summaryrefslogtreecommitdiff
path: root/src/qcam/assets/feathericons/code.svg
AgeCommit message (Expand)Author
2020-02-14qcam: assets: Provide initial icon setKieran Bingham
12'>12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
/* SPDX-License-Identifier: LGPL-2.1-or-later */
/*
 * Copyright (C) 2019-2020, Raspberry Pi (Trading) Ltd.
 *
 * raspberrypi.cpp - Pipeline handler for Raspberry Pi devices
 */
#include <algorithm>
#include <assert.h>
#include <fcntl.h>
#include <mutex>
#include <queue>
#include <sys/mman.h>
#include <unordered_set>

#include <libcamera/camera.h>
#include <libcamera/control_ids.h>
#include <libcamera/file_descriptor.h>
#include <libcamera/formats.h>
#include <libcamera/ipa/raspberrypi.h>
#include <libcamera/logging.h>
#include <libcamera/property_ids.h>
#include <libcamera/request.h>

#include <linux/videodev2.h>

#include "libcamera/internal/camera_sensor.h"
#include "libcamera/internal/device_enumerator.h"
#include "libcamera/internal/ipa_manager.h"
#include "libcamera/internal/media_device.h"
#include "libcamera/internal/pipeline_handler.h"
#include "libcamera/internal/utils.h"
#include "libcamera/internal/v4l2_controls.h"
#include "libcamera/internal/v4l2_videodevice.h"

#include "dma_heaps.h"
#include "rpi_stream.h"
#include "staggered_ctrl.h"

namespace libcamera {

LOG_DEFINE_CATEGORY(RPI)

namespace {

bool isRaw(PixelFormat &pixFmt)
{
	/*
	 * The isRaw test might be redundant right now the pipeline handler only
	 * supports RAW sensors. Leave it in for now, just as a sanity check.
	 */
	const PixelFormatInfo &info = PixelFormatInfo::info(pixFmt);
	if (!info.isValid())
		return false;

	return info.colourEncoding == PixelFormatInfo::ColourEncodingRAW;
}

double scoreFormat(double desired, double actual)
{
	double score = desired - actual;
	/* Smaller desired dimensions are preferred. */
	if (score < 0.0)
		score = (-score) / 8;
	/* Penalise non-exact matches. */
	if (actual != desired)
		score *= 2;

	return score;
}

V4L2DeviceFormat findBestMode(V4L2VideoDevice::Formats &formatsMap,
			      const Size &req)
{
	double bestScore = std::numeric_limits<double>::max(), score;
	V4L2DeviceFormat bestMode = {};

#define PENALTY_AR		1500.0
#define PENALTY_8BIT		2000.0
#define PENALTY_10BIT		1000.0
#define PENALTY_12BIT		   0.0
#define PENALTY_UNPACKED	 500.0

	/* Calculate the closest/best mode from the user requested size. */
	for (const auto &iter : formatsMap) {
		V4L2PixelFormat v4l2Format = iter.first;
		const PixelFormatInfo &info = PixelFormatInfo::info(v4l2Format);

		for (const SizeRange &sz : iter.second) {
			double modeWidth = sz.contains(req) ? req.width : sz.max.width;
			double modeHeight = sz.contains(req) ? req.height : sz.max.height;
			double reqAr = static_cast<double>(req.width) / req.height;
			double modeAr = modeWidth / modeHeight;

			/* Score the dimensions for closeness. */
			score = scoreFormat(req.width, modeWidth);
			score += scoreFormat(req.height, modeHeight);
			score += PENALTY_AR * scoreFormat(reqAr, modeAr);

			/* Add any penalties... this is not an exact science! */
			if (!info.packed)
				score += PENALTY_UNPACKED;

			if (info.bitsPerPixel == 12)
				score += PENALTY_12BIT;
			else if (info.bitsPerPixel == 10)
				score += PENALTY_10BIT;
			else if (info.bitsPerPixel == 8)
				score += PENALTY_8BIT;

			if (score <= bestScore) {
				bestScore = score;
				bestMode.fourcc = v4l2Format;
				bestMode.size = Size(modeWidth, modeHeight);
			}

			LOG(RPI, Info) << "Mode: " << modeWidth << "x" << modeHeight
				       << " fmt " << v4l2Format.toString()
				       << " Score: " << score
				       << " (best " << bestScore << ")";
		}
	}

	return bestMode;
}

enum class Unicam : unsigned int { Image, Embedded };
enum class Isp : unsigned int { Input, Output0, Output1, Stats };

} /* namespace */

class RPiCameraData : public CameraData
{
public:
	RPiCameraData(PipelineHandler *pipe)
		: CameraData(pipe), sensor_(nullptr), state_(State::Stopped),
		  dropFrameCount_(0), ispOutputCount_(0)
	{
	}

	void frameStarted(uint32_t sequence);

	int loadIPA();
	int configureIPA();

	void queueFrameAction(unsigned int frame, const IPAOperationData &action);

	/* bufferComplete signal handlers. */
	void unicamBufferDequeue(FrameBuffer *buffer);
	void ispInputDequeue(FrameBuffer *buffer);
	void ispOutputDequeue(FrameBuffer *buffer);

	void clearIncompleteRequests();
	void handleStreamBuffer(FrameBuffer *buffer, RPi::RPiStream *stream);
	void handleExternalBuffer(FrameBuffer *buffer, RPi::RPiStream *stream);
	void handleState();

	CameraSensor *sensor_;
	/* Array of Unicam and ISP device streams and associated buffers/streams. */
	RPi::RPiDevice<Unicam, 2> unicam_;
	RPi::RPiDevice<Isp, 4> isp_;
	/* The vector below is just for convenience when iterating over all streams. */
	std::vector<RPi::RPiStream *> streams_;
	/* Stores the ids of the buffers mapped in the IPA. */
	std::unordered_set<unsigned int> ipaBuffers_;

	/* DMAHEAP allocation helper. */
	RPi::DmaHeap dmaHeap_;
	FileDescriptor lsTable_;

	RPi::StaggeredCtrl staggeredCtrl_;
	uint32_t expectedSequence_;
	bool sensorMetadata_;

