/* SPDX-License-Identifier: BSD-2-Clause */ /* * Copyright (C) 2019, Raspberry Pi Ltd * Copyright (C) 2024, Ideas on Board Oy * * Piecewise linear functions */ #include "pwl.h" #include #include #include #include /** * \file pwl.h * \brief Piecewise linear functions */ namespace libcamera { namespace ipa { /** * \class Pwl * \brief Describe a univariate piecewise linear function in two-dimensional * real space * * A piecewise linear function is a univariate function that maps reals to * reals, and it is composed of multiple straight-line segments. * * While a mathematical piecewise linear function would usually be defined by * a list of linear functions and for which values of the domain they apply, * this Pwl class is instead defined by a list of points at which these line * segments intersect. These intersecting points are known as knots. * * https://en.wikipedia.org/wiki/Piecewise_linear_function * * A consequence of the Pwl class being defined by knots instead of linear * functions is that the values of the piecewise linear function past the ends * of the function are constants as opposed to linear functions. In a * mathematical piecewise linear function that is defined by multiple linear * functions, the ends of the function are also linear functions and hence grow * to infinity (or negative infinity). However, since this Pwl class is defined * by knots, the y-value of the leftmost and rightmost knots will hold for all * x values to negative infinity and positive infinity, respectively. */ /** * \typedef Pwl::Point * \brief Describe a point in two-dimensional real space */ /** * \class Pwl::Interval * \brief Describe an interval in one-dimensional real space */ /** * \fn Pwl::Interval::Interval(double _start, double _end) * \brief Construct an interval * \param[in] _start Start of the interval * \param[in] _end End of the interval */ /** * \fn Pwl::Interval::contains * \brief Check if a given value falls within the interval * \param[in] value Value to check * \return True if the value falls within the interval, including its bounds, * or false otherwise */ /** * \fn Pwl::Interval::clamp * \brief Clamp a value such that it is within the interval * \param[in] value Value to clamp * \return The clamped value */ /** * \fn Pwl::Interval::length * \brief Compute the length of the interval * \return The length of the interval */ /** * \var Pwl::Interval::start * \brief Start of the interval */ /** * \var Pwl::Interval::end * \brief End of the interval */ /** * \brief Construct an empty piecewise linear function */ Pwl::Pwl() { } /** * \brief Construct a piecewise linear function from a list of 2D points * \param[in] points Vector of points from which to construct the piecewise * linear function * * \a points must be in ascending order of x-value. */ Pwl::Pwl(const std::vector &points) : points_(points) { } /** * \brief Populate the piecewise linear function from yaml data * \param[in] params Yaml data to populate the piecewise linear function with * * Any existing points in the piecewise linear function *will* be overwritten. * * The yaml data is expected to be a list with an even number of numerical * elements. These will be parsed in pairs into x and y points in the piecewise * linear function, and added in order. x must be monotonically increasing. * * \return 0 on success, negative error code otherwise */ int Pwl::readYaml(const libcamera::YamlObject ¶ms) { if (!params.size() || params.size() % 2) return -EINVAL; const auto &list = params.asList(); points_.clear(); for (auto it = list.begin(); it != list.end(); it++) { auto x = it->get(); if (!x) return -EINVAL; if (it != list.begin() && *x <= points_.back().x()) return -EINVAL; auto y = (++it)->get(); if (!y) return -EINVAL; points_.push_back(Point({ *x, *y })); } return 0; } /** * \brief Append a point to the end of the piecewise linear function * \param[in] x x-coordinate of the point to add to the piecewise linear function * \param[in] y y-coordinate of the point to add to the piecewise linear function * \param[in] eps Epsilon for the minimum x distance between points (optional) * * The point's x-coordinate must be greater than the x-coordinate of the last * (= greatest) point