by the Android orientation
	 * metadata.
	 */
	if (properties.contains(properties::Rotation)) {
		int rotation = properties.get(properties::Rotation);
		orientation_ = (360 - rotation) % 360;
	}

	int ret = camera_->acquire();
	if (ret) {
		LOG(HAL, Error) << "Failed to temporarily acquire the camera";
		return ret;
	}

	ret = initializeStreamConfigurations();
	camera_->release();
	return ret;
}

/*
 * Initialize the format conversion map to translate from Android format
 * identifier to libcamera pixel formats and fill in the list of supported
 * stream configurations to be reported to the Android camera framework through
 * the static stream configuration metadata.
 */
int CameraDevice::initializeStreamConfigurations()
{
	/*
	 * Get the maximum output resolutions
	 * \todo Get this from the camera properties once defined
	 */
	std::unique_ptr<CameraConfiguration> cameraConfig =
		camera_->generateConfiguration({ StillCapture });
	if (!cameraConfig) {
		LOG(HAL, Error) << "Failed to get maximum resolution";
		return -EINVAL;
	}
	StreamConfiguration &cfg = cameraConfig->at(0);

	/*
	 * \todo JPEG - Adjust the maximum available resolution by taking the
	 * JPEG encoder requirements into account (alignment and aspect ratio).
	 */
	const Size maxRes = cfg.size;
	LOG(HAL, Debug) << "Maximum supported resolution: " << maxRes.toString();

	/*
	 * Build the list of supported image resolutions.
	 *
	 * The resolutions listed in camera3Resolution are mandatory to be
	 * supported, up to the camera maximum resolution.
	 *
	 * Augment the list by adding resolutions calculated from the camera
	 * maximum one.
	 */
	std::vector<Size> cameraResolutions;
	std::copy_if(camera3Resolutions.begin(), camera3Resolutions.end(),
		     std::back_inserter(cameraResolutions),
		     [&](const Size &res) { return res < maxRes; });

	/*
	 * The Camera3 specification suggests adding 1/2 and 1/4 of the maximum
	 * resolution.
	 */
	for (unsigned int divider = 2;; divider <<= 1) {
		Size derivedSize{
			maxRes.width / divider,
			maxRes.height / divider,
		};

		if (derivedSize.width < 320 ||
		    derivedSize.height < 240)
			break;

		cameraResolutions.push_back(derivedSize);
	}
	cameraResolutions.push_back(maxRes);

	/* Remove duplicated entries from the list of supported resolutions. */
	std::sort(cameraResolutions.begin(), cameraResolutions.end());
	auto last = std::unique(cameraResolutions.begin(), cameraResolutions.end());
	cameraResolutions.erase(last, cameraResolutions.end());

	/*
	 * Build the list of supported camera formats.
	 *
	 * To each Android format a list of compatible libcamera formats is
	 * associated. The first libcamera format that tests successful is added
	 * to the format translation map used when configuring the streams.
	 * It is then tested against the list of supported camera resolutions to
	 * build the stream configuration map reported through the camera static
	 * metadata.
	 */
	for (const auto &format : camera3FormatsMap) {
		int androidFormat = format.first;
		const Camera3Format &camera3Format = format.second;
		const std::vector<PixelFormat> &libcameraFormats =
			camera3Format.libcameraFormats;

		/*
		 * Test the libcamera formats that can produce images
		 * compatible with the format defined by Android.
		 */
		PixelFormat mappedFormat;
		for (const PixelFormat &pixelFormat : libcameraFormats) {
			/* \todo Fixed mapping for JPEG. */
			if (androidFormat == HAL_PIXEL_FORMAT_BLOB) {
				mappedFormat = formats::MJPEG;
				break;
			}

			/*
			 * The stream configuration size can be adjusted,
			 * not the pixel format.
			 *
			 * \todo This could be simplified once all pipeline
			 * handlers will report the StreamFormats list of
			 * supported formats.
			 */
			cfg.pixelFormat = pixelFormat;

			CameraConfiguration::Status status = cameraConfig->validate();
			if (status != CameraConfiguration::Invalid &&
			    cfg.pixelFormat == pixelFormat) {
				mappedFormat = pixelFormat;
				break;
			}
		}
		if (camera3Format.mandatory && !mappedFormat.isValid()) {
			LOG(HAL, Error) << "Failed to map Android format "
					<< camera3Format.name << " ("
					<< utils::hex(androidFormat) << ")";
			return -EINVAL;
		}

		/*
		 * Record the mapping and then proceed to generate the
		 * stream configurations map, by testing the image resolutions.
		 */
		formatsMap_[androidFormat] = mappedFormat;

		for (const Size &res : cameraResolutions) {
			cfg.pixelFormat = mappedFormat;
			cfg.size = res;

			CameraConfiguration::Status status = cameraConfig->validate();
			/*
			 * Unconditionally report we can produce JPEG.
			 *
			 * \todo The JPEG stream will be implemented as an
			 * HAL-only stream, but some cameras can produce it
			 * directly. As of now, claim support for JPEG without
			 * inspecting where the JPEG stream is produced.
			 */
			if (androidFormat != HAL_PIXEL_FORMAT_BLOB &&
			    status != CameraConfiguration::Valid)
				continue;

			streamConfigurations_.push_back({ res, androidFormat });
		}
	}

	LOG(HAL, Debug) << "Collected stream configuration map: ";
	for (const auto &entry : streamConfigurations_)
		LOG(HAL, Debug) << "{ " << entry.resolution.toString() << " - "
				<< utils::hex(entry.androidFormat) << " }";

	return 0;
}

/*
 * Open a camera device. The static information on the camera shall have been
 * initialized with a call to CameraDevice::initialize().
 */
int CameraDevice::open(const hw_module_t *hardwareModule)
{
	int ret = camera_->acquire();
	if (ret) {
		LOG(HAL, Error) << "Failed to acquire the camera";
		return ret;
	}

	/* Initialize the hw_device_t in the instance camera3_module_t. */
	camera3Device_.common.tag = HARDWARE_DEVICE_TAG;
	camera3Device_.common.version = CAMERA_DEVICE_API_VERSION_3_3;
	camera3Device_.common.module = (hw_module_t *)hardwareModule;
	camera3Device_.common.close = hal_dev_close;

	/*
	 * The camera device operations. These actually implement
	 * the Android Camera HALv3 interface.
	 */
	camera3Device_.ops = &hal_dev_ops;
	camera3Device_.priv = this;

	return 0;
}

void CameraDevice::close()
{
	camera_->stop();
	camera_->release();

	running_ = false;
}

void CameraDevice::setCallbacks(const camera3_callback_ops_t *callbacks)
{
	callbacks_ = callbacks;
}

std::tuple<uint32_t, uint32_t> CameraDevice::calculateStaticMetadataSize()
{
	/*
	 * \todo Keep this in sync with the actual number of entries.
	 * Currently: 51 entries, 687 bytes of static metadata
	 */
	uint32_t numEntries = 51;
	uint32_t byteSize = 687;