	/*
	 * All the functions in this class are called from a single calling
	 * thread. So, we do not need to have any mutex to protect access to any
	 * of the variables below.
	 */
	enum class State { Stopped, Idle, Busy, IpaComplete };
	State state_;
	std::queue<FrameBuffer *> bayerQueue_;
	std::queue<FrameBuffer *> embeddedQueue_;
	std::deque<Request *> requestQueue_;

	unsigned int dropFrameCount_;

private:
	void checkRequestCompleted();
	void tryRunPipeline();
	void tryFlushQueues();
	FrameBuffer *updateQueue(std::queue<FrameBuffer *> &q, uint64_t timestamp,
				 RPi::RPiStream *stream);

	unsigned int ispOutputCount_;
};

class RPiCameraConfiguration : public CameraConfiguration
{
public:
	RPiCameraConfiguration(const RPiCameraData *data);

	Status validate() override;

private:
	const RPiCameraData *data_;
};

class PipelineHandlerRPi : public PipelineHandler
{
public:
	PipelineHandlerRPi(CameraManager *manager);

	CameraConfiguration *generateConfiguration(Camera *camera, const StreamRoles &roles) override;
	int configure(Camera *camera, CameraConfiguration *config) override;

	int exportFrameBuffers(Camera *camera, Stream *stream,
			       std::vector<std::unique_ptr<FrameBuffer>> *buffers) override;

	int start(Camera *camera) override;
	void stop(Camera *camera) override;

	int queueRequestDevice(Camera *camera, Request *request) override;

	bool match(DeviceEnumerator *enumerator) override;

private:
	RPiCameraData *cameraData(const Camera *camera)
	{
		return static_cast<RPiCameraData *>(PipelineHandler::cameraData(camera));
	}

	int queueAllBuffers(Camera *camera);
	int prepareBuffers(Camera *camera);
	void freeBuffers(Camera *camera);
	void mapBuffers(Camera *camera, const RPi::BufferMap &buffers, unsigned int mask);

	MediaDevice *unicam_;
	MediaDevice *isp_;
};

RPiCameraConfiguration::RPiCameraConfiguration(const RPiCameraData *data)
	: CameraConfiguration(), data_(data)
{
}

CameraConfiguration::Status RPiCameraConfiguration::validate()
{
	Status status = Valid;

	if (config_.empty())
		return Invalid;

	if (transform != Transform::Identity) {
		transform = Transform::Identity;
		status = Adjusted;
	}

	unsigned int rawCount = 0, outCount = 0, count = 0, maxIndex = 0;
	std::pair<int, Size> outSize[2];
	Size maxSize;
	for (StreamConfiguration &cfg : config_) {
		if (isRaw(cfg.pixelFormat)) {
			/*
			 * Calculate the best sensor mode we can use based on
			 * the user request.
			 */
			V4L2VideoDevice::Formats fmts = data_->unicam_[Unicam::Image].dev()->formats();
			V4L2DeviceFormat sensorFormat = findBestMode(fmts, cfg.size);
			int ret = data_->unicam_[Unicam::Image].dev()->tryFormat(&sensorFormat);
			if (ret)
				return Invalid;

			PixelFormat sensorPixFormat = sensorFormat.fourcc.toPixelFormat();
			if (cfg.size != sensorFormat.size ||
			    cfg.pixelFormat != sensorPixFormat) {
				cfg.size = sensorFormat.size;
				cfg.pixelFormat = sensorPixFormat;
				status = Adjusted;
			}

			cfg.stride = sensorFormat.planes[0].bpl;
			cfg.frameSize = sensorFormat.planes[0].size;

			rawCount++;
		} else {
			outSize[outCount] = std::make_pair(count, cfg.size);
			/* Record the largest resolution for fixups later. */
			if (maxSize < cfg.size) {
				maxSize = cfg.size;
				maxIndex = outCount;
			}
			outCount++;
		}

		count++;

		/* Can only output 1 RAW stream, or 2 YUV/RGB streams. */
		if (rawCount > 1 || outCount > 2) {
			LOG(RPI, Error) << "Invalid number of streams requested";
			return Invalid;
		}
	}

	/*
	 * Now do any fixups needed. For the two ISP outputs, one stream must be
	 * equal or smaller than the other in all dimensions.
	 */
	for (unsigned int i = 0; i < outCount; i++) {
		outSize[i].second.width = std::min(outSize[i].second.width,
						   maxSize.width);
		outSize[i].second.height = std::min(outSize[i].second.height,
						    maxSize.height);

		if (config_.at(outSize[i].first).size != outSize[i].second) {
			config_.at(outSize[i].first).size = outSize[i].second;
			status = Adjusted;
		}

		/*
		 * Also validate the correct pixel formats here.
		 * Note that Output0 and Output1 support a different
		 * set of formats.
		 *
		 * Output 0 must be for the largest resolution. We will
		 * have that fixed up in the code above.
		 *
		 */
		StreamConfiguration &cfg = config_.at(outSize[i].first);
		PixelFormat &cfgPixFmt = cfg.pixelFormat;
		V4L2VideoDevice *dev;

		if (i == maxIndex)
			dev = data_->isp_[Isp::Output0].dev();
		else
			dev = data_->isp_[Isp::Output1].dev();

		V4L2VideoDevice::Formats fmts = dev->formats();

		if (fmts.find(V4L2PixelFormat::fromPixelFormat(cfgPixFmt, false)) == fmts.end()) {
			/* If we cannot find a native format, use a default one. */
			cfgPixFmt = formats::NV12;
			status = Adjusted;
		}

		V4L2DeviceFormat format = {};
		format.fourcc = dev->toV4L2PixelFormat(cfg.pixelFormat);
		format.size = cfg.size;

		int ret = dev->tryFormat(&format);
		if (ret)
			return Invalid;

		cfg.stride = format.planes[0].bpl;
		cfg.frameSize = format.planes[0].size;

	}

	return status;
}

PipelineHandlerRPi::PipelineHandlerRPi(CameraManager *manager)
	: PipelineHandler(manager), unicam_(nullptr), isp_(nullptr)
{
}