already in the piecewise linear function. */ void Pwl::append(double x, double y, const double eps) { if (points_.empty() || points_.back().x() + eps < x) points_.push_back(Point({ x, y })); } /** * \brief Prepend a point to the beginning of the piecewise linear function * \param[in] x x-coordinate of the point to add to the piecewise linear function * \param[in] y y-coordinate of the point to add to the piecewise linear function * \param[in] eps Epsilon for the minimum x distance between points (optional) * * The point's x-coordinate must be less than the x-coordinate of the first * (= smallest) point already in the piecewise linear function. */ void Pwl::prepend(double x, double y, const double eps) { if (points_.empty() || points_.front().x() - eps > x) points_.insert(points_.begin(), Point({ x, y })); } /** * \fn Pwl::empty() const * \brief Check if the piecewise linear function is empty * \return True if there are no points in the function, false otherwise */ /** * \fn Pwl::size() const * \brief Retrieve the number of points in the piecewise linear function * \return The number of points in the piecewise linear function */ /** * \brief Get the domain of the piecewise linear function * \return An interval representing the domain */ Pwl::Interval Pwl::domain() const { return Interval(points_[0].x(), points_[points_.size() - 1].x()); } /** * \brief Get the range of the piecewise linear function * \return An interval representing the range */ Pwl::Interval Pwl::range() const { double lo = points_[0].y(), hi = lo; for (auto &p : points_) lo = std::min(lo, p.y()), hi = std::max(hi, p.y()); return Interval(lo, hi); } /** * \brief Evaluate the piecewise linear function * \param[in] x The x value to input into the function * \param[inout] span Initial guess for span * \param[in] updateSpan Set to true to update span * * Evaluate Pwl, optionally supplying an initial guess for the * "span". The "span" may be optionally be updated. If you want to know * the "span" value but don't have an initial guess you can set it to * -1. * * \return The result of evaluating the piecewise linear function at position \a x */ double Pwl::eval(double x, int *span, bool updateSpan) const { int index = findSpan(x, span && *span != -1 ? *span : points_.size() / 2 - 1); if (span && updateSpan) *span = index; return points_[index].y() + (x - points_[index].x()) * (points_[index + 1].y() - points_[index].y()) / (points_[index + 1].x() - points_[index].x()); } int Pwl::findSpan(double x, int span) const { /* * Pwls are generally small, so linear search may well be faster than * binary, though could review this if large Pwls start turning up. */ int lastSpan = points_.size() - 2; /* * some algorithms may call us with span pointing directly at the last * control point */ span = std::max(0, std::min(lastSpan, span)); while (span < lastSpan && x >= points_[span + 1].x()) span++; while (span && x < points_[span].x()) span--; return span; } /** * \brief Compute the inverse function * \param[in] eps Epsilon for the minimum x distance between points (optional) * * The output includes whether the resulting inverse function is a proper * (true) inverse, or only a best effort (e.g. input was non-monotonic). * * \return A pair of the inverse piecewise linear function, and whether or not * the result is a proper/true inverse */ std::pair Pwl::inverse(const double eps) const { bool appended = false, prepended = false, neither = false; Pwl inverse; for (Point const &p : points_) { if (inverse.empty()) { inverse.append(p.y(), p.x(), eps); } else if (std::abs(inverse.points_.back().x() - p.y()) <= eps || std::abs(inverse.points_.front().x() - p.y()) <= eps) { /* do nothing */; } else if (p.y() > inverse.points_.back().x()) { inverse.append(p.y(), p.x(), eps); appended = true; } else if (p.y() < inverse.points_.front().x()) { inverse.prepend(p.y(), p.x(), eps); prepended = true; } else { neither = true; } } /* * This is not a proper inverse if we found ourselves putting points * onto both ends of the inverse, or if there were points that couldn't * go on either. */ bool trueInverse = !