	/*
	 * Calculate space occupation in bytes for dynamically built metadata
	 * entries.
	 *
	 * Each stream configuration entry requires 52 bytes:
	 * 4 32bits integers for ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS
	 * 4 64bits integers for ANDROID_SCALER_AVAILABLE_MIN_FRAME_DURATIONS
	 */
	byteSize += streamConfigurations_.size() * 48;

	return std::make_tuple(numEntries, byteSize);
}

/*
 * Return static information for the camera.
 */
const camera_metadata_t *CameraDevice::getStaticMetadata()
{
	if (staticMetadata_)
		return staticMetadata_->get();

	/*
	 * The here reported metadata are enough to implement a basic capture
	 * example application, but a real camera implementation will require
	 * more.
	 */
	uint32_t numEntries;
	uint32_t byteSize;
	std::tie(numEntries, byteSize) = calculateStaticMetadataSize();
	staticMetadata_ = new CameraMetadata(numEntries, byteSize);
	if (!staticMetadata_->isValid()) {
		LOG(HAL, Error) << "Failed to allocate static metadata";
		delete staticMetadata_;
		staticMetadata_ = nullptr;
		return nullptr;
	}

	/* Color correction static metadata. */
	std::vector<uint8_t> aberrationModes = {
		ANDROID_COLOR_CORRECTION_ABERRATION_MODE_OFF,
	};
	staticMetadata_->addEntry(ANDROID_COLOR_CORRECTION_AVAILABLE_ABERRATION_MODES,
				  aberrationModes.data(),
				  aberrationModes.size());

	/* Control static metadata. */
	std::vector<uint8_t> aeAvailableAntiBandingModes = {
		ANDROID_CONTROL_AE_ANTIBANDING_MODE_OFF,
		ANDROID_CONTROL_AE_ANTIBANDING_MODE_50HZ,
		ANDROID_CONTROL_AE_ANTIBANDING_MODE_60HZ,
		ANDROID_CONTROL_AE_ANTIBANDING_MODE_AUTO,
	};
	staticMetadata_->addEntry(ANDROID_CONTROL_AE_AVAILABLE_ANTIBANDING_MODES,
				  aeAvailableAntiBandingModes.data(),
				  aeAvailableAntiBandingModes.size());

	std::vector<uint8_t> aeAvailableModes = {
		ANDROID_CONTROL_AE_MODE_ON,
	};
	staticMetadata_->addEntry(ANDROID_CONTROL_AE_AVAILABLE_MODES,
				  aeAvailableModes.data(),
				  aeAvailableModes.size());

	std::vector<int32_t> availableAeFpsTarget = {
		15, 30,
	};
	staticMetadata_->addEntry(ANDROID_CONTROL_AE_AVAILABLE_TARGET_FPS_RANGES,
				  availableAeFpsTarget.data(),
				  availableAeFpsTarget.size());

	std::vector<int32_t> aeCompensationRange = {
		0, 0,
	};
	staticMetadata_->addEntry(ANDROID_CONTROL_AE_COMPENSATION_RANGE,
				  aeCompensationRange.data(),
				  aeCompensationRange.size());

	const camera_metadata_rational_t aeCompensationStep[] = {
		{ 0, 1 }
	};
	staticMetadata_->addEntry(ANDROID_CONTROL_AE_COMPENSATION_STEP,
				  aeCompensationStep, 1);

	std::vector<uint8_t> availableAfModes = {
		ANDROID_CONTROL_AF_MODE_OFF,
	};
	staticMetadata_->addEntry(ANDROID_CONTROL_AF_AVAILABLE_MODES,
				  availableAfModes.data(),
				  availableAfModes.size());

	std::vector<uint8_t> availableEffects = {
		ANDROID_CONTROL_EFFECT_MODE_OFF,
	};
	staticMetadata_->addEntry(ANDROID_CONTROL_AVAILABLE_EFFECTS,
				  availableEffects.data(),
				  availableEffects.size());

	std::vector<uint8_t> availableSceneModes = {
		ANDROID_CONTROL_SCENE_MODE_DISABLED,
	};
	staticMetadata_->addEntry(ANDROID_CONTROL_AVAILABLE_SCENE_MODES,
				  availableSceneModes.data(),
				  availableSceneModes.size());

	std::vector<uint8_t> availableStabilizationModes = {
		ANDROID_CONTROL_VIDEO_STABILIZATION_MODE_OFF,
	};
	staticMetadata_->addEntry(ANDROID_CONTROL_AVAILABLE_VIDEO_STABILIZATION_MODES,
				  availableStabilizationModes.data(),
				  availableStabilizationModes.size());

	std::vector<uint8_t> availableAwbModes = {
		ANDROID_CONTROL_AWB_MODE_OFF,
	};
	staticMetadata_->addEntry(ANDROID_CONTROL_AWB_AVAILABLE_MODES,
				  availableAwbModes.data(),
				  availableAwbModes.size());

	std::vector<int32_t> availableMaxRegions = {
		0, 0, 0,
	};
	staticMetadata_->addEntry(ANDROID_CONTROL_MAX_REGIONS,
				  availableMaxRegions.data(),
				  availableMaxRegions.size());

	std::vector<uint8_t> sceneModesOverride = {
		ANDROID_CONTROL_AE_MODE_ON,
		ANDROID_CONTROL_AWB_MODE_AUTO,
		ANDROID_CONTROL_AF_MODE_AUTO,
	};
	staticMetadata_->addEntry(ANDROID_CONTROL_SCENE_MODE_OVERRIDES,
				  sceneModesOverride.data(),
				  sceneModesOverride.size());

	uint8_t aeLockAvailable = ANDROID_CONTROL_AE_LOCK_AVAILABLE_FALSE;
	staticMetadata_->addEntry(ANDROID_CONTROL_AE_LOCK_AVAILABLE,
				  &aeLockAvailable, 1);

	uint8_t awbLockAvailable = ANDROID_CONTROL_AWB_LOCK_AVAILABLE_FALSE;
	staticMetadata_->addEntry(ANDROID_CONTROL_AWB_LOCK_AVAILABLE,
				  &awbLockAvailable, 1);

	char availableControlModes = ANDROID_CONTROL_MODE_AUTO;
	staticMetadata_->addEntry(ANDROID_CONTROL_AVAILABLE_MODES,
				  &availableControlModes, 1);