CameraConfiguration *PipelineHandlerRPi::generateConfiguration(Camera *camera,
							       const StreamRoles &roles)
{
	RPiCameraData *data = cameraData(camera);
	CameraConfiguration *config = new RPiCameraConfiguration(data);
	V4L2DeviceFormat sensorFormat;
	unsigned int bufferCount;
	PixelFormat pixelFormat;
	V4L2VideoDevice::Formats fmts;
	Size size;

	if (roles.empty())
		return config;

	unsigned int rawCount = 0;
	unsigned int outCount = 0;
	for (const StreamRole role : roles) {
		switch (role) {
		case StreamRole::StillCaptureRaw:
			size = data->sensor_->resolution();
			fmts = data->unicam_[Unicam::Image].dev()->formats();
			sensorFormat = findBestMode(fmts, size);
			pixelFormat = sensorFormat.fourcc.toPixelFormat();
			ASSERT(pixelFormat.isValid());
			bufferCount = 2;
			rawCount++;
			break;

		case StreamRole::StillCapture:
			fmts = data->isp_[Isp::Output0].dev()->formats();
			pixelFormat = formats::NV12;
			/* Return the largest sensor resolution. */
			size = data->sensor_->resolution();
			bufferCount = 1;
			outCount++;
			break;

		case StreamRole::VideoRecording:
			fmts = data->isp_[Isp::Output0].dev()->formats();
			pixelFormat = formats::NV12;
			size = { 1920, 1080 };
			bufferCount = 4;
			outCount++;
			break;

		case StreamRole::Viewfinder:
			fmts = data->isp_[Isp::Output0].dev()->formats();
			pixelFormat = formats::ARGB8888;
			size = { 800, 600 };
			bufferCount = 4;
			outCount++;
			break;

		default:
			LOG(RPI, Error) << "Requested stream role not supported: "
					<< role;
			delete config;
			return nullptr;
		}

		if (rawCount > 1 || outCount > 2) {
			LOG(RPI, Error) << "Invalid stream roles requested";
			delete config;
			return nullptr;
		}

		/* Translate the V4L2PixelFormat to PixelFormat. */
		std::map<PixelFormat, std::vector<SizeRange>> deviceFormats;
		for (const auto &format : fmts) {
			PixelFormat pixelFormat = format.first.toPixelFormat();
			if (pixelFormat.isValid())
				deviceFormats[pixelFormat] = format.second;
		}

		/* Add the stream format based on the device node used for the use case. */
		StreamFormats formats(deviceFormats);
		StreamConfiguration cfg(formats);
		cfg.size = size;
		cfg.pixelFormat = pixelFormat;
		cfg.bufferCount = bufferCount;
		config->addConfiguration(cfg);
	}

	config->validate();

	return config;
}

int PipelineHandlerRPi::configure(Camera *camera, CameraConfiguration *config)
{
	RPiCameraData *data = cameraData(camera);
	int ret;

	/* Start by resetting the Unicam and ISP stream states. */
	for (auto const stream : data->streams_)
		stream->reset();

	Size maxSize, sensorSize;
	unsigned int maxIndex = 0;
	bool rawStream = false;

	/*
	 * Look for the RAW stream (if given) size as well as the largest
	 * ISP output size.
	 */
	for (unsigned i = 0; i < config->size(); i++) {
		StreamConfiguration &cfg = config->at(i);

		if (isRaw(cfg.pixelFormat)) {
			/*
			 * If we have been given a RAW stream, use that size
			 * for setting up the sensor.
			 */
			sensorSize = cfg.size;
			rawStream = true;
		} else {
			if (cfg.size > maxSize) {
				maxSize = config->at(i).size;
				maxIndex = i;
			}
		}
	}

	/* First calculate the best sensor mode we can use based on the user request. */
	V4L2VideoDevice::Formats fmts = data->unicam_[Unicam::Image].dev()->formats();
	V4L2DeviceFormat sensorFormat = findBestMode(fmts, rawStream ? sensorSize : maxSize);

	/*
	 * Unicam image output format. The ISP input format gets set at start,
	 * just in case we have swapped bayer orders due to flips.
	 */
	ret = data->unicam_[Unicam::Image].dev()->setFormat(&sensorFormat);
	if (ret)
		return ret;

	LOG(RPI, Info) << "Sensor: " << camera->id()
		       << " - Selected mode: " << sensorFormat.toString();

	/*
	 * This format may be reset on start() if the bayer order has changed
	 * because of flips in the sensor.
	 */
	ret = data->isp_[Isp::Input].dev()->setFormat(&sensorFormat);

	/*
	 * See which streams are requested, and route the user
	 * StreamConfiguration appropriately.
	 */
	V4L2DeviceFormat format = {};
	for (unsigned i = 0; i < config->size(); i++) {
		StreamConfiguration &cfg = config->at(i);

		if (isRaw(cfg.pixelFormat)) {
			cfg.setStream(&data->unicam_[Unicam::Image]);
			/*
			 * We must set both Unicam streams as external, even
			 * though the application may only request RAW frames.
			 * This is because we match timestamps on both streams
			 * to synchronise buffers.
			 */
			data->unicam_[Unicam::Image].setExternal(true);
			data->unicam_[Unicam::Embedded].setExternal(true);
			continue;
		}

		if (i == maxIndex) {
			/* ISP main output format. */
			V4L2VideoDevice *dev = data->isp_[Isp::Output0].dev();
			V4L2PixelFormat fourcc = dev->toV4L2PixelFormat(cfg.pixelFormat);
			format.size = cfg.size;
			format.fourcc = fourcc;

			ret = dev->setFormat(&format);
			if (ret)
				return -EINVAL;

			if (format.size != cfg.size || format.fourcc != fourcc) {
				LOG(RPI, Error)
					<< "Failed to set format on ISP capture0 device: "
					<< format.toString();
				return -EINVAL;
			}

			cfg.setStream(&data->isp_[Isp::Output0]);
			data->isp_[Isp::Output0].setExternal(true);
		}

		/*
		 * ISP second output format. This fallthrough means that if a
		 * second output stream has not been configured, we simply use
		 * the Output0 configuration.
		 */
		V4L2VideoDevice *dev = data->isp_[Isp::Output1].dev();
		format.fourcc = dev->toV4L2PixelFormat(cfg.pixelFormat);
		format.size = cfg.size;

		ret = dev->setFormat(&format);
		if (ret) {
			LOG(RPI, Error)
				<< "Failed to set format on ISP capture1 device: "
				<< format.toString();
			return ret;
		}
		/*
		 * If we have not yet provided a stream for this config, it
		 * means this is to be routed from Output1.
		 */
		if (!cfg.stream()) {
			cfg.setStream(&data->isp_[Isp::Output1]);
			data->isp_[Isp::Output1].setExternal(true);
		}
	}

	/* ISP statistics output format. */
	format = {};
	format.fourcc = V4L2PixelFormat(V4L2_META_FMT_BCM2835_ISP_STATS);
	ret = data->isp_[Isp::Stats].dev()->setFormat(&format);
	if (ret) {
		LOG(RPI, Error) << "Failed to set format on ISP stats stream: "
				<< format.toString();
		return ret;
	}

	/* Unicam embedded data output format. */
	format = {};
	format.fourcc = V4L2PixelFormat(V4L2_META_FMT_SENSOR_DATA);
	LOG(RPI, Debug) << "Setting embedded data format.";
	ret = data->unicam_[Unicam::Embedded].dev()->setFormat(&format);
	if (ret) {
		LOG(RPI, Error) << "Failed to set format on Unicam embedded: "
				<< format.toString();
		return ret;
	}