(neither || (appended && prepended)); return { inverse, trueInverse }; } /** * \brief Compose two piecewise linear functions together * \param[in] other The "other" piecewise linear function * \param[in] eps Epsilon for the minimum x distance between points (optional) * * The "this" function is done first, and "other" after. * * \return The composed piecewise linear function */ Pwl Pwl::compose(Pwl const &other, const double eps) const { double thisX = points_[0].x(), thisY = points_[0].y(); int thisSpan = 0, otherSpan = other.findSpan(thisY, 0); Pwl result({ Point({ thisX, other.eval(thisY, &otherSpan, false) }) }); while (thisSpan != (int)points_.size() - 1) { double dx = points_[thisSpan + 1].x() - points_[thisSpan].x(), dy = points_[thisSpan + 1].y() - points_[thisSpan].y(); if (std::abs(dy) > eps && otherSpan + 1 < (int)other.points_.size() && points_[thisSpan + 1].y() >= other.points_[otherSpan + 1].x() + eps) { /* * next control point in result will be where this * function's y reaches the next span in other */ thisX = points_[thisSpan].x() + (other.points_[otherSpan + 1].x() - points_[thisSpan].y()) * dx / dy; thisY = other.points_[++otherSpan].x(); } else if (std::abs(dy) > eps && otherSpan > 0 && points_[thisSpan + 1].y() <= other.points_[otherSpan - 1].x() - eps) { /* * next control point in result will be where this * function's y reaches the previous span in other */ thisX = points_[thisSpan].x() + (other.points_[otherSpan + 1].x() - points_[thisSpan].y()) * dx / dy; thisY = other.points_[--otherSpan].x(); } else { /* we stay in the same span in other */ thisSpan++; thisX = points_[thisSpan].x(), thisY = points_[thisSpan].y(); } result.append(thisX, other.eval(thisY, &otherSpan, false), eps); } return result; } /** * \brief Apply function to (x, y) values at every control point * \param[in] f Function to be applied */ void Pwl::map(std::function f) const { for (auto &pt : points_) f(pt.x(), pt.y()); } /** * \brief Apply function to (x, y0, y1) values wherever either Pwl has a * control point. * \param[in] pwl0 First piecewise linear function * \param[in] pwl1 Second piecewise linear function * \param[in] f Function to be applied * * This applies the function \a f to every parameter (x, y0, y1), where x is * the combined list of x-values from \a pwl0 and \a pwl1, y0 is the y-value * for the given x in \a pwl0, and y1 is the y-value for the same x in \a pwl1. */ void Pwl::map2(Pwl const &pwl0, Pwl const &pwl1, std::function f) { int span0 = 0, span1 = 0; double x = std::min(pwl0.points_[0].x(), pwl1.points_[0].x()); f(x, pwl0.eval(x, &span0, false), pwl1.eval(x, &span1, false)); while (span0 < (int)pwl0.points_.size() - 1 || span1 < (int)pwl1.points_.size() - 1) { if (span0 == (int)pwl0.points_.size() - 1) x = pwl1.points_[++span1].x(); else if (span1 == (int)pwl1.points_.size() - 1) x = pwl0.points_[++span0].x(); else if (pwl0.points_[span0 + 1].x() > pwl1.points_[span1 + 1].x()) x = pwl1.points_[++span1].x(); else x = pwl0.points_[++span0].x(); f(x, pwl0.eval(x, &span0, false), pwl1.eval(x, &span1, false)); } } /** * \brief Combine two Pwls * \param[in] pwl0 First piecewise linear function * \param[in] pwl1 Second piecewise linear function * \param[in] f Function to be applied * \param[in] eps Epsilon for the minimum x distance between points (optional) * * Create a new Pwl where the y values are given by running \a f wherever * either pwl has a knot. * * \return The combined pwl */ Pwl Pwl::combine(Pwl const &pwl0, Pwl const &pwl1, std::function f, const double eps) { Pwl result; map2(pwl0, pwl1, [&](double x, double y0, double y1) { result.append(x, f(x, y0, y1), eps); }); return result; } /** * \brief Multiply the piecewise linear function * \param[in] d Scalar multiplier to multiply the function by * \return This function, after it has been multiplied by \a d */ Pwl &Pwl::operator*=(double d) { for (auto &pt : points_) pt[1] *= d; return *this; } /** * \brief Assemble and return a string describing the piecewise linear function * \return A string describing the piecewise linear function */ std::string Pwl::toString() const { std::stringstream ss; ss << "Pwl { "; for (auto &p : points_) ss << "(" << p.x() << ", " << p.y() << ") "; ss << "}"; return ss.str(); } } /* namespace ipa */ } /* namespace libcamera */