	/* JPEG static metadata. */
	std::vector<int32_t> availableThumbnailSizes = {
		0, 0,
	};
	staticMetadata_->addEntry(ANDROID_JPEG_AVAILABLE_THUMBNAIL_SIZES,
				  availableThumbnailSizes.data(),
				  availableThumbnailSizes.size());

	/*
	 * \todo Calculate the maximum JPEG buffer size by asking the encoder
	 * giving the maximum frame size required.
	 */
	staticMetadata_->addEntry(ANDROID_JPEG_MAX_SIZE, &maxJpegBufferSize_, 1);

	/* Sensor static metadata. */
	int32_t pixelArraySize[] = {
		2592, 1944,
	};
	staticMetadata_->addEntry(ANDROID_SENSOR_INFO_PIXEL_ARRAY_SIZE,
				  &pixelArraySize, 2);

	int32_t sensorSizes[] = {
		0, 0, 2560, 1920,
	};
	staticMetadata_->addEntry(ANDROID_SENSOR_INFO_ACTIVE_ARRAY_SIZE,
				  &sensorSizes, 4);

	int32_t sensitivityRange[] = {
		32, 2400,
	};
	staticMetadata_->addEntry(ANDROID_SENSOR_INFO_SENSITIVITY_RANGE,
				  &sensitivityRange, 2);

	uint16_t filterArr = ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT_GRBG;
	staticMetadata_->addEntry(ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT,
				  &filterArr, 1);

	int64_t exposureTimeRange[] = {
		100000, 200000000,
	};
	staticMetadata_->addEntry(ANDROID_SENSOR_INFO_EXPOSURE_TIME_RANGE,
				  &exposureTimeRange, 2);

	staticMetadata_->addEntry(ANDROID_SENSOR_ORIENTATION, &orientation_, 1);

	std::vector<int32_t> testPatterModes = {
		ANDROID_SENSOR_TEST_PATTERN_MODE_OFF,
	};
	staticMetadata_->addEntry(ANDROID_SENSOR_AVAILABLE_TEST_PATTERN_MODES,
				  testPatterModes.data(),
				  testPatterModes.size());

	std::vector<float> physicalSize = {
		2592, 1944,
	};
	staticMetadata_->addEntry(ANDROID_SENSOR_INFO_PHYSICAL_SIZE,
				  physicalSize.data(),
				  physicalSize.size());

	uint8_t timestampSource = ANDROID_SENSOR_INFO_TIMESTAMP_SOURCE_UNKNOWN;
	staticMetadata_->addEntry(ANDROID_SENSOR_INFO_TIMESTAMP_SOURCE,
				  &timestampSource, 1);

	/* Statistics static metadata. */
	uint8_t faceDetectMode = ANDROID_STATISTICS_FACE_DETECT_MODE_OFF;
	staticMetadata_->addEntry(ANDROID_STATISTICS_INFO_AVAILABLE_FACE_DETECT_MODES,
				  &faceDetectMode, 1);

	int32_t maxFaceCount = 0;
	staticMetadata_->addEntry(ANDROID_STATISTICS_INFO_MAX_FACE_COUNT,
				  &maxFaceCount, 1);

	/* Sync static metadata. */
	int32_t maxLatency = ANDROID_SYNC_MAX_LATENCY_UNKNOWN;
	staticMetadata_->addEntry(ANDROID_SYNC_MAX_LATENCY, &maxLatency, 1);

	/* Flash static metadata. */
	char flashAvailable = ANDROID_FLASH_INFO_AVAILABLE_FALSE;
	staticMetadata_->addEntry(ANDROID_FLASH_INFO_AVAILABLE,
				  &flashAvailable, 1);

	/* Lens static metadata. */
	std::vector<float> lensApertures = {
		2.53 / 100,
	};
	staticMetadata_->addEntry(ANDROID_LENS_INFO_AVAILABLE_APERTURES,
				  lensApertures.data(),
				  lensApertures.size());

	uint8_t lensFacing;
	switch (facing_) {
	default:
	case CAMERA_FACING_FRONT:
		lensFacing = ANDROID_LENS_FACING_FRONT;
		break;
	case CAMERA_FACING_BACK:
		lensFacing = ANDROID_LENS_FACING_BACK;
		break;
	case CAMERA_FACING_EXTERNAL:
		lensFacing = ANDROID_LENS_FACING_EXTERNAL;
		break;
	}
	staticMetadata_->addEntry(ANDROID_LENS_FACING, &lensFacing, 1);

	std::vector<float> lensFocalLenghts = {
		1,
	};
	staticMetadata_->addEntry(ANDROID_LENS_INFO_AVAILABLE_FOCAL_LENGTHS,
				  lensFocalLenghts.data(),
				  lensFocalLenghts.size());

	std::vector<uint8_t> opticalStabilizations = {
		ANDROID_LENS_OPTICAL_STABILIZATION_MODE_OFF,
	};
	staticMetadata_->addEntry(ANDROID_LENS_INFO_AVAILABLE_OPTICAL_STABILIZATION,
				  opticalStabilizations.data(),
				  opticalStabilizations.size());

	float hypeFocalDistance = 0;
	staticMetadata_->addEntry(ANDROID_LENS_INFO_HYPERFOCAL_DISTANCE,
				  &hypeFocalDistance, 1);

	float minFocusDistance = 0;
	staticMetadata_->addEntry(ANDROID_LENS_INFO_MINIMUM_FOCUS_DISTANCE,
				  &minFocusDistance, 1);

	/* Noise reduction modes. */
	uint8_t noiseReductionModes = ANDROID_NOISE_REDUCTION_MODE_OFF;
	staticMetadata_->addEntry(ANDROID_NOISE_REDUCTION_AVAILABLE_NOISE_REDUCTION_MODES,
				  &noiseReductionModes, 1);

	/* Scaler static metadata. */
	float maxDigitalZoom = 1;
	staticMetadata_->addEntry(ANDROID_SCALER_AVAILABLE_MAX_DIGITAL_ZOOM,
				  &maxDigitalZoom, 1);

	std::vector<uint32_t> availableStreamConfigurations;
	availableStreamConfigurations.reserve(streamConfigurations_.size() * 4);
	for (const auto &entry : streamConfigurations_) {
		availableStreamConfigurations.push_back(entry.androidFormat);
		availableStreamConfigurations.push_back(entry.resolution.width);
		availableStreamConfigurations.push_back(entry.resolution.height);
		availableStreamConfigurations.push_back(
			ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT);
	}
	staticMetadata_->addEntry(ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS,
				  availableStreamConfigurations.data(),
				  availableStreamConfigurations.size());

	std::vector<int64_t> availableStallDurations = {
		ANDROID_SCALER_AVAILABLE_FORMATS_BLOB, 2560, 1920, 33333333,
	};
	staticMetadata_->addEntry(ANDROID_SCALER_AVAILABLE_STALL_DURATIONS,
				  availableStallDurations.data(),
				  availableStallDurations.size());