	/* Adjust aspect ratio by providing crops on the input image. */
	Rectangle crop{ 0, 0, sensorFormat.size };

	int ar = maxSize.height * sensorFormat.size.width - maxSize.width * sensorFormat.size.height;
	if (ar > 0)
		crop.width = maxSize.width * sensorFormat.size.height / maxSize.height;
	else if (ar < 0)
		crop.height = maxSize.height * sensorFormat.size.width / maxSize.width;

	crop.width &= ~1;
	crop.height &= ~1;

	crop.x = (sensorFormat.size.width - crop.width) >> 1;
	crop.y = (sensorFormat.size.height - crop.height) >> 1;
	data->isp_[Isp::Input].dev()->setSelection(V4L2_SEL_TGT_CROP, &crop);

	ret = data->configureIPA();
	if (ret)
		LOG(RPI, Error) << "Failed to configure the IPA: " << ret;

	return ret;
}

int PipelineHandlerRPi::exportFrameBuffers([[maybe_unused]] Camera *camera, Stream *stream,
					   std::vector<std::unique_ptr<FrameBuffer>> *buffers)
{
	RPi::RPiStream *s = static_cast<RPi::RPiStream *>(stream);
	unsigned int count = stream->configuration().bufferCount;
	int ret = s->dev()->exportBuffers(count, buffers);

	s->setExportedBuffers(buffers);

	return ret;
}

int PipelineHandlerRPi::start(Camera *camera)
{
	RPiCameraData *data = cameraData(camera);
	int ret;

	/* Allocate buffers for internal pipeline usage. */
	ret = prepareBuffers(camera);
	if (ret) {
		LOG(RPI, Error) << "Failed to allocate buffers";
		stop(camera);
		return ret;
	}

	ret = queueAllBuffers(camera);
	if (ret) {
		LOG(RPI, Error) << "Failed to queue buffers";
		stop(camera);
		return ret;
	}

	/* Start the IPA. */
	ret = data->ipa_->start();
	if (ret) {
		LOG(RPI, Error)
			<< "Failed to start IPA for " << camera->id();
		stop(camera);
		return ret;
	}

	/*
	 * IPA configure may have changed the sensor flips - hence the bayer
	 * order. Get the sensor format and set the ISP input now.
	 */
	V4L2DeviceFormat sensorFormat;
	data->unicam_[Unicam::Image].dev()->getFormat(&sensorFormat);
	ret = data->isp_[Isp::Input].dev()->setFormat(&sensorFormat);
	if (ret) {
		stop(camera);
		return ret;
	}

	/* Enable SOF event generation. */
	data->unicam_[Unicam::Image].dev()->setFrameStartEnabled(true);

	/*
	 * Write the last set of gain and exposure values to the camera before
	 * starting. First check that the staggered ctrl has been initialised
	 * by configure().
	 */
	ASSERT(data->staggeredCtrl_);
	data->staggeredCtrl_.reset();
	data->staggeredCtrl_.write();
	data->expectedSequence_ = 0;

	data->state_ = RPiCameraData::State::Idle;

	/* Start all streams. */
	for (auto const stream : data->streams_) {
		ret = stream->dev()->streamOn();
		if (ret) {
			stop(camera);
			return ret;
		}
	}

	return 0;
}

void PipelineHandlerRPi::stop(Camera *camera)
{
	RPiCameraData *data = cameraData(camera);

	data->state_ = RPiCameraData::State::Stopped;

	/* Disable SOF event generation. */
	data->unicam_[Unicam::Image].dev()->setFrameStartEnabled(false);

	/* This also stops the streams. */
	data->clearIncompleteRequests();
	data->bayerQueue_ = {};
	data->embeddedQueue_ = {};

	/* Stop the IPA. */
	data->ipa_->stop();

	freeBuffers(camera);
}

int PipelineHandlerRPi::queueRequestDevice(Camera *camera, Request *request)
{
	RPiCameraData *data = cameraData(camera);

	if (data->state_ == RPiCameraData::State::Stopped)
		return -EINVAL;

	LOG(RPI, Debug) << "queueRequestDevice: New request.";

	/* Push all buffers supplied in the Request to the respective streams. */
	for (auto stream : data->streams_) {
		if (!stream->isExternal())
			continue;

		FrameBuffer *buffer = request->findBuffer(stream);
		if (buffer && stream->getBufferId(buffer) == -1) {
			/*
			 * This buffer is not recognised, so it must have been allocated
			 * outside the v4l2 device. Store it in the stream buffer list
			 * so we can track it.
			 */
			stream->setExternalBuffer(buffer);
		}
		/*
		 * If no buffer is provided by the request for this stream, we
		 * queue a nullptr to the stream to signify that it must use an
		 * internally allocated buffer for this capture request. This
		 * buffer will not be given back to the application, but is used
		 * to support the internal pipeline flow.
		 *
		 * The below queueBuffer() call will do nothing if there are not
		 * enough internal buffers allocated, but this will be handled by
		 * queuing the request for buffers in the RPiStream object.
		 */
		int ret = stream->queueBuffer(buffer);
		if (ret)
			return ret;
	}

	/* Push the request to the back of the queue. */
	data->requestQueue_.push_back(request);
	data->handleState();

	return 0;
}

bool PipelineHandlerRPi::match(DeviceEnumerator *enumerator)
{
	DeviceMatch unicam("unicam");
	DeviceMatch isp("bcm2835-isp");

	unicam.add("unicam-embedded");
	unicam.add("unicam-image");

	isp.add("bcm2835-isp0-output0"); /* Input */
	isp.add("bcm2835-isp0-capture1"); /* Output 0 */
	isp.add("bcm2835-isp0-capture2"); /* Output 1 */
	isp.add("bcm2835-isp0-capture3"); /* Stats */

	unicam_ = acquireMediaDevice(enumerator, unicam);
	if (!unicam_)
		return false;

	isp_ = acquireMediaDevice(enumerator, isp);
	if (!isp_)
		return false;

	std::unique_ptr<RPiCameraData> data = std::make_unique<RPiCameraData>(this);
	if (!data->dmaHeap_.isValid())
		return false;

	/* Locate and open the unicam video streams. */
	data->unicam_[Unicam::Embedded] = RPi::RPiStream("Unicam Embedded", unicam_->getEntityByName("unicam-embedded"));
	data->unicam_[Unicam::Image] = RPi::RPiStream("Unicam Image", unicam_->getEntityByName("unicam-image"));

	/* Tag the ISP input stream as an import stream. */
	data->isp_[Isp::Input] = RPi::RPiStream("ISP Input", isp_->getEntityByName("bcm2835-isp0-output0"), true);
	data->isp_[Isp::Output0] = RPi::RPiStream("ISP Output0", isp_->getEntityByName("bcm2835-isp0-capture1"));
	data->isp_[Isp::Output1] = RPi::RPiStream("ISP Output1", isp_->getEntityByName("bcm2835-isp0-capture2"));
	data->isp_[Isp::Stats] = RPi::RPiStream("ISP Stats", isp_->getEntityByName("bcm2835-isp0-capture3"));

	/* This is just for convenience so that we can easily iterate over all streams. */
	for (auto &stream : data->unicam_)
		data->streams_.push_back(&stream);
	for (auto &stream : data->isp_)
		data->streams_.push_back(&stream);

	/* Open all Unicam and ISP streams. */
	for (auto const stream : data->streams_) {
		if (stream->dev()->open())
			return false;
	}

	/* Wire up all the buffer connections. */
	data->unicam_[Unicam::Image].dev()->frameStart.connect(data.get(), &RPiCameraData::frameStarted);
	data->unicam_[Unicam::Image].dev()->bufferReady.connect(data.get(), &RPiCameraData::unicamBufferDequeue);
	data->unicam_[Unicam::Embedded].dev()->bufferReady.connect(data.get(), &RPiCameraData::unicamBufferDequeue);
	data->isp_[Isp::Input].dev()->bufferReady.connect(data.get(), &RPiCameraData::ispInputDequeue);
	data->isp_[Isp::Output0].dev()->bufferReady.connect(data.get(), &RPiCameraData::ispOutputDequeue);
	data->isp_[Isp::Output1].dev()->bufferReady.connect(data.get(), &RPiCameraData::ispOutputDequeue);
	data->isp_[Isp::Stats].dev()->bufferReady.connect(data.get(), &RPiCameraData::ispOutputDequeue);

	/* Identify the sensor. */
	for (MediaEntity *entity : unicam_->entities()) {
		if (entity->function() == MEDIA_ENT_F_CAM_SENSOR) {
			data->sensor_ = new CameraSensor(entity);
			break;
		}
	}

	if (!data->sensor_)
		return false;

	if (data->sensor_->init())
		return false;

	if (data->loadIPA()) {
		LOG(RPI, Error) << "Failed to load a suitable IPA library";
		return false;
	}

	/* Register the controls that the Raspberry Pi IPA can handle. */
	data->controlInfo_ = RPiControls;
	/* Initialize the camera properties. */
	data->properties_ = data->sensor_->properties();

	/*
	 * List the available streams an application may request. At present, we
	 * do not advertise Unicam Embedded and ISP Statistics streams, as there
	 * is no mechanism for the application to request non-image buffer formats.
	 */
	std::set<Stream *> streams;
	streams.insert(&data->unicam_[Unicam::Image]);
	streams.insert(&data->isp_[Isp::Output0]);
	streams.insert(&data->isp_[Isp::Output1]);

	/* Create and register the camera. */
	std::shared_ptr<Camera> camera =
		Camera::create(this, data->sensor_->id(), streams);
	registerCamera(std::move(camera), std::move(data));

	return true;
}

int PipelineHandlerRPi::queueAllBuffers(Camera *camera)
{
	RPiCameraData *data = cameraData(camera);
	int ret;

	for (auto const stream : data->streams_) {
		if (!stream->isExternal()) {
			ret = stream->queueAllBuffers();
			if (ret < 0)
				return ret;
		} else {
			/*
			 * For external streams, we must queue up a set of internal
			 * buffers to handle the number of drop frames requested by
			 * the IPA. This is done by passing nullptr in queueBuffer().
			 *
			 * The below queueBuffer() call will do nothing if there
			 * are not enough internal buffers allocated, but this will
			 * be handled by queuing the request for buffers in the
			 * RPiStream object.
			 */
			unsigned int i;
			for (i = 0; i < data->dropFrameCount_; i++) {
				int ret = stream->queueBuffer(nullptr);
				if (ret)
					return ret;
			}
		}
	}

	return 0;
}

int PipelineHandlerRPi::prepareBuffers(Camera *camera)
{
	RPiCameraData *data = cameraData(camera);
	int ret;

	/*
	 * Decide how many internal buffers to allocate. For now, simply look
	 * at how many external buffers will be provided. Will need to improve
	 * this logic. However, we really must have all streams allocate the same
	 * number of buffers to simplify error handling in queueRequestDevice().
	 */
	unsigned int maxBuffers = 0;
	for (const Stream *s : camera->streams())
		if (static_cast<const RPi::RPiStream *>(s)->isExternal())
			maxBuffers = std::max(maxBuffers, s->configuration().bufferCount);

	for (auto const stream : data->streams_) {
		ret = stream->prepareBuffers(maxBuffers);
		if (ret < 0)
			return ret;
	}

	/*
	 * Pass the stats and embedded data buffers to the IPA. No other
	 * buffers need to be passed.
	 */
	mapBuffers(camera, data->isp_[Isp::Stats].getBuffers(), RPiBufferMask::STATS);
	mapBuffers(camera, data->unicam_[Unicam::Embedded].getBuffers(), RPiBufferMask::EMBEDDED_DATA);

	return 0;
}

void PipelineHandlerRPi::mapBuffers(Camera *camera, const RPi::BufferMap &buffers, unsigned int mask)
{
	RPiCameraData *data = cameraData(camera);
	std::vector<IPABuffer> ipaBuffers;
	/*
	 * Link the FrameBuffers with the id (key value) in the map stored in
	 * the RPi stream object - along with an identifier mask.
	 *
	 * This will allow us to identify buffers passed between the pipeline
	 * handler and the IPA.
	 */
	for (auto const &it : buffers) {
		ipaBuffers.push_back({ .id = mask | it.first,
				       .planes = it.second->planes() });
		data->ipaBuffers_.insert(mask | it.first);
	}

	data->ipa_->mapBuffers(ipaBuffers);
}

void PipelineHandlerRPi::freeBuffers(Camera *camera)
{
	RPiCameraData *data = cameraData(camera);