	/* \todo Collect the minimum frame duration from the camera. */
	std::vector<int64_t> minFrameDurations;
	minFrameDurations.reserve(streamConfigurations_.size() * 4);
	for (const auto &entry : streamConfigurations_) {
		minFrameDurations.push_back(entry.androidFormat);
		minFrameDurations.push_back(entry.resolution.width);
		minFrameDurations.push_back(entry.resolution.height);
		minFrameDurations.push_back(33333333);
	}
	staticMetadata_->addEntry(ANDROID_SCALER_AVAILABLE_MIN_FRAME_DURATIONS,
				  minFrameDurations.data(),
				  minFrameDurations.size());

	uint8_t croppingType = ANDROID_SCALER_CROPPING_TYPE_CENTER_ONLY;
	staticMetadata_->addEntry(ANDROID_SCALER_CROPPING_TYPE, &croppingType, 1);

	/* Info static metadata. */
	uint8_t supportedHWLevel = ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL_LIMITED;
	staticMetadata_->addEntry(ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL,
				  &supportedHWLevel, 1);

	/* Request static metadata. */
	int32_t partialResultCount = 1;
	staticMetadata_->addEntry(ANDROID_REQUEST_PARTIAL_RESULT_COUNT,
				  &partialResultCount, 1);

	uint8_t maxPipelineDepth = 2;
	staticMetadata_->addEntry(ANDROID_REQUEST_PIPELINE_MAX_DEPTH,
				  &maxPipelineDepth, 1);

	/* LIMITED does not support reprocessing. */
	uint32_t maxNumInputStreams = 0;
	staticMetadata_->addEntry(ANDROID_REQUEST_MAX_NUM_INPUT_STREAMS,
				  &maxNumInputStreams, 1);

	std::vector<uint8_t> availableCapabilities = {
		ANDROID_REQUEST_AVAILABLE_CAPABILITIES_BACKWARD_COMPATIBLE,
	};

	/* Report if camera supports RAW. */
	std::unique_ptr<CameraConfiguration> cameraConfig =
		camera_->generateConfiguration({ StillCaptureRaw });
	if (cameraConfig && !cameraConfig->empty()) {
		const PixelFormatInfo &info =
			PixelFormatInfo::info(cameraConfig->at(0).pixelFormat);
		if (info.colourEncoding == PixelFormatInfo::ColourEncodingRAW)
			availableCapabilities.push_back(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_RAW);
	}

	staticMetadata_->addEntry(ANDROID_REQUEST_AVAILABLE_CAPABILITIES,
				  availableCapabilities.data(),
				  availableCapabilities.size());

	std::vector<int32_t> availableCharacteristicsKeys = {
		ANDROID_COLOR_CORRECTION_AVAILABLE_ABERRATION_MODES,
		ANDROID_CONTROL_AE_AVAILABLE_ANTIBANDING_MODES,
		ANDROID_CONTROL_AE_AVAILABLE_MODES,
		ANDROID_CONTROL_AE_AVAILABLE_TARGET_FPS_RANGES,
		ANDROID_CONTROL_AE_COMPENSATION_RANGE,
		ANDROID_CONTROL_AE_COMPENSATION_STEP,
		ANDROID_CONTROL_AF_AVAILABLE_MODES,
		ANDROID_CONTROL_AVAILABLE_EFFECTS,
		ANDROID_CONTROL_AVAILABLE_SCENE_MODES,
		ANDROID_CONTROL_AVAILABLE_VIDEO_STABILIZATION_MODES,
		ANDROID_CONTROL_AWB_AVAILABLE_MODES,
		ANDROID_CONTROL_MAX_REGIONS,
		ANDROID_CONTROL_SCENE_MODE_OVERRIDES,
		ANDROID_CONTROL_AE_LOCK_AVAILABLE,
		ANDROID_CONTROL_AWB_LOCK_AVAILABLE,
		ANDROID_CONTROL_AVAILABLE_MODES,
		ANDROID_JPEG_AVAILABLE_THUMBNAIL_SIZES,
		ANDROID_JPEG_MAX_SIZE,
		ANDROID_SENSOR_INFO_PIXEL_ARRAY_SIZE,
		ANDROID_SENSOR_INFO_ACTIVE_ARRAY_SIZE,
		ANDROID_SENSOR_INFO_SENSITIVITY_RANGE,
		ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT,
		ANDROID_SENSOR_INFO_EXPOSURE_TIME_RANGE,
		ANDROID_SENSOR_ORIENTATION,
		ANDROID_SENSOR_AVAILABLE_TEST_PATTERN_MODES,
		ANDROID_SENSOR_INFO_PHYSICAL_SIZE,
		ANDROID_SENSOR_INFO_TIMESTAMP_SOURCE,
		ANDROID_STATISTICS_INFO_AVAILABLE_FACE_DETECT_MODES,
		ANDROID_STATISTICS_INFO_MAX_FACE_COUNT,
		ANDROID_SYNC_MAX_LATENCY,
		ANDROID_FLASH_INFO_AVAILABLE,
		ANDROID_LENS_INFO_AVAILABLE_APERTURES,
		ANDROID_LENS_FACING,
		ANDROID_LENS_INFO_AVAILABLE_FOCAL_LENGTHS,
		ANDROID_LENS_INFO_AVAILABLE_OPTICAL_STABILIZATION,
		ANDROID_LENS_INFO_HYPERFOCAL_DISTANCE,
		ANDROID_LENS_INFO_MINIMUM_FOCUS_DISTANCE,
		ANDROID_NOISE_REDUCTION_AVAILABLE_NOISE_REDUCTION_MODES,
		ANDROID_SCALER_AVAILABLE_MAX_DIGITAL_ZOOM,
		ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS,
		ANDROID_SCALER_AVAILABLE_STALL_DURATIONS,
		ANDROID_SCALER_AVAILABLE_MIN_FRAME_DURATIONS,
		ANDROID_SCALER_CROPPING_TYPE,
		ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL,
		ANDROID_REQUEST_PARTIAL_RESULT_COUNT,
		ANDROID_REQUEST_PIPELINE_MAX_DEPTH,
		ANDROID_REQUEST_MAX_NUM_INPUT_STREAMS,
		ANDROID_REQUEST_AVAILABLE_CAPABILITIES,
	};
	staticMetadata_->addEntry(ANDROID_REQUEST_AVAILABLE_CHARACTERISTICS_KEYS,
				  availableCharacteristicsKeys.data(),
				  availableCharacteristicsKeys.size());