	/* Copy the buffer ids from the unordered_set to a vector to pass to the IPA. */
	std::vector<unsigned int> ipaBuffers(data->ipaBuffers_.begin(), data->ipaBuffers_.end());
	data->ipa_->unmapBuffers(ipaBuffers);
	data->ipaBuffers_.clear();

	for (auto const stream : data->streams_)
		stream->releaseBuffers();
}

void RPiCameraData::frameStarted(uint32_t sequence)
{
	LOG(RPI, Debug) << "frame start " << sequence;

	/* Write any controls for the next frame as soon as we can. */
	staggeredCtrl_.write();
}

int RPiCameraData::loadIPA()
{
	ipa_ = IPAManager::createIPA(pipe_, 1, 1);
	if (!ipa_)
		return -ENOENT;

	ipa_->queueFrameAction.connect(this, &RPiCameraData::queueFrameAction);

	IPASettings settings{
		.configurationFile = ipa_->configurationFile(sensor_->model() + ".json")
	};

	return ipa_->init(settings);
}

int RPiCameraData::configureIPA()
{
	std::map<unsigned int, IPAStream> streamConfig;
	std::map<unsigned int, const ControlInfoMap &> entityControls;
	IPAOperationData ipaConfig = {};

	/* Get the device format to pass to the IPA. */
	V4L2DeviceFormat sensorFormat;
	unicam_[Unicam::Image].dev()->getFormat(&sensorFormat);
	/* Inform IPA of stream configuration and sensor controls. */
	unsigned int i = 0;
	for (auto const &stream : isp_) {
		if (stream.isExternal()) {
			streamConfig[i++] = {
				.pixelFormat = stream.configuration().pixelFormat,
				.size = stream.configuration().size
			};
		}
	}

	entityControls.emplace(0, unicam_[Unicam::Image].dev()->controls());
	entityControls.emplace(1, isp_[Isp::Input].dev()->controls());

	/* Allocate the lens shading table via dmaHeap and pass to the IPA. */
	if (!lsTable_.isValid()) {
		lsTable_ = dmaHeap_.alloc("ls_grid", MAX_LS_GRID_SIZE);
		if (!lsTable_.isValid())
			return -ENOMEM;

		/* Allow the IPA to mmap the LS table via the file descriptor. */
		ipaConfig.operation = RPI_IPA_CONFIG_LS_TABLE;
		ipaConfig.data = { static_cast<unsigned int>(lsTable_.fd()) };
	}

	CameraSensorInfo sensorInfo = {};
	int ret = sensor_->sensorInfo(&sensorInfo);
	if (ret) {
		LOG(RPI, Error) << "Failed to retrieve camera sensor info";
		return ret;
	}

	/* Ready the IPA - it must know about the sensor resolution. */
	IPAOperationData result;

	ipa_->configure(sensorInfo, streamConfig, entityControls, ipaConfig,
			&result);

	unsigned int resultIdx = 0;
	if (result.operation & RPI_IPA_CONFIG_STAGGERED_WRITE) {
		/*
		 * Setup our staggered control writer with the sensor default
		 * gain and exposure delays.
		 */
		if (!staggeredCtrl_) {
			staggeredCtrl_.init(unicam_[Unicam::Image].dev(),
					    { { V4L2_CID_ANALOGUE_GAIN, result.data[resultIdx++] },
					      { V4L2_CID_EXPOSURE, result.data[resultIdx++] } });
			sensorMetadata_ = result.data[resultIdx++];
		}

		/* Configure the H/V flip controls based on the sensor rotation. */
		ControlList ctrls(unicam_[Unicam::Image].dev()->controls());
		int32_t rotation = sensor_->properties().get(properties::Rotation);
		ctrls.set(V4L2_CID_HFLIP, static_cast<int32_t>(!!rotation));
		ctrls.set(V4L2_CID_VFLIP, static_cast<int32_t>(!!rotation));
		unicam_[Unicam::Image].dev()->setControls(&ctrls);
	}

	if (result.operation & RPI_IPA_CONFIG_SENSOR) {
		const ControlList &ctrls = result.controls[0];
		if (!staggeredCtrl_.set(ctrls))
			LOG(RPI, Error) << "V4L2 staggered set failed";
	}

	if (result.operation & RPI_IPA_CONFIG_DROP_FRAMES) {
		/* Configure the number of dropped frames required on startup. */
		dropFrameCount_ = result.data[resultIdx++];
	}

	return 0;
}

void RPiCameraData::queueFrameAction([[maybe_unused]] unsigned int frame,
				     const IPAOperationData &action)
{
	/*
	 * The following actions can be handled when the pipeline handler is in
	 * a stopped state.
	 */
	switch (action.operation) {
	case RPI_IPA_ACTION_V4L2_SET_STAGGERED: {
		const ControlList &controls = action.controls[0];
		if (!staggeredCtrl_.set(controls))
			LOG(RPI, Error) << "V4L2 staggered set failed";
		goto done;
	}

	case RPI_IPA_ACTION_V4L2_SET_ISP: {
		ControlList controls = action.controls[0];
		isp_[Isp::Input].dev()->setControls(&controls);
		goto done;
	}
	}

	if (state_ == State::Stopped)
		goto done;

	/*
	 * The following actions must not be handled when the pipeline handler
	 * is in a stopped state.
	 */
	switch (action.operation) {
	case RPI_IPA_ACTION_STATS_METADATA_COMPLETE: {
		unsigned int bufferId = action.data[0];
		FrameBuffer *buffer = isp_[Isp::Stats].getBuffers().at(bufferId);

		handleStreamBuffer(buffer, &isp_[Isp::Stats]);
		/* Fill the Request metadata buffer with what the IPA has provided */
		requestQueue_.front()->metadata() = std::move(action.controls[0]);
		state_ = State::IpaComplete;
		break;
	}

	case RPI_IPA_ACTION_EMBEDDED_COMPLETE: {
		unsigned int bufferId = action.data[0];
		FrameBuffer *buffer = unicam_[Unicam::Embedded].getBuffers().at(bufferId);
		handleStreamBuffer(buffer, &unicam_[Unicam::Embedded]);
		break;
	}

	case RPI_IPA_ACTION_RUN_ISP: {
		unsigned int bufferId = action.data[0];
		FrameBuffer *buffer = unicam_[Unicam::Image].getBuffers().at(bufferId);

		LOG(RPI, Debug) << "Input re-queue to ISP, buffer id " << bufferId
				<< ", timestamp: " << buffer->metadata().timestamp;

		isp_[Isp::Input].queueBuffer(buffer);
		ispOutputCount_ = 0;
		break;
	}

	default:
		LOG(RPI, Error) << "Unknown action " << action.operation;
		break;
	}

done:
	handleState();
}

void RPiCameraData::unicamBufferDequeue(FrameBuffer *buffer)
{
	RPi::RPiStream *stream = nullptr;
	int index;

	if (state_ == State::Stopped)
		return;

	for (RPi::RPiStream &s : unicam_) {
		index = s.getBufferId(buffer);
		if (index != -1) {
			stream = &s;
			break;
		}
	}

	/* The buffer must belong to one of our streams. */
	ASSERT(stream);

	LOG(RPI, Debug) << "Stream " << stream->name() << " buffer dequeue"
			<< ", buffer id " << index
			<< ", timestamp: " << buffer->metadata().timestamp;

	if (stream == &unicam_[Unicam::Image]) {
		bayerQueue_.push(buffer);
	} else {
		embeddedQueue_.push(buffer);

		std::unordered_map<uint32_t, int32_t> ctrl;
		int offset = buffer->metadata().sequence - expectedSequence_;
		staggeredCtrl_.get(ctrl, offset);

		expectedSequence_ = buffer->metadata().sequence + 1;

		/*
		 * Sensor metadata is unavailable, so put the expected ctrl
		 * values (accounting for the staggered delays) into the empty
		 * metadata buffer.
		 */
		if (!sensorMetadata_) {
			const FrameBuffer &fb = buffer->planes();
			uint32_t *mem = static_cast<uint32_t *>(::mmap(nullptr, fb.planes()[0].length,
								       PROT_READ | PROT_WRITE,
								       MAP_SHARED,
								       fb.planes()[0].fd.fd(), 0));
			mem[0] = ctrl[V4L2_CID_EXPOSURE];
			mem[1] = ctrl[V4L2_CID_ANALOGUE_GAIN];
			munmap(mem, fb.planes()[0].length);
		}
	}

	handleState();
}

void RPiCameraData::ispInputDequeue(FrameBuffer *buffer)
{
	if (state_ == State::Stopped)
		return;

	LOG(RPI, Debug) << "Stream ISP Input buffer complete"
			<< ", buffer id " << unicam_[Unicam::Image].getBufferId(buffer)
			<< ", timestamp: " << buffer->metadata().timestamp;

	/* The ISP input buffer gets re-queued into Unicam. */
	handleStreamBuffer(buffer, &unicam_[Unicam::Image]);
	handleState();
}

void RPiCameraData::ispOutputDequeue(FrameBuffer *buffer)
{
	RPi::RPiStream *stream = nullptr;
	int index;

	if (state_ == State::Stopped)
		return;

	for (RPi::RPiStream &s : isp_) {
		index = s.getBufferId(buffer);
		if (index != -1) {
			stream = &s;
			break;
		}
	}

	/* The buffer must belong to one of our ISP output streams. */
	ASSERT(stream);

	LOG(RPI, Debug) << "Stream " << stream->name() << " buffer complete"
			<< ", buffer id " << index
			<< ", timestamp: " << buffer->metadata().timestamp;

	/*
	 * ISP statistics buffer must not be re-queued or sent back to the
	 * application until after the IPA signals so.
	 */
	if (stream == &isp_[Isp::Stats]) {
		IPAOperationData op;
		op.operation = RPI_IPA_EVENT_SIGNAL_STAT_READY;
		op.data = { RPiBufferMask::STATS | static_cast<unsigned int>(index) };
		ipa_->processEvent(op);
	} else {
		/* Any other ISP output can be handed back to the application now. */
		handleStreamBuffer(buffer, stream);
	}

	/*
	 * Increment the number of ISP outputs generated.
	 * This is needed to track dropped frames.
	 */
	ispOutputCount_++;

	handleState();
}

void RPiCameraData::clearIncompleteRequests()
{
	/*
	 * Queue up any buffers passed in the request.
	 * This is needed because streamOff() will then mark the buffers as
	 * cancelled.
	 */
	for (auto const request : requestQueue_) {
		for (auto const stream : streams_) {
			if (!stream->isExternal())
				continue;

			FrameBuffer *buffer = request->findBuffer(stream);
			if (buffer)
				stream->queueBuffer(buffer);
		}
	}

	/* Stop all streams. */
	for (auto const stream : streams_)
		stream->dev()->streamOff();

	/*
	 * All outstanding requests (and associated buffers) must be returned
	 * back to the pipeline. The buffers would have been marked as
	 * cancelled by the call to streamOff() earlier.
	 */
	while (!requestQueue_.empty()) {
		Request *request = requestQueue_.front();
		/*
		 * A request could be partially complete,
		 * i.e. we have returned some buffers, but still waiting
		 * for others or waiting for metadata.
		 */
		for (auto const stream : streams_) {
			if (!stream->isExternal())
				continue;

			FrameBuffer *buffer = request->findBuffer(stream);
			/*
			 * Has the buffer already been handed back to the
			 * request? If not, do so now.
			 */
			if (buffer && buffer->request())
				pipe_->completeBuffer(camera_, request, buffer);
		}

		pipe_->completeRequest(camera_, request);
		requestQueue_.pop_front();
	}
}

void RPiCameraData::handleStreamBuffer(FrameBuffer *buffer, RPi::RPiStream *stream)
{
	if (stream->isExternal()) {
		/*
		 * It is possible to be here without a pending request, so check
		 * that we actually have one to action, otherwise we just return
		 * buffer back to the stream.
		 */
		Request *request = requestQueue_.empty() ? nullptr : requestQueue_.front();
		if (!dropFrameCount_ && request && request->findBuffer(stream) == buffer) {
			/*
			 * Check if this is an externally provided buffer, and if
			 * so, we must stop tracking it in the pipeline handler.
			 */
			handleExternalBuffer(buffer, stream);
			/*
			 * Tag the buffer as completed, returning it to the
			 * application.
			 */
			pipe_->completeBuffer(camera_, request, buffer);
		} else {
			/*
			 * This buffer was not part of the Request, or there is no
			 * pending request, so we can recycle it.
			 */
			stream->returnBuffer(buffer);
		}
	} else {
		/* Simply re-queue the buffer to the requested stream. */
		stream->queueBuffer(buffer);
	}
}

void RPiCameraData::handleExternalBuffer(FrameBuffer *buffer, RPi::RPiStream *stream)
{
	unsigned int id = stream->getBufferId(buffer);

	if (!(id & RPiBufferMask::EXTERNAL_BUFFER))
		return;