	std::vector<int32_t> availableRequestKeys = {
		ANDROID_CONTROL_AE_MODE,
		ANDROID_CONTROL_AE_EXPOSURE_COMPENSATION,
		ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER,
		ANDROID_CONTROL_AE_TARGET_FPS_RANGE,
		ANDROID_CONTROL_AE_ANTIBANDING_MODE,
		ANDROID_CONTROL_AE_LOCK,
		ANDROID_CONTROL_AF_TRIGGER,
		ANDROID_CONTROL_AWB_MODE,
		ANDROID_CONTROL_AWB_LOCK,
		ANDROID_FLASH_MODE,
		ANDROID_STATISTICS_FACE_DETECT_MODE,
		ANDROID_NOISE_REDUCTION_MODE,
		ANDROID_COLOR_CORRECTION_ABERRATION_MODE,
		ANDROID_LENS_APERTURE,
		ANDROID_LENS_OPTICAL_STABILIZATION_MODE,
		ANDROID_CONTROL_MODE,
		ANDROID_CONTROL_CAPTURE_INTENT,
	};
	staticMetadata_->addEntry(ANDROID_REQUEST_AVAILABLE_REQUEST_KEYS,
				  availableRequestKeys.data(),
				  availableRequestKeys.size());

	std::vector<int32_t> availableResultKeys = {
		ANDROID_CONTROL_AE_STATE,
		ANDROID_CONTROL_AE_LOCK,
		ANDROID_CONTROL_AF_STATE,
		ANDROID_CONTROL_AWB_STATE,
		ANDROID_CONTROL_AWB_LOCK,
		ANDROID_LENS_STATE,
		ANDROID_SCALER_CROP_REGION,
		ANDROID_SENSOR_TIMESTAMP,
		ANDROID_SENSOR_ROLLING_SHUTTER_SKEW,
		ANDROID_SENSOR_EXPOSURE_TIME,
		ANDROID_STATISTICS_LENS_SHADING_MAP_MODE,
		ANDROID_STATISTICS_SCENE_FLICKER,
		ANDROID_JPEG_SIZE,
		ANDROID_JPEG_QUALITY,
		ANDROID_JPEG_ORIENTATION,
	};
	staticMetadata_->addEntry(ANDROID_REQUEST_AVAILABLE_RESULT_KEYS,
				  availableResultKeys.data(),
				  availableResultKeys.size());

	if (!staticMetadata_->isValid()) {
		LOG(HAL, Error) << "Failed to construct static metadata";
		delete staticMetadata_;
		staticMetadata_ = nullptr;
		return nullptr;
	}

	return staticMetadata_->get();
}

CameraMetadata *CameraDevice::requestTemplatePreview()
{
	/*
	 * \todo Keep this in sync with the actual number of entries.
	 * Currently: 20 entries, 35 bytes
	 */
	CameraMetadata *requestTemplate = new CameraMetadata(20, 35);
	if (!requestTemplate->isValid()) {
		delete requestTemplate;
		return nullptr;
	}

	uint8_t aeMode = ANDROID_CONTROL_AE_MODE_ON;
	requestTemplate->addEntry(ANDROID_CONTROL_AE_MODE,
				  &aeMode, 1);

	int32_t aeExposureCompensation = 0;
	requestTemplate->addEntry(ANDROID_CONTROL_AE_EXPOSURE_COMPENSATION,
				  &aeExposureCompensation, 1);

	uint8_t aePrecaptureTrigger = ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER_IDLE;
	requestTemplate->addEntry(ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER,
				  &aePrecaptureTrigger, 1);

	uint8_t aeLock = ANDROID_CONTROL_AE_LOCK_OFF;
	requestTemplate->addEntry(ANDROID_CONTROL_AE_LOCK,
				  &aeLock, 1);

	std::vector<int32_t> aeFpsTarget = {
		15, 30,
	};
	requestTemplate->addEntry(ANDROID_CONTROL_AE_TARGET_FPS_RANGE,
				  aeFpsTarget.data(),
				  aeFpsTarget.size());

	uint8_t aeAntibandingMode = ANDROID_CONTROL_AE_ANTIBANDING_MODE_AUTO;
	requestTemplate->addEntry(ANDROID_CONTROL_AE_ANTIBANDING_MODE,
				  &aeAntibandingMode, 1);

	uint8_t afTrigger = ANDROID_CONTROL_AF_TRIGGER_IDLE;
	requestTemplate->addEntry(ANDROID_CONTROL_AF_TRIGGER,
				  &afTrigger, 1);

	uint8_t awbMode = ANDROID_CONTROL_AWB_MODE_AUTO;
	requestTemplate->addEntry(ANDROID_CONTROL_AWB_MODE,
				  &awbMode, 1);

	uint8_t awbLock = ANDROID_CONTROL_AWB_LOCK_OFF;
	requestTemplate->addEntry(ANDROID_CONTROL_AWB_LOCK,
				  &awbLock, 1);

	uint8_t flashMode = ANDROID_FLASH_MODE_OFF;
	requestTemplate->addEntry(ANDROID_FLASH_MODE,
				  &flashMode, 1);

	uint8_t faceDetectMode = ANDROID_STATISTICS_FACE_DETECT_MODE_OFF;
	requestTemplate->addEntry(ANDROID_STATISTICS_FACE_DETECT_MODE,
				  &faceDetectMode, 1);

	uint8_t noiseReduction = ANDROID_NOISE_REDUCTION_MODE_OFF;
	requestTemplate->addEntry(ANDROID_NOISE_REDUCTION_MODE,
				  &noiseReduction, 1);

	uint8_t aberrationMode = ANDROID_COLOR_CORRECTION_ABERRATION_MODE_OFF;
	requestTemplate->addEntry(ANDROID_COLOR_CORRECTION_ABERRATION_MODE,
				  &aberrationMode, 1);

	uint8_t controlMode = ANDROID_CONTROL_MODE_AUTO;
	requestTemplate->addEntry(ANDROID_CONTROL_MODE, &controlMode, 1);

	float lensAperture = 2.53 / 100;
	requestTemplate->addEntry(ANDROID_LENS_APERTURE, &lensAperture, 1);

	uint8_t opticalStabilization = ANDROID_LENS_OPTICAL_STABILIZATION_MODE_OFF;
	requestTemplate->addEntry(ANDROID_LENS_OPTICAL_STABILIZATION_MODE,
				  &opticalStabilization, 1);

	uint8_t captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_PREVIEW;
	requestTemplate->addEntry(ANDROID_CONTROL_CAPTURE_INTENT,
				  &captureIntent, 1);

	return requestTemplate;
}

/*
 * Produce a metadata pack to be used as template for a capture request.
 */
const camera_metadata_t *CameraDevice::constructDefaultRequestSettings(int type)
{
	auto it = requestTemplates_.find(type);
	if (it != requestTemplates_.end())
		return it->second->get();