	/* Stop the Stream object from tracking the buffer. */
	stream->removeExternalBuffer(buffer);
}

void RPiCameraData::handleState()
{
	switch (state_) {
	case State::Stopped:
	case State::Busy:
		break;

	case State::IpaComplete:
		/* If the request is completed, we will switch to Idle state. */
		checkRequestCompleted();
		/*
		 * No break here, we want to try running the pipeline again.
		 * The fallthrough clause below suppresses compiler warnings.
		 */
		/* Fall through */

	case State::Idle:
		tryRunPipeline();
		tryFlushQueues();
		break;
	}
}

void RPiCameraData::checkRequestCompleted()
{
	bool requestCompleted = false;
	/*
	 * If we are dropping this frame, do not touch the request, simply
	 * change the state to IDLE when ready.
	 */
	if (!dropFrameCount_) {
		Request *request = requestQueue_.front();
		if (request->hasPendingBuffers())
			return;

		/* Must wait for metadata to be filled in before completing. */
		if (state_ != State::IpaComplete)
			return;

		pipe_->completeRequest(camera_, request);
		requestQueue_.pop_front();
		requestCompleted = true;
	}

	/*
	 * Make sure we have three outputs completed in the case of a dropped
	 * frame.
	 */
	if (state_ == State::IpaComplete &&
	    ((ispOutputCount_ == 3 && dropFrameCount_) || requestCompleted)) {
		state_ = State::Idle;
		if (dropFrameCount_) {
			dropFrameCount_--;
			LOG(RPI, Info) << "Dropping frame at the request of the IPA ("
				       << dropFrameCount_ << " left)";
		}
	}
}

void RPiCameraData::tryRunPipeline()
{
	FrameBuffer *bayerBuffer, *embeddedBuffer;
	IPAOperationData op;

	/* If any of our request or buffer queues are empty, we cannot proceed. */
	if (state_ != State::Idle || requestQueue_.empty() ||
	    bayerQueue_.empty() || embeddedQueue_.empty())
		return;

	/* Start with the front of the bayer buffer queue. */
	bayerBuffer = bayerQueue_.front();

	/*
	 * Find the embedded data buffer with a matching timestamp to pass to
	 * the IPA. Any embedded buffers with a timestamp lower than the
	 * current bayer buffer will be removed and re-queued to the driver.
	 */
	embeddedBuffer = updateQueue(embeddedQueue_, bayerBuffer->metadata().timestamp,
				     &unicam_[Unicam::Embedded]);

	if (!embeddedBuffer) {
		LOG(RPI, Debug) << "Could not find matching embedded buffer";

		/*
		 * Look the other way, try to match a bayer buffer with the
		 * first embedded buffer in the queue. This will also do some
		 * housekeeping on the bayer image queue - clear out any
		 * buffers that are older than the first buffer in the embedded
		 * queue.
		 *
		 * But first check if the embedded queue has emptied out.
		 */
		if (embeddedQueue_.empty())
			return;

		embeddedBuffer = embeddedQueue_.front();
		bayerBuffer = updateQueue(bayerQueue_, embeddedBuffer->metadata().timestamp,
					  &unicam_[Unicam::Image]);

		if (!bayerBuffer) {
			LOG(RPI, Debug) << "Could not find matching bayer buffer - ending.";
			return;
		}
	}

	/* Take the first request from the queue and action the IPA. */
	Request *request = requestQueue_.front();

	/*
	 * Process all the user controls by the IPA. Once this is complete, we
	 * queue the ISP output buffer listed in the request to start the HW
	 * pipeline.
	 */
	op.operation = RPI_IPA_EVENT_QUEUE_REQUEST;
	op.controls = { request->controls() };
	ipa_->processEvent(op);

	/* Ready to use the buffers, pop them off the queue. */
	bayerQueue_.pop();
	embeddedQueue_.pop();

	/* Set our state to say the pipeline is active. */
	state_ = State::Busy;

	unsigned int bayerId = unicam_[Unicam::Image].getBufferId(bayerBuffer);
	unsigned int embeddedId = unicam_[Unicam::Embedded].getBufferId(embeddedBuffer);

	LOG(RPI, Debug) << "Signalling RPI_IPA_EVENT_SIGNAL_ISP_PREPARE:"
			<< " Bayer buffer id: " << bayerId
			<< " Embedded buffer id: " << embeddedId;

	op.operation = RPI_IPA_EVENT_SIGNAL_ISP_PREPARE;
	op.data = { RPiBufferMask::EMBEDDED_DATA | embeddedId,
		    RPiBufferMask::BAYER_DATA | bayerId };
	ipa_->processEvent(op);
}

void RPiCameraData::tryFlushQueues()
{
	/*
	 * It is possible for us to end up in a situation where all available
	 * Unicam buffers have been dequeued but do not match. This can happen
	 * when the system is heavily loaded and we get out of lock-step with
	 * the two channels.
	 *
	 * In such cases, the best thing to do is the re-queue all the buffers
	 * and give a chance for the hardware to return to lock-step. We do have
	 * to drop all interim frames.
	 */
	if (unicam_[Unicam::Image].getBuffers().size() == bayerQueue_.size() &&
	    unicam_[Unicam::Embedded].getBuffers().size() == embeddedQueue_.size()) {
		/* This cannot happen when Unicam streams are external. */
		assert(!unicam_[Unicam::Image].isExternal());

		LOG(RPI, Warning) << "Flushing all buffer queues!";

		while (!bayerQueue_.empty()) {
			unicam_[Unicam::Image].queueBuffer(bayerQueue_.front());
			bayerQueue_.pop();
		}

		while (!embeddedQueue_.empty()) {
			unicam_[Unicam::Embedded].queueBuffer(embeddedQueue_.front());
			embeddedQueue_.pop();
		}
	}
}

FrameBuffer *RPiCameraData::updateQueue(std::queue<FrameBuffer *> &q, uint64_t timestamp,
					RPi::RPiStream *stream)
{
	/*
	 * If the unicam streams are external (both have be to the same), then we
	 * can only return out the top buffer in the queue, and assume they have
	 * been synced by queuing at the same time. We cannot drop these frames,
	 * as they may have been provided externally.
	 */
	while (!q.empty()) {
		FrameBuffer *b = q.front();
		if (!stream->isExternal() && b->metadata().timestamp < timestamp) {
			q.pop();
			stream->queueBuffer(b);
			LOG(RPI, Warning) << "Dropping unmatched input frame in stream "
					  << stream->name();
		} else if (stream->isExternal() || b->metadata().timestamp == timestamp) {
			/* The calling function will pop the item from the queue. */
			return b;
		} else {
			break; /* Only higher timestamps from here. */
		}
	}

	return nullptr;
}

REGISTER_PIPELINE_HANDLER(PipelineHandlerRPi);

} /* namespace libcamera */