	/* Use the capture intent matching the requested template type. */
	CameraMetadata *requestTemplate;
	uint8_t captureIntent;
	switch (type) {
	case CAMERA3_TEMPLATE_PREVIEW:
		captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_PREVIEW;
		break;
	case CAMERA3_TEMPLATE_STILL_CAPTURE:
		captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_STILL_CAPTURE;
		break;
	case CAMERA3_TEMPLATE_VIDEO_RECORD:
		captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_VIDEO_RECORD;
		break;
	case CAMERA3_TEMPLATE_VIDEO_SNAPSHOT:
		captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_VIDEO_SNAPSHOT;
		break;
	case CAMERA3_TEMPLATE_ZERO_SHUTTER_LAG:
		captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_ZERO_SHUTTER_LAG;
		break;
	case CAMERA3_TEMPLATE_MANUAL:
		captureIntent = ANDROID_CONTROL_CAPTURE_INTENT_MANUAL;
		break;
	default:
		LOG(HAL, Error) << "Invalid template request type: " << type;
		return nullptr;
	}

	requestTemplate = requestTemplatePreview();
	if (!requestTemplate || !requestTemplate->isValid()) {
		LOG(HAL, Error) << "Failed to construct request template";
		delete requestTemplate;
		return nullptr;
	}

	requestTemplate->updateEntry(ANDROID_CONTROL_CAPTURE_INTENT,
				     &captureIntent, 1);

	requestTemplates_[type] = requestTemplate;
	return requestTemplate->get();
}

PixelFormat CameraDevice::toPixelFormat(int format)
{
	/* Translate Android format code to libcamera pixel format. */
	auto it = formatsMap_.find(format);
	if (it == formatsMap_.end()) {
		LOG(HAL, Error) << "Requested format " << utils::hex(format)
				<< " not supported";
		return PixelFormat();
	}

	return it->second;
}

/*
 * Inspect the stream_list to produce a list of StreamConfiguration to
 * be use to configure the Camera.
 */
int CameraDevice::configureStreams(camera3_stream_configuration_t *stream_list)
{
	/*
	 * Generate an empty configuration, and construct a StreamConfiguration
	 * for each camera3_stream to add to it.
	 */
	config_ = camera_->generateConfiguration();
	if (!config_) {
		LOG(HAL, Error) << "Failed to generate camera configuration";
		return -EINVAL;
	}

	/*
	 * Clear and remove any existing configuration from previous calls, and
	 * ensure the required entries are available without further
	 * reallocation.
	 */
	streams_.clear();
	streams_.reserve(stream_list->num_streams);

	/*
	 * Track actually created streams, as there may not be a 1:1 mapping of
	 * camera3 streams to libcamera streams.
	 */
	unsigned int streamIndex = 0;

	/* First handle all non-MJPEG streams. */
	for (unsigned int i = 0; i < stream_list->num_streams; ++i) {
		camera3_stream_t *stream = stream_list->streams[i];
		Size size(stream->width, stream->height);

		PixelFormat format = toPixelFormat(stream->format);

		LOG(HAL, Info) << "Stream #" << i
			       << ", direction: " << stream->stream_type
			       << ", width: " << stream->width
			       << ", height: " << stream->height
			       << ", format: " << utils::hex(stream->format)
			       << " (" << format.toString() << ")";

		if (!format.isValid())
			return -EINVAL;

		streams_.emplace_back(format, size);
		stream->priv = static_cast<void *>(&streams_[i]);

		/* Defer handling of MJPEG streams until all others are known. */
		if (format == formats::MJPEG)
			continue;

		StreamConfiguration streamConfiguration;

		streamConfiguration.size = size;
		streamConfiguration.pixelFormat = format;

		config_->addConfiguration(streamConfiguration);

		streams_[i].index = streamIndex++;
	}

	/* Now handle MJPEG streams, adding a new stream if required. */
	for (unsigned int i = 0; i < stream_list->num_streams; ++i) {
		camera3_stream_t *stream = stream_list->streams[i];
		bool match = false;

		if (streams_[i].format != formats::MJPEG)
			continue;

		/* Search for a compatible stream */
		for (unsigned int j = 0; j < config_->size(); j++) {
			StreamConfiguration &cfg = config_->at(j);

			/*
			 * \todo The PixelFormat must also be compatible with
			 * the encoder.
			 */
			if (cfg.size == streams_[i].size) {
				LOG(HAL, Info) << "Stream " << i
					       << " using libcamera stream " << j;

				match = true;
				streams_[i].index = j;
			}
		}

		/*
		 * Without a compatible match for JPEG encoding we must
		 * introduce a new stream to satisfy the request requirements.
		 */
		if (!match) {
			StreamConfiguration streamConfiguration;

			/*
			 * \todo The pixelFormat should be a 'best-fit' choice
			 * and may require a validation cycle. This is not yet
			 * handled, and should be considered as part of any
			 * stream configuration reworks.
			 */
			streamConfiguration.size.width = stream->width;
			streamConfiguration.size.height = stream->height;
			streamConfiguration.pixelFormat = formats::NV12;

			LOG(HAL, Info) << "Adding " << streamConfiguration.toString()
				       << " for MJPEG support";

			config_->addConfiguration(streamConfiguration);
			streams_[i].index = streamIndex++;
		}
	}

	switch (config_->validate()) {
	case CameraConfiguration::Valid:
		break;
	case CameraConfiguration::Adjusted:
		LOG(HAL, Info) << "Camera configuration adjusted";

		for (const StreamConfiguration &cfg : *config_)
			LOG(HAL, Info) << " - " << cfg.toString();

		config_.reset();
		return -EINVAL;
	case CameraConfiguration::Invalid:
		LOG(HAL, Info) << "Camera configuration invalid";
		config_.reset();
		return -EINVAL;
	}

	for (unsigned int i = 0; i < stream_list->num_streams; ++i) {
		camera3_stream_t *stream = stream_list->streams[i];
		CameraStream *cameraStream = &streams_[i];
		StreamConfiguration &cfg = config_->at(cameraStream->index);

		/* Use the bufferCount confirmed by the validation process. */
		stream->max_buffers = cfg.bufferCount;

		/*
		 * Construct a software encoder for MJPEG streams from the
		 * chosen libcamera source stream.
		 */
		if (cameraStream->format == formats::MJPEG) {
			cameraStream->jpeg = new EncoderLibJpeg();
			int ret = cameraStream->jpeg->configure(cfg);
			if (ret) {
				LOG(HAL, Error)
					<< "Failed to configure encoder";
				return ret;
			}
		}
	}

	/*
	 * Once the CameraConfiguration has been adjusted/validated
	 * it can be applied to the camera.
	 */
	int ret = camera_->configure(config_.get());
	if (ret) {
		LOG(HAL, Error) << "Failed to configure camera '"
				<< camera_->id() << "'";
		return ret;
	}

	return 0;
}

FrameBuffer *CameraDevice::createFrameBuffer(const buffer_handle_t camera3buffer)
{
	std::vector<FrameBuffer::Plane> planes;
	for (int i = 0; i < camera3buffer->numFds; i++) {
		/* Skip unused planes. */
		if (camera3buffer->data[i] == -1)
			break;

		FrameBuffer::Plane plane;
		plane.fd = FileDescriptor(camera3buffer->data[i]);
		if (!plane.fd.isValid()) {
			LOG(HAL, Error) << "Failed to obtain FileDescriptor ("
					<< camera3buffer->data[i] << ") "
					<< " on plane " << i;
			return nullptr;
		}

		off_t length = lseek(plane.fd.fd(), 0, SEEK_END);
		if (length == -1) {
			LOG(HAL, Error) << "Failed to query plane length";
			return nullptr;
		}

		plane.length = length;
		planes.push_back(std::move(plane));
	}

	return new FrameBuffer(std::move(planes));
}

int CameraDevice::processCaptureRequest(camera3_capture_request_t *camera3Request)
{
	if (!camera3Request->num_output_buffers) {
		LOG(HAL, Error) << "No output buffers provided";
		return -EINVAL;
	}

	/* Start the camera if that's the first request we handle. */
	if (!running_) {
		int ret = camera_->start();
		if (ret) {
			LOG(HAL, Error) << "Failed to start camera";
			return ret;
		}

		running_ = true;
	}

	/*
	 * Queue a request for the Camera with the provided dmabuf file
	 * descriptors.
	 */
	const camera3_stream_buffer_t *camera3Buffers =
					camera3Request->output_buffers;

	/*
	 * Save the request descriptors for use at completion time.
	 * The descriptor and the associated memory reserved here are freed
	 * at request complete time.
	 */
	Camera3RequestDescriptor *descriptor =
		new Camera3RequestDescriptor(camera3Request->frame_number,
					     camera3Request->num_output_buffers);

	Request *request =
		camera_->createRequest(reinterpret_cast<uint64_t>(descriptor));

	for (unsigned int i = 0; i < descriptor->numBuffers; ++i) {
		CameraStream *cameraStream =
			static_cast<CameraStream *>(camera3Buffers[i].stream->priv);

		/*
		 * Keep track of which stream the request belongs to and store
		 * the native buffer handles.
		 */
		descriptor->buffers[i].stream = camera3Buffers[i].stream;
		descriptor->buffers[i].buffer = camera3Buffers[i].buffer;

		/* Software streams are handled after hardware streams complete. */
		if (cameraStream->format == formats::MJPEG)
			continue;

		/*
		 * Create a libcamera buffer using the dmabuf descriptors of
		 * the camera3Buffer for each stream. The FrameBuffer is
		 * directly associated with the Camera3RequestDescriptor for
		 * lifetime management only.
		 */
		FrameBuffer *buffer = createFrameBuffer(*camera3Buffers[i].buffer);
		if (!buffer) {
			LOG(HAL, Error) << "Failed to create buffer";
			delete request;
			delete descriptor;
			return -ENOMEM;
		}
		descriptor->frameBuffers.emplace_back(buffer);

		StreamConfiguration *streamConfiguration = &config_->at(cameraStream->index);
		Stream *stream = streamConfiguration->stream();

		request->addBuffer(stream, buffer);
	}

	int ret = camera_->queueRequest(request);
	if (ret) {
		LOG(HAL, Error) << "Failed to queue request";
		delete request;
		delete descriptor;
		return ret;
	}

	return 0;
}

void CameraDevice::requestComplete(Request *request)
{
	const Request::BufferMap &buffers = request->buffers();
	camera3_buffer_status status = CAMERA3_BUFFER_STATUS_OK;
	std::unique_ptr<CameraMetadata> resultMetadata;
	Camera3RequestDescriptor *descriptor =
		reinterpret_cast<Camera3RequestDescriptor *>(request->cookie());

	if (request->status() != Request::RequestComplete) {
		LOG(HAL, Error) << "Request not successfully completed: "
				<< request->status();
		status = CAMERA3_BUFFER_STATUS_ERROR;
	}

	/*
	 * \todo The timestamp used for the metadata is currently always taken
	 * from the first buffer (which may be the first stream) in the Request.
	 * It might be appropriate to return a 'correct' (as determined by
	 * pipeline handlers) timestamp in the Request itself.
	 */
	FrameBuffer *buffer = buffers.begin()->second;
	resultMetadata = getResultMetadata(descriptor->frameNumber,
					   buffer->metadata().timestamp);

	/* Handle any JPEG compression. */
	for (unsigned int i = 0; i < descriptor->numBuffers; ++i) {
		CameraStream *cameraStream =
			static_cast<CameraStream *>(descriptor->buffers[i].stream->priv);

		if (cameraStream->format != formats::MJPEG)
			continue;

		Encoder *encoder = cameraStream->jpeg;
		if (!encoder) {
			LOG(HAL, Error) << "Failed to identify encoder";
			continue;
		}

		StreamConfiguration *streamConfiguration = &config_->at(cameraStream->index);
		Stream *stream = streamConfiguration->stream();
		FrameBuffer *buffer = request->findBuffer(stream);
		if (!buffer) {
			LOG(HAL, Error) << "Failed to find a source stream buffer";
			continue;
		}

		/*
		 * \todo Buffer mapping and compression should be moved to a
		 * separate thread.
		 */

		MappedCamera3Buffer mapped(*descriptor->buffers[i].buffer,
					   PROT_READ | PROT_WRITE);
		if (!mapped.isValid()) {
			LOG(HAL, Error) << "Failed to mmap android blob buffer";
			continue;
		}

		int jpeg_size = encoder->encode(buffer, mapped.maps()[0]);
		if (jpeg_size < 0) {
			LOG(HAL, Error) << "Failed to encode stream image";
			status = CAMERA3_BUFFER_STATUS_ERROR;
			continue;
		}

		/*
		 * Fill in the JPEG blob header.
		 *
		 * The mapped size of the buffer is being returned as
		 * substantially larger than the requested JPEG_MAX_SIZE
		 * (which is referenced from maxJpegBufferSize_). Utilise
		 * this static size to ensure the correct offset of the blob is
		 * determined.
		 *
		 * \todo Investigate if the buffer size mismatch is an issue or
		 * expected behaviour.
		 */
		uint8_t *resultPtr = mapped.maps()[0].data() +
				     maxJpegBufferSize_ -
				     sizeof(struct camera3_jpeg_blob);
		auto *blob = reinterpret_cast<struct camera3_jpeg_blob *>(resultPtr);
		blob->jpeg_blob_id = CAMERA3_JPEG_BLOB_ID;
		blob->jpeg_size = jpeg_size;

		/* Update the JPEG result Metadata. */
		resultMetadata->addEntry(ANDROID_JPEG_SIZE,
					 &jpeg_size, 1);

		const uint32_t jpeg_quality = 95;
		resultMetadata->addEntry(ANDROID_JPEG_QUALITY,
					 &jpeg_quality, 1);

		const uint32_t jpeg_orientation = 0;
		resultMetadata->addEntry(ANDROID_JPEG_ORIENTATION,
					 &jpeg_orientation, 1);
	}

	/* Prepare to call back the Android camera stack. */
	camera3_capture_result_t captureResult = {};
	captureResult.frame_number = descriptor->frameNumber;
	captureResult.num_output_buffers = descriptor->numBuffers;
	for (unsigned int i = 0; i < descriptor->numBuffers; ++i) {
		descriptor->buffers[i].acquire_fence = -1;
		descriptor->buffers[i].release_fence = -1;
		descriptor->buffers[i].status = status;
	}
	captureResult.output_buffers =
		const_cast<const camera3_stream_buffer_t *>(descriptor->buffers);


	if (status == CAMERA3_BUFFER_STATUS_OK) {
		notifyShutter(descriptor->frameNumber,
			      buffer->metadata().timestamp);

		captureResult.partial_result = 1;
		captureResult.result = resultMetadata->get();
	}

	if (status == CAMERA3_BUFFER_STATUS_ERROR || !captureResult.result) {
		/* \todo Improve error handling. In case we notify an error
		 * because the metadata generation fails, a shutter event has
		 * already been notified for this frame number before the error
		 * is here signalled. Make sure the error path plays well with
		 * the camera stack state machine.
		 */
		notifyError(descriptor->frameNumber,
			    descriptor->buffers[0].stream);
	}

	callbacks_->process_capture_result(callbacks_, &captureResult);

	delete descriptor;
}

std::string CameraDevice::logPrefix() const
{
	return "'" + camera_->id() + "'";
}

void CameraDevice::notifyShutter(uint32_t frameNumber, uint64_t timestamp)
{
	camera3_notify_msg_t notify = {};

	notify.type = CAMERA3_MSG_SHUTTER;
	notify.message.shutter.frame_number = frameNumber;
	notify.message.shutter.timestamp = timestamp;

	callbacks_->notify(callbacks_, &notify);
}

void CameraDevice::notifyError(uint32_t frameNumber, camera3_stream_t *stream)
{
	camera3_notify_msg_t notify = {};

	/*
	 * \todo Report and identify the stream number or configuration to
	 * clarify the stream that failed.
	 */
	LOG(HAL, Error) << "Error occurred on frame " << frameNumber << " ("
			<< toPixelFormat(stream->format).toString() << ")";

	notify.type = CAMERA3_MSG_ERROR;
	notify.message.error.error_stream = stream;
	notify.message.error.frame_number = frameNumber;
	notify.message.error.error_code = CAMERA3_MSG_ERROR_REQUEST;

	callbacks_->notify(callbacks_, &notify);
}

/*
 * Produce a set of fixed result metadata.
 */
std::unique_ptr<CameraMetadata>
CameraDevice::getResultMetadata([[maybe_unused]] int frame_number,
				int64_t timestamp)
{
	/*
	 * \todo Keep this in sync with the actual number of entries.
	 * Currently: 18 entries, 62 bytes
	 */
	std::unique_ptr<CameraMetadata> resultMetadata =
		std::make_unique<CameraMetadata>(18, 62);
	if (!resultMetadata->isValid()) {
		LOG(HAL, Error) << "Failed to allocate static metadata";
		return nullptr;
	}

	const uint8_t ae_state = ANDROID_CONTROL_AE_STATE_CONVERGED;
	resultMetadata->addEntry(ANDROID_CONTROL_AE_STATE, &ae_state, 1);

	const uint8_t ae_lock = ANDROID_CONTROL_AE_LOCK_OFF;
	resultMetadata->addEntry(ANDROID_CONTROL_AE_LOCK, &ae_lock, 1);

	uint8_t af_state = ANDROID_CONTROL_AF_STATE_INACTIVE;
	resultMetadata->addEntry(ANDROID_CONTROL_AF_STATE, &af_state, 1);

	const uint8_t awb_state = ANDROID_CONTROL_AWB_STATE_CONVERGED;
	resultMetadata->addEntry(ANDROID_CONTROL_AWB_STATE, &awb_state, 1);

	const uint8_t awb_lock = ANDROID_CONTROL_AWB_LOCK_OFF;
	resultMetadata->addEntry(ANDROID_CONTROL_AWB_LOCK, &awb_lock, 1);

	const uint8_t lens_state = ANDROID_LENS_STATE_STATIONARY;
	resultMetadata->addEntry(ANDROID_LENS_STATE, &lens_state, 1);

	int32_t sensorSizes[] = {
		0, 0, 2560, 1920,
	};
	resultMetadata->addEntry(ANDROID_SCALER_CROP_REGION, sensorSizes, 4);

	resultMetadata->addEntry(ANDROID_SENSOR_TIMESTAMP, &timestamp, 1);

	/* 33.3 msec */
	const int64_t rolling_shutter_skew = 33300000;
	resultMetadata->addEntry(ANDROID_SENSOR_ROLLING_SHUTTER_SKEW,
				 &rolling_shutter_skew, 1);

	/* 16.6 msec */
	const int64_t exposure_time = 16600000;
	resultMetadata->addEntry(ANDROID_SENSOR_EXPOSURE_TIME,
				 &exposure_time, 1);

	const uint8_t lens_shading_map_mode =
				ANDROID_STATISTICS_LENS_SHADING_MAP_MODE_OFF;
	resultMetadata->addEntry(ANDROID_STATISTICS_LENS_SHADING_MAP_MODE,
				 &lens_shading_map_mode, 1);

	const uint8_t scene_flicker = ANDROID_STATISTICS_SCENE_FLICKER_NONE;
	resultMetadata->addEntry(ANDROID_STATISTICS_SCENE_FLICKER,
				 &scene_flicker, 1);

	/*
	 * Return the result metadata pack even is not valid: get() will return
	 * nullptr.
	 */
	if (!resultMetadata->isValid()) {
		LOG(HAL, Error) << "Failed to construct result metadata";
	}

	return resultMetadata